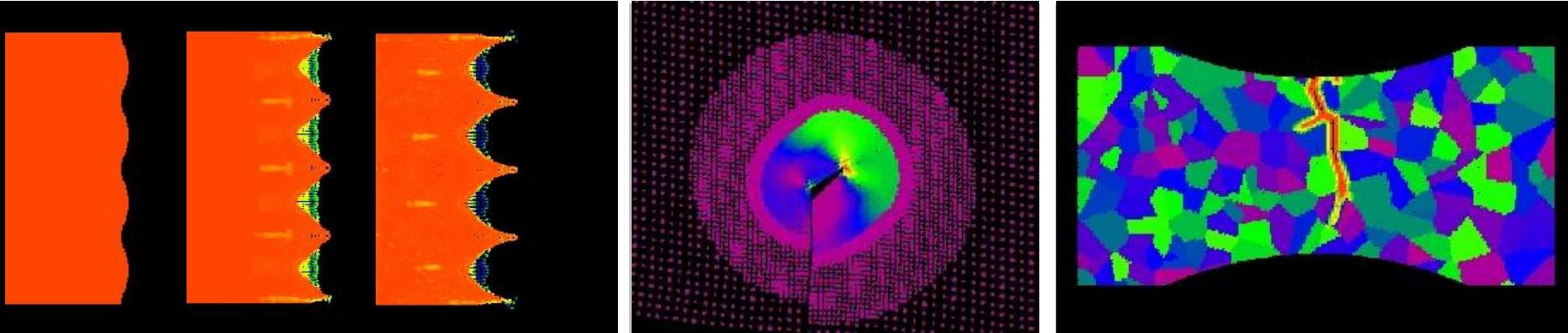


Exceptional service in the national interest

SAND2013-xxxx



Origin and effect of nonlocality in a composite

Stewart Silling

Sandia National Laboratories

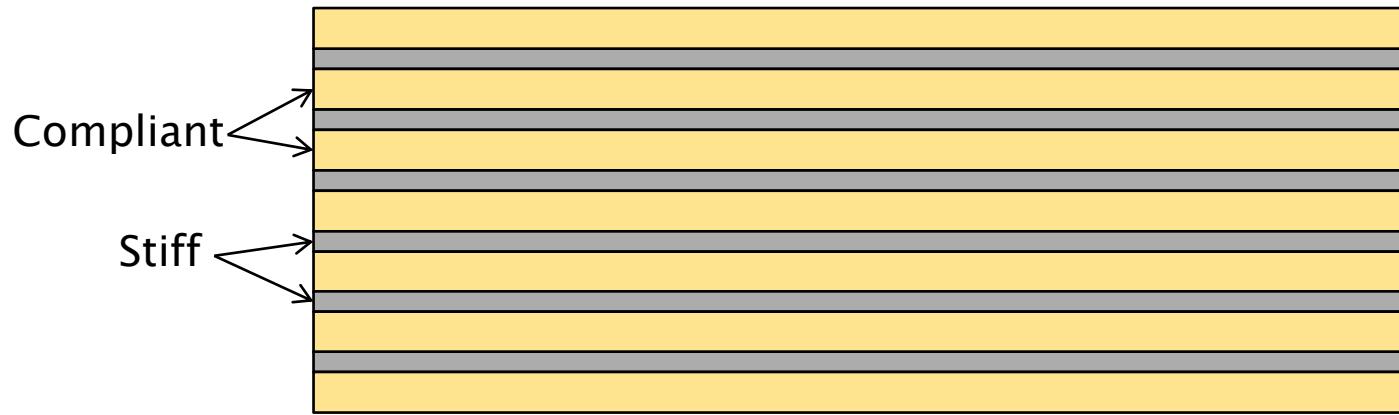
2013 SIAM Conference on Analysis of Partial Differential Equations, Orlando, FL,
December 7, 2013

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Objectives

- Demonstrate how nonlocality arises in a simple material system.
- Derive a peridynamic model from a micromechanical model.
- Show that the local theory is an approximation that is exact for uniform strain.
- Show that nonlocality makes a difference in a macroscopic experiment.

Layered composite



Two phases:

- Compliant: elastic moduli μ_c, E_c .
- Stiff: elastic moduli μ_s, E_s .
- $\mu_s \gg \mu_c, \quad E_s \gg E_c$
- Interfaces are rigidly connected.
- Layer thicknesses are $2h_s, 2h_c$.

Traditional approach

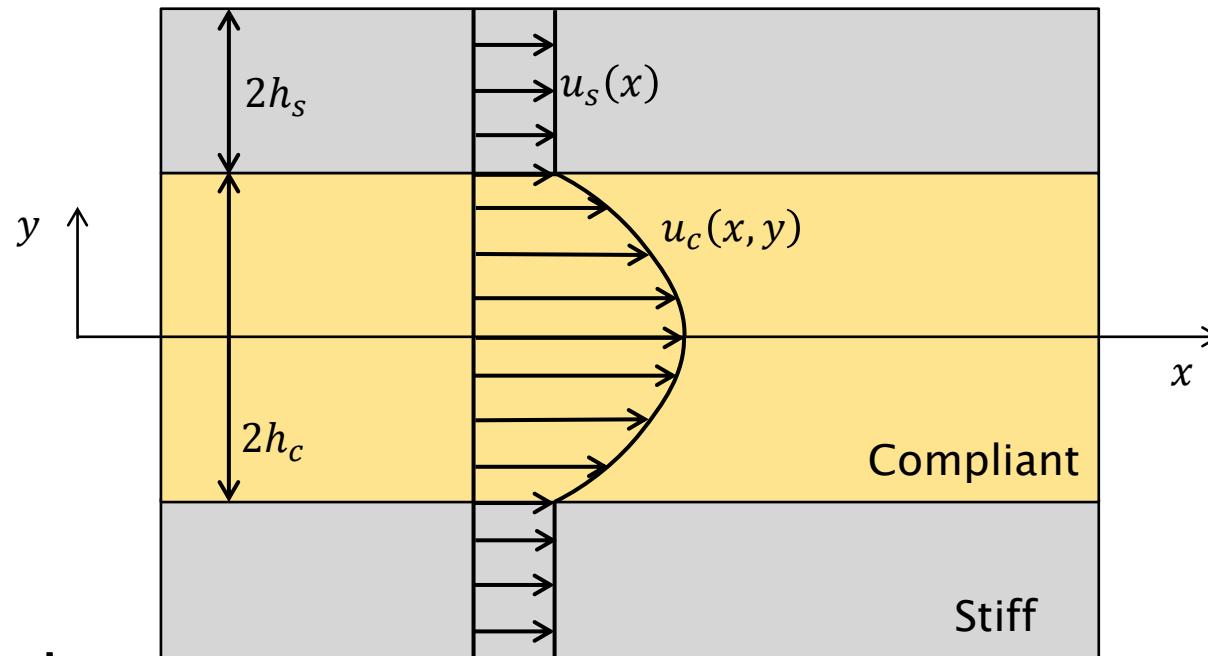
- Assume $u_s(x) = u_c(x)$ everywhere.
- Set

$$\bar{E} = \frac{h_s E_s + h_c E_c}{h_s + h + c}.$$

$$\bar{\sigma}'(x) + b(x) = 0, \quad \bar{\sigma} = \bar{E}u'$$

- This local “homogenized” model neglects possibility of unequal displacements between phases.
- This will turn out to be a special case of the nonlocal model to be derived.

Micromechanical model



Assumptions:

- Set $h_s = h_c = 1$ for simplicity.
- u_s is independent of y .
- $u_c(x, y) = u_s(x) + (1 - y^2)w(x)$.

Equilibrium between phases

- Shear traction on a stiff layer:

$$\tau = \mu_c \frac{\partial u_c}{\partial y}(x, -1) = 2\mu_c w(x).$$

- Resulting force balance on a stiff layer:

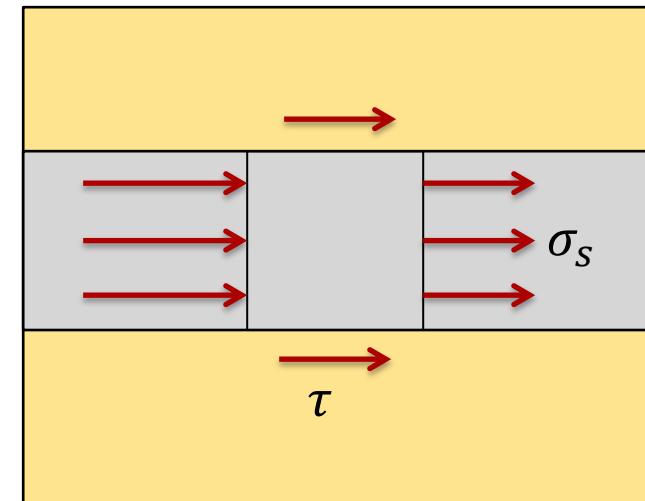
$$h_s \sigma'_s + \tau = 0$$

where σ_s is the normal stress in a stiff layer.

- Leads to

$$E_s u''_s(x) + 2\mu_c w(x) = 0.$$

- Now have two coupled fields: $u_c(x)$ and $w(x)$.



Smoothed displacement field

- Define

$$\bar{u}(x) = \frac{u_s(x) + u_c(x)}{2} = u_s(x) + \frac{w(x)}{3}.$$

- Recall the force balance

$$E_s u_s'' + 2\mu_c w(x) = 0.$$

- Combine the last two equations to get rid of u_s :

$$\bar{u}'' = \frac{1}{3}w''(x) - \frac{2\mu_c}{E_s}w(x).$$

Solve ODE for w

- For prescribed \bar{u} , now have a 2nd order linear ODE for w :

$$\bar{u}'' = \frac{1}{3}w''(x) - \frac{2\mu_c}{E_s}w(x).$$

- Solution is

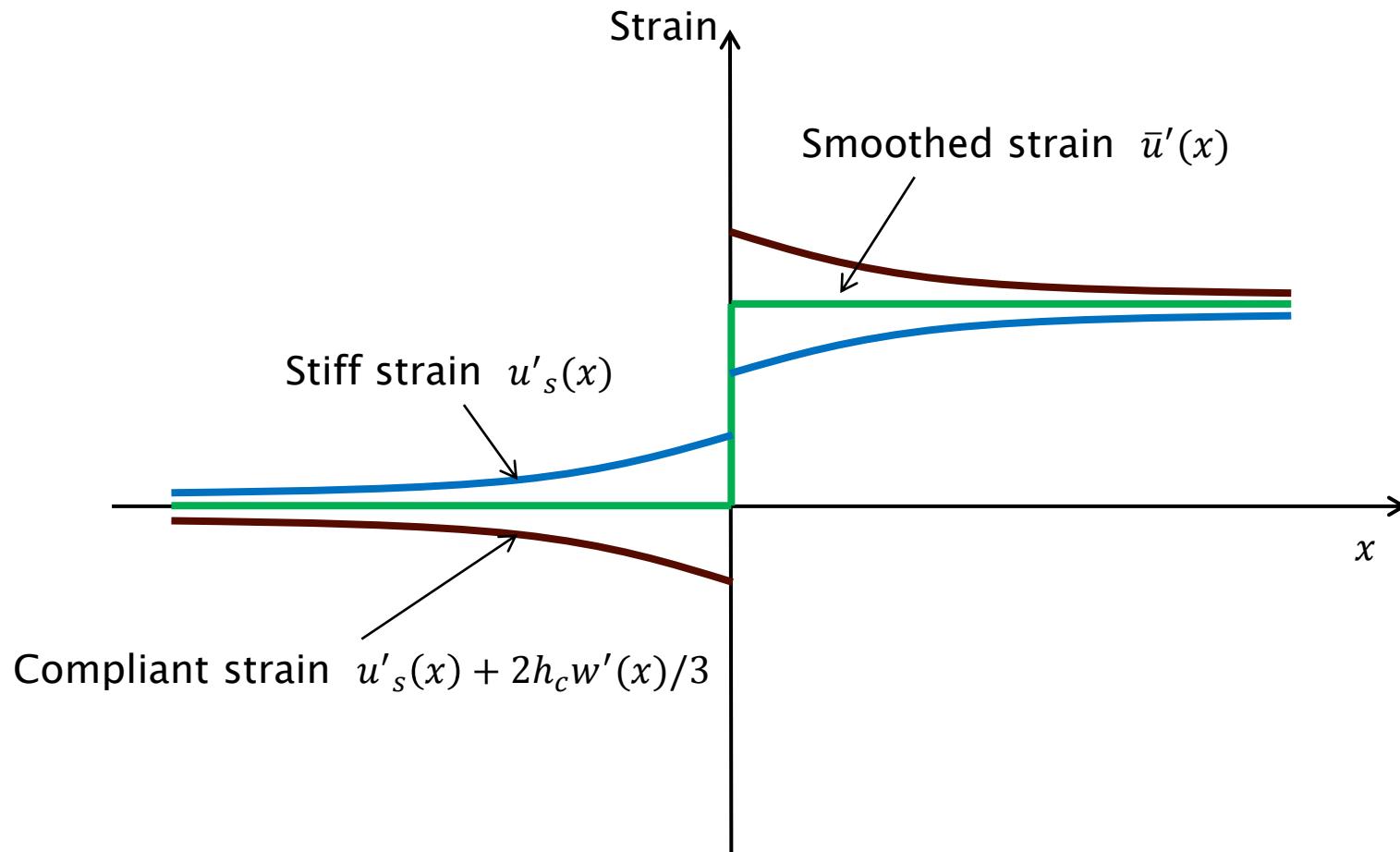
$$w(x) = - \int_{-\infty}^{\infty} \bar{u}''(p)G(x-p) \, dp$$

Where

$$G(x) = ke^{-\lambda|x|}, \quad \lambda = \sqrt{\frac{6\mu_c}{E_s}}, \quad k = \frac{1}{2\lambda}.$$

Jump in smoothed strain

Set $\bar{u}''(x) = \Delta(x)$ where Δ is the Dirac delta function.



Find smoothed stress

- Define

$$\bar{\sigma}(x) = \frac{1}{2} \left(\int_0^1 \sigma_s \, dy + \int_0^1 \sigma_c(x, y) \, dy \right)$$

where

$$\sigma_s = E_s \frac{\partial u_s}{\partial x}, \quad \sigma_c = E_c \frac{\partial u_c}{\partial x}.$$

- After using previous results, find

$$\bar{\sigma}(x) = \bar{E} \bar{u}'(x) + \gamma \int_{-\infty}^{\infty} \bar{u}''(p) G'(x - p) \, dp,$$

 Local term Nonlocal term

$$\bar{E} = \frac{E_s + E_c}{2}, \quad \gamma = \frac{E_s - E_c}{6}.$$

Equation of motion in terms of smoothed displacement

- Get rid of $\bar{\sigma}$, using

$$\rho \ddot{\bar{u}}(x, t) = \bar{\sigma}'(x, t) + b(x, t).$$

- After some manipulations, find

$$\rho \ddot{\bar{u}}(x, t) = E_c \bar{u}''(x, t) + \gamma k \lambda^4 \int_{-\infty}^{\infty} (\bar{u}(p, t) - \bar{u}(x, t)) e^{-\lambda|x-p|} dp + b(x, t),$$

- This contains both local and nonlocal terms, similar to Kroner's nonlocal model (also DiPaola's).

Can we avoid the local term?

- Observe that for any function $v(x)$,

$$v''(x) = \int_{-\infty}^{\infty} v(p) \Delta''(x - p) \, dp.$$

- Approximate

$$\Delta(x) \approx \frac{\tau e^{-\tau|x|}}{2}$$

where τ is a large parameter.

- Replace the local term in the equation of motion to arrive at

$$\rho \ddot{\bar{u}}(x, t) = \int_{-\infty}^{\infty} \left(\frac{E_c \tau}{2} e^{-\tau|x-p|} + \gamma k \lambda^4 e^{-\lambda|x-p|} \right) (\bar{u}(p, t) - \bar{u}(x, t)) \, dp + b(x, t),$$

- This is the equation of motion in linearized peridynamics.

Nonlocal length scale

- Recall

$$\rho \ddot{u}(x, t) = \int_{-\infty}^{\infty} \left(\frac{E_c \tau}{2} e^{-\tau|x-p|} + \gamma k \lambda^4 e^{-\lambda|x-p|} \right) (\bar{u}(p, t) - \bar{u}(x, t)) dp + b(x, t),$$

Nonlocal term

$$\lambda = \sqrt{\frac{6\mu_c}{E_s}} = \frac{1}{\text{length scale}}$$

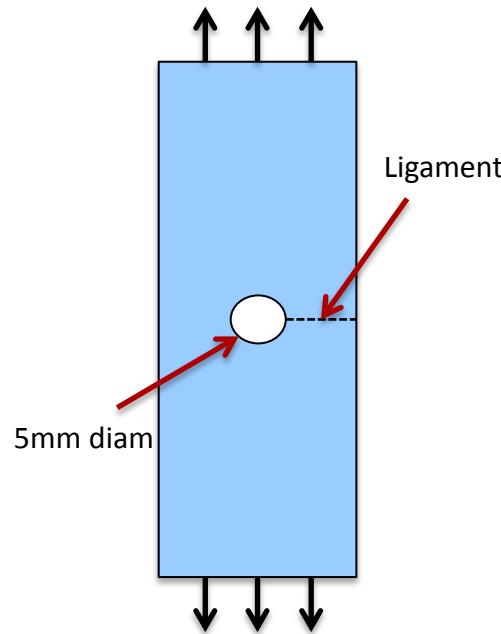
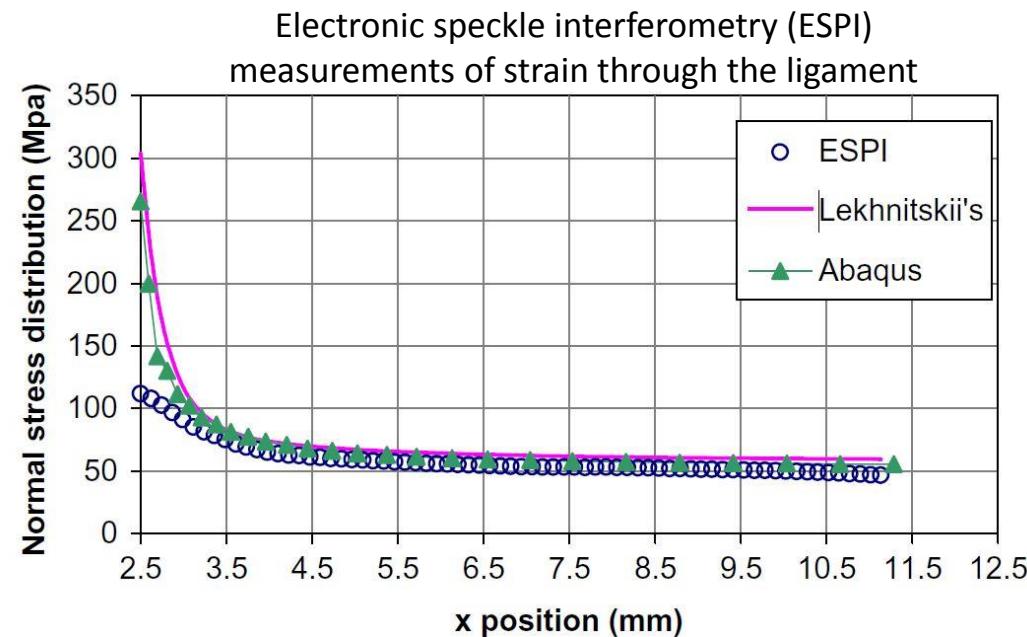
More generally

$$\lambda = \sqrt{\frac{3\mu_c(h_s + h_c)}{E_s h_s h_c^2}} = \frac{1}{\text{length scale}}$$

- The softer the compliant material is, the greater the length scale.
- The nonlocal length scale is not determined only by the geometrical scales.

Are composites nonlocal?

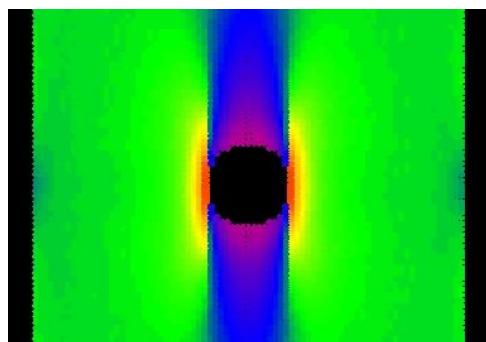
- Open hole tension in a fabric laminate:
 - FEM agrees with anisotropic local theory in predicting the stress concentration near the hole.
 - Both overpredict the stress concentration.



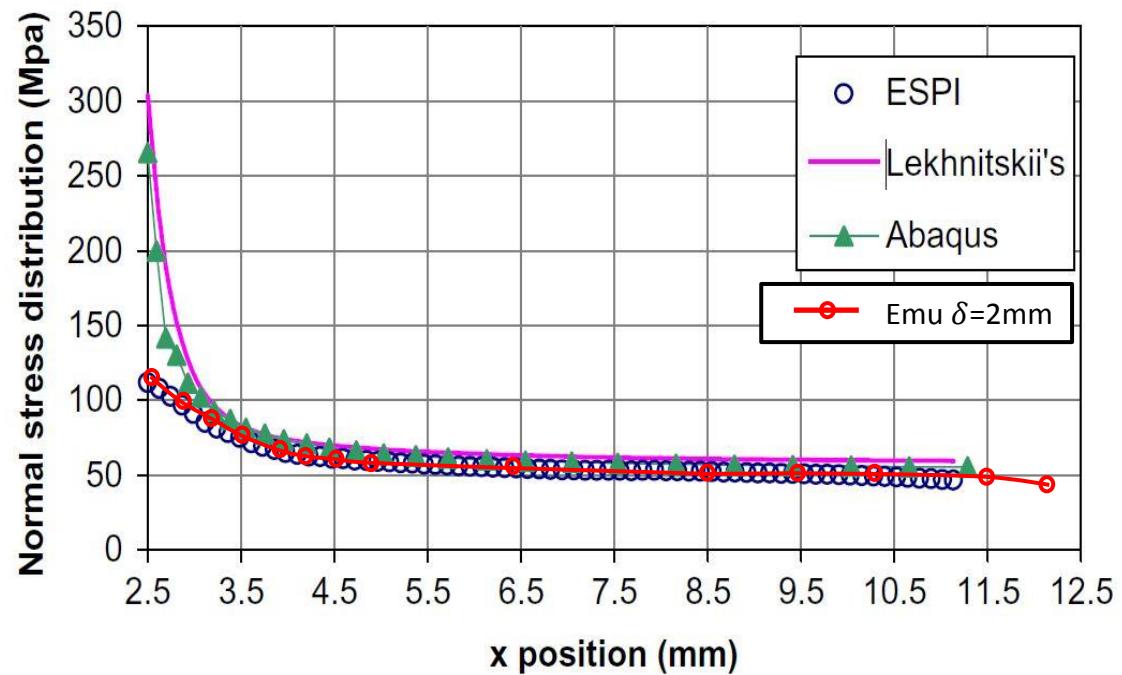
Source: Toubal, Karama, and Lorrain, Composite Structures 68 (2005) 31-36

Are composites nonlocal?

- Peridynamic model is more accurate than the local model for predicting stress concentration in a laminate.
- $h_s = h_c = 0.4\text{mm}$, $E_s = 150\text{GPa}$, $\mu_c = 4\text{GPa}$.
- $\Rightarrow 1/\lambda = 1.41\text{mm}$.



EMU: contours of longitudinal stress
Horizon = 2mm



Data of Toubal, Karama, and Lorrain, Composite Structures 68 (2005) 31-36

Discussion

- The modeling decision to use a smoothed displacement field introduced nonlocality.
 - This is even though the micromechanical model used only local interactions.
- The nonlocal term vanishes if the strain is uniform.
 - It becomes important if strong gradients are present.
- The length scale for nonlocality involves the material properties as well as the geometrical length scales.