
2010 Post-Convention Workshop

High Performance Implementation of Geophysical Applications

October 21, 2010

Michael Wolf, Mike Heroux, Chris Baker (ORNL)

Extreme-scale Algorithms and Software Institute (EASI)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Obtaining Parallelism on Multicore and
GPU Architectures in a Painless Manner

SAND2010-7399C

• Work is part of Extreme-scale Algorithms and
Software Institute (EASI)

– DOE joint math/cs institute

– Focused on closing the architecture-application
performance gap

• Work primarily with Mike Heroux, Chris Baker
(ORNL)

• Additional contributors

– Erik Boman (SNL)

– Carter Edwards (SNL)

– Alan Williams (SNL)

EASI

2

• Object-oriented software framework to enabled the
solution of large-scale, complex multi-physics
engineering and scientific problems

– Open source, implemented in object-oriented C++

• Stage 2 Trilinos under development

• Templated C++ code

– Ordinal, scalar types

– Node type

• Abstract inter-node communication

• Generic shared memory parallel node

– Template meta-programming aiming for write-once,
run-anywhere kernel support

Trilinos Framework

3

Programming Today for Tomorrow’s Machines

• Parallel Programming in the small:

– Focus: writing sequential code fragments.

– Programmer skills:

• 10%: Pattern/framework experts (domain-aware).

• 90%: Domain experts (pattern-aware)

• Languages needed are already here.

– Exception: Large-scale data-intensive graph?

4

FE/FV/FD Parallel Programming Today

for ((i,j,k) in points/elements on subdomain) {

compute coefficients for point (i,j,k)

inject into global matrix

}

Notes:

• User in charge of:

– Writing physics code

– Iteration space traversal

– Storage association

• Pattern/framework/runtime in charge of:

– SPMD execution

5

FE/FV/FD Parallel Programming Tomorrow

pipeline <i,j,k> {

filter(addPhysicsLayer1<i,j,k)>);

...

filter(addPhysicsLayern<i,j,k>);

filter(injectIntoGlobalMatrix<i,j,k>);

}

Notes:

• User in charge of:

– Writing physics code (filter)

– Registering filter with framework

• Pattern/framework/runtime in charge of:

– SPMD execution

– Iteration space traversal

– Sensitive to temporal locality

– Filter execution scheduling

– Storage association
• Better assignment of responsibility (in

general) 6

• HPC shift in architectures (programming models?)

• CPUs increasingly multicore

– Flatlining of clock rates

– Processors are becoming more NUMA

• Impact of accelerators/GPUs

– #2 (Nebulae), #3 (Roadrunner) on Top500 list

– Will play a role in or at least impact future supercomputers

• Heterogenous architectures

– e.g., multicore CPUs + GPUs

• Challenges

– Obtaining good performance with our kernels on many
different architectures (w/o rewriting code)

– Modifying current MPI-only codes

Challenges in High Performance Computing (HPC)

7

Obtaining good performance with our
kernels on many different architectures

8

An API for Shared Memory Nodes

• Goal: minimize effort needed to write scientific codes for a
variety of architectures

– Our focus: multicore/GPU support in our distributed linear
algebra library, Tpetra

• Find the correct level for programming the node:

– Too low: code kernel for each node

• Too much work to move to a new platform

– Too high: code once for all nodes.

• Difficult to exploit hardware features

• API is too big and always growing

• Kokkos: somewhere in the middle:

– Implement small set of parallel constructs on each architecture

– Write kernels in terms of constructs

9

Num. Implementations
m kernels * n nodes = mn

Num. Implementations
m kernels + c constructs * n nodes = m + cn

Kokkos Compute Model

• Trilinos package with API for programming to a generic
parallel node

– Goal: allow code, once written, to run on any parallel node,
regardless of architecture

• Kokkos compute model

– Description of kernels for parallel execution on a node

– Provides common parallel work constructs

• Parallel for loop, parallel reduction

• Different nodes for different architectures

• Support new platforms by implementing new node classes

– Same user code

• TBBNode • TPINode

• CUDANode • SerialNode

10

Kokkos Compute Model
• Kokkos node provides generic parallel constructs:

– Node::parallel_for() and Node::parallel_reduce()

• User develops kernels for parallel constructs

• Template meta-programming does the rest:

– TBBNode< ComputePotentials<3D,LJ> >::parallel_for

• Parallel for:

• Work-data pair (WDP) struct provides:

– loop body via WDP::execute(int i)

• Semantics: execute(i) will be called exactly once for all i in [beg,end)

template <class WDP>

void Node::parallel_for(int beg, int end, WDP workdata);

11

template <class WDP>

void Node::parallel_for(int beg, int end, WDP workdata);

template <class T>

struct AxpyOp {

const T * x;

T * y;

T alpha, beta;

void execute(int i)

{ y[i] = alpha*x[i] + beta*y[i]; }

};

Kokkos: axpy() with Parallel For

double *x,*y;
…
AxpyOp op1;
op1.y = y;
op1.x = x;
…
node->parallel_for< AxpyOp<double> >(0,n,op1);

12

Kokkos Linear Algebra Library

• Subpackage of Kokkos provides set of data structures
and kernels for local SMP linear algebra objects

– Coded using the Kokkos Parallel Node API

• Tpetra (global) objects consist of abstract inter-node
communicator and corresponding (local) Kokkos object:

• Implementing new Node ports Tpetra without changes.

T Tpetra::Vector<T,N>::dot(Tpetra::Vector<T,N> v)
{

T lcl = lclVec_->dot(v.lclVec_);
return comm_->reduceAll(SUM, lcl);

}

13

Shared Memory Timings for Simple Iterations

• Power method: one SpMV op, three vector operations

• Conjugate gradient: one SpMV op, five vector operations

• Matrix is a simple 3-point discrete Laplacian with 1M rows

• TPINode: pthreads-based node

• GPUNode: Thrust-based CUDA node

14

Node
Power method

(mflop/s)
CG iteration
(mflop/s)

SerialNode 101 330

TPINode(1) 116 375

TPINode(2) 229 735

TPINode(4) 453 1,477

TPINode(8) 618 2,020

TPINode(16
) 667 2,203

GPUNode 2,584 8,178

• Physical node:
– One NVIDIA Tesla C1060

– Four 2.3 GHz AMD

Quad-core CPUs

Modifying Current MPI-Only Codes
(Bimodal MPI and MPI+Threads Programming)

15

• Multithreading can improve some numerical kernels

– E.g., domain decomposition preconditioning with incomplete factorizations

• Inflation in iteration count due to number of subdomains

• By introducing multithreaded triangular solves on each node

– Solve triangular system on larger subdomains

– Reduce number of subdomains (MPI tasks)

Motivation: Why Not MPI-Only?

16

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

Memory

Core 0 Core n-1

Node 0

Memory

Core 0 Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

• Parallel machine with p = m * n processors:
- m = number of nodes
- n = number of shared memory cores per node

• Two typical ways to program
- Way 1: p MPI processes (flat MPI)

- Massive software investment in this programming model
- Way 2: m MPI processes with n threads per MPI process

• Third way
• “Way 1” in some parts of the execution (the app)
• “Way 2” in others (the solver)

MPI + Hybrid MPI/Multithreaded Programming

17

Memory

Core 0 Core n-1

Node 0

Memory

Core 0 Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

• Two typical ways to program
- Way 1: p MPI processes (flat MPI)
- Way 2: m MPI processes with n threads per MPI process

• Third way (bimodal MPI and hybrid MPI+threads)
- “Way 1” in some parts of the execution (the app)
- “Way 2” in others (the solver)

• Challenges for bimodal programming model
- Utilizing all cores (in Way 1 mode)
- Interfacing between two modes

• Solution: MPI shared memory allocation

MPI + Hybrid MPI/Multithreaded Programming

18

Idea:

• Shared memory alloc/free functions:

– MPI_Comm_alloc_mem

– MPI_Comm_free_mem

• Predefined communicators:

MPI_COMM_NODE – ranks on node

MPI_COMM_SOCKET – UMA ranks

MPI_COMM_NETWORK – inter node

• Status:

– Available in current development
branch of OpenMPI

– Under development in MPICH

– Demonstrated usage with threaded
triangular solve

– Proposed to MPI-3 Forum

int n = …;
double* values;
MPI_Comm_alloc_mem(

MPI_COMM_NODE, // comm (SOCKET works too)
n*sizeof(double), // size in bytes
MPI_INFO_NULL, // placeholder for now
&values); // Pointer to shared array (out)

// At this point:
// - All ranks on a node/socket have pointer to a shared buffer.
// - Can continue in MPI mode (using shared memory algorithms)
// - or can quiet all but one rank:
int rank;
MPI_Comm_rank(MPI_COMM_NODE, &rank);

// Start threaded code segment, only on rank 0 of the node
if (rank==0)
{
…
}
MPI_Comm_free_mem(MPI_COMM_NODE, values);

Collaborators: B. Barrett, R. Brightwell - SNL; Vallee, Koenig - ORNL

MPI Shared Memory Allocation

19

• Simple MPI application

– Two distributed memory/MPI kernels

• Want to replace an MPI kernel with more efficient
hybrid MPI/threaded

– Threading on multicore node

Simple MPI Program

20

• Very minor changes to code
– MPIKernel1 does not change

• Hybrid MPI/Threaded kernel runs on rank 0 of each
node
– Threading on multicore node

Simple MPI + Hybrid Program

21

• Many sections of parallel applications scale
extremely well using flat MPI

• Approach allows introduction of multithreaded kernels
in iterative fashion
– “Tune” how multithreaded an application is

• Can focus on parts of application that don’t scale with
flat MPI

Iterative Approach to Hybrid Parallelism

22

• Can use 1 hybrid kernel

Iterative Approach to Hybrid Parallelism

23

• Or use 2 hybrid kernels

Iterative Approach to Hybrid Parallelism

24

PCG Algorithm

25

Used symmetric Gauss-

Seidel as preconditioner

(2 triangular solves)

Shared memory
variables

PCG Algorithm

26

Flat MPI operations

PCG Algorithm – MPI part

27

Multithreaded block
preconditioning to reduce
number of subdomains

PCG Algorithm – Threaded Part

28

It
er

at
io

n
s

Flat MPI PCG Threaded Preconditioning

Preliminary PCG Results

Runtime relative to flat MPI PCG

R
u

n
ti

m
e

29

Summary: Kokkos Package in Trilinos

• API for programming generic shared-memory nodes

• C++ template meta-programming approach

– Allows write-once, run-anywhere portability

– Support new nodes by writing parallel constructs for node

• Nodes implemented support

– Intel TBB, Pthreads, CUDA-capable GPUs (via Thrust)

• Provide shared-memory linear algebra objects and
kernels

– Currently used by the Tpetra distributed linear algebra library

• For more info about Kokkos, Trilinos:

– http://trilinos.sandia.gov/

30

http://trilinos.sandia.gov/

• MPI shared memory allocation useful

– Allows seamless combination of traditional MPI
programming with multithreaded or hybrid kernels

• Iterative approach to multithreading

• Implemented PCG using MPI shared memory
extensions and level set method

– Effective in reducing iterations

– Runtime did not decrease (work in progress)

• Better triangular solver algorithms needed for
matrices with small average level size

Summary: MPI + Hybrid MPI/threaded Programming

31

Extra

32

Limitations/Issues

• Constructs limited

– Much more limited than TBB

• Data partitioning to simplistic

– May be problematic for stencils

– Handles nested parallel loops poorly

33

Kokkos Compute Model

• Have to find the correct level for programming the node:

– Too low: code kernel for each node

• Too much work to move to a new platform.

• Duplicated effort: dot() is a lot like norm1()

– Too high: code once for all nodes.

• Difficult to exploit hardware features.

• API is too big and always growing.

• A programming language without a compiler.

• Somewhere in the middle:

– Parallel reduction is the intersection of dot() and norm1()

– Parallel for loop is the intersection of axpy() and mat-vec

– We need a way of fusing kernels with these basic
constructs.

m kernels * n nodes = m * n

Too many
implementations!

m kernels + 2 constructs * n nodes = m + 2 * n

m kernels + k ops * n nodes = m + k * n

Too many instructions!

Kokkos Compute Model
• Template meta-programming

– Dispatch model (function + partitionable data)

• Node provides generic parallel constructs:
– Node::parallel_for() and Node::parallel_reduce()

• User develops kernels for parallel constructs

• Template meta-programming does the rest:

– TBBNode< ComputePotentials<3D,LJ> >::parallel_for

• Parallel for:

• Work-data pair (WDP) struct provides:

– loop body via WDP::execute(int i)

• Semantics: execute(i) will be called exactly once for all i in [beg,end)

• Calls may occur in parallel and in any order.

template <class WDP>

void Node::parallel_for(int beg, int end, WDP workdata);

35

Kokkos Compute Model
• Template meta-programming is the answer.

– This is the same approach that Intel TBB and Thrust take.

• Node provides generic parallel constructs:
– Node::parallel_for() and Node::parallel_reduce()

• User fills the holes in the generic constructs via custom kernels.

template <class WDP>

void

Node::parallel_for(int beg, int end,

WDP workdata);

template <class WDP>

WDP::ReductionType

Node::parallel_reduce(int beg, int end,

WDP workdata);

Work-data pair (WDP) struct provides:

• loop body via WDP::execute(int i)

Work-data pair (WDP) struct provides:

• reduction type WDP::ReductionType

• element generation via WDP::generate(int i)

• identity element via WDP::identity()

• reduction via WDP::reduce(...)

Semantics: execute(i) will be called exactly
once for all i in [beg, end)

Calls may occur in parallel and in any order.

Semantics: generate(i)will be called exactly
once for all i in [beg, end)

Calls may occur in parallel and in any order.

36

Example Kernels: axpy() and dot()

template <class WDP>

void

Node::parallel_for(int beg, int end,

WDP workdata);

template <class WDP>

WDP::ReductionType

Node::parallel_reduce(int beg, int end,

WDP workdata);

template <class T>

struct AxpyOp {

const T * x;

T * y;

T alpha, beta;

void execute(int i)

{ y[i] = alpha*x[i] + beta*y[i]; }

};

template <class T>

struct DotOp {

typedef T ReductionType;

const T * x, * y;

T identity() { return (T)0; }

T generate(int i) { return x[i]*y[i]; }

T reduce(T x, T y) { return x + y; }

};

AxpyOp<double> op;

op.x = ...; op.alpha = ...;

op.y = ...; op.beta = ...;

node.parallel_for< AxpyOp<double> >

(0, length, op);

DotOp<float> op;

op.x = ...; op.y = ...;

float dot;

dot = node.parallel_reduce< DotOp<float> >

(0, length, op);

37

