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=2 d EASI

* Work is part of Extreme-scale Algorithms and
Software Institute (EASI)

— DOE joint math/cs institute

— Focused on closing the architecture-application
performance gap

« Work primarily with Mike Heroux, Chris Baker
(ORNL)
 Additional contributors
— Erik Boman (SNL)
— Carter Edwards (SNL)
— Alan Williams (SNL)
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}" Trilinos Framework

 Object-oriented software framework to enabled the
solution of large-scale, complex multi-physics
engineering and scientific problems

— Open source, implemented in object-oriented C++
« Stage 2 Trilinos under development
 Templated C++ code
— Ordinal, scalar types
— Node type
» Abstract inter-node communication
* Generic shared memory parallel node

— Template meta-programming aiming for write-once,
run-anywhere kernel support




L Programming Today for Tomorrow’s Machines

 Parallel Programming in the small:
— Focus: writing sequential code fragments.

— Programmer skKills:
* 10%: Pattern/framework experts (domain-aware).
* 90%: Domain experts (pattern-aware)

» Languages needed are already here.
— Exception: Large-scale data-intensive graph?
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o> FE/FV/FD Parallel Programming Today

for ((i,j,k) in points/elements on subdomain) {
compute coefficients for point (i,j,k)
inject into global matrix

}
Notes:
» User in charge of:
— Writing physics code ﬂ‘l’) u" )(M
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i;" FE/FV/FD Parallel Programming Tomorrow

pipeline <i,j,k> {
filter(addPhysicsLayer1<i,j,k)>);

filter(addPhysicsLayern<i,j,k>);
filter(injectIntoGlobalMatrix<i,j,k>);
}

Notes:
» User in charge of:
— Writing physics code (filter)

— Registering filter with framework
gstering nira | M'gv WA 11
« Pattern/framework/runtime in charge of: ~H ﬂév’\‘ﬁ"' ‘»‘
— SPMD execution A ‘?@mﬁf‘i{:‘%‘, B
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— Sensitive to temporal locality
— Filter execution scheduling
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o> Challenges in High Performance Computing (HPC)

« HPC shift in architectures (programming models?)

« CPUs increasingly multicore
— Flatlining of clock rates
— Processors are becoming more NUMA
 Impact of accelerators/GPUs
— #2 (Nebulae), #3 (Roadrunner) on Top500 list
— Will play a role in or at least impact future supercomputers
» Heterogenous architectures
— e.g., multicore CPUs + GPUs
 Challenges

— Obtaining good performance with our kernels on many
different architectures (w/o rewriting code)

— Modifying current MPIl-only codes
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Obtaining good performance with our
kernels on many different architectures
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45> An API for Shared Memory Nodes

* Goal: minimize effort needed to write scientific codes for a

variety of architectures

— Our focus: multicore/GPU support in our distributed linear

algebra library, Tpetra

* Find the correct level for programming the node:

— Too low: code kernel for each node

* Too much work to move to a new platform

— Too high: code once for all nodes.

» Difficult to exploit hardware features

« APl is too big and always growing
 Kokkos: somewhere in the middle:

Num. Implementations
m kernels * n nodes = mn

— Implement small set of parallel constructs on each architecture

— Write kernels in terms of constructs

Num. Implementations
m kernels + ¢ constructs * n nodes = m + cn
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o> Kokkos Compute Model

* Trilinos package with API for programming to a generic
parallel node

— Goal: allow code, once written, to run on any parallel node,
regardless of architecture

« Kokkos compute model
— Description of kernels for parallel execution on a node

— Provides common parallel work constructs
 Parallel for loop, parallel reduction

» Different nodes for different architectures

« TBBNode * TPINode
« CUDANode |« SerialNode

« Support new platforms by implementing new node classes

— Same user code
Sandia
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o> Kokkos Compute Model

» Kokkos node provides generic parallel constructs:
— Node::parallel for() and Node::parallel reduce()

» User develops kernels for parallel constructs

* Template meta-programming does the rest:
— TBBNode< ComputePotentials<3D,LJ> >::parallel for

e Parallel for:

template <class WDP>
void Node::parallel_for(int beg, int end, WDP workdata);

» Work-data pair (WDP) struct provides:
— loop body via WDP::execute(int i)
« Semantics: execute(i) will be called exactly once for all i in [beg,end)
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L Kokkos: axpy() with Parallel For

template <class WDP>
void Node::parallel_for(int beg, int end, WDP workdata);

template <class T>

struct AxpyOp {

const T * x;

T*y;

T alpha, beta;

void execute(int i)

{ yl[i] = alpha*x[i] + beta*y[i]; }
}s

double *x,*y;
AxpyOp opil;
opl.y =Yy;

opl.x = X;

node->parallel for< AxpyOp<double> >(0,n,opl);
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L Kokkos Linear Algebra Library

« Subpackage of Kokkos provides set of data structures
and kernels for local SMP linear algebra objects

— Coded using the Kokkos Parallel Node API

 Tpetra (global) objects consist of abstract inter-node
communicator and corresponding (local) Kokkos object:

T Tpetra: :Vector<T,N>::dot (Tpetra: :Vector<T, N> v)

{
T lcl = 1lclVec ->dot( v.lclVec );

return comm ->reduceAll (SUM, 1lcl);
}

* Implementing new Node ports Tpetra without changes.
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%‘Shared Memory Timings for Simple lterations

Power method| CG iteration
(mflop/s) (mflop/s)

SerialNode 101 330
TPINode(1) 116 375 :
TPINode(2) 229 ,35 | * Physical node:
— One NVIDIA Tesla C1060

TPINode(4) 453 1,477

de(8) c1a ) 00 — Four 2.3 GHz AMD
TPINode )
TPINode(16 Quad-core CPUs
) 667 2,203
GPUNode 2,584 8,178

Power method: one SpMV op, three vector operations
Conjugate gradient: one SpMV op, five vector operations

Matrix is a simple 3-point discrete Laplacian with 1M rows
TPINode: pthreads-based node
GPUNode: Thrust-based CUDA node
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Modifying Current MPI-Only Codes
(Bimodal MPI and MPI+Threads Programming)
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> Motivation: Why Not MPI-Only?

Percent Time

100% X )
90% & Charon minus solver
30% ~ Solve time due to iter increase
20% “ Solve time due to iter cost # Linear Solver Iterations
60% . ¥ Preconditioner setup per Newton Step
180 153
50% w = 129
1 7 L
40% o 2 : i :
30% x =0 : - - e -
20% ®
el - ._ . .
10%
0% _ _ 128 256 512 1024 2048 4096
128 256 512 1024 2048 4096 # Procs
# Procs

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

« Multithreading can improve some numerical kernels

— E.g., domain decomposition preconditioning with incomplete factorizations
* Inflation in iteration count due to number of subdomains
By introducing multithreaded triangular solves on each node

— Solve triangular system on larger subdomains
— Reduce number of subdomains (MPI tasks)

Sandia
16 @ National
Laboratories



;;‘"MPI + Hybrid MPI/Multithreaded Programming

Node 0

Node 1

Memory

Memory

Node m-1

Memory

 Parallel machine with p = m * n processors:

- m = number of nodes

- n = number of shared memory cores per node
* Two typical ways to program

- Way 1: p MPI processes (flat MPI)

- Massive software investment in this programming model
- Way 2: m MPI processes with n threads per MPI process

* Third way

« “Way 1”7 in some parts of the execution (the app)

« “Way 2” in others (the solver)

17
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;;‘"MPI + Hybrid MPI/Multithreaded Programming

Node 0

Node 1

Memory

Memory

Node m-1

Memory

Two typical ways to program
- Way 1: p MPI processes (flat MPI)
- Way 2: m MPI processes with n threads per MPI process

Third way (bimodal MPI and hybrid MPIl+threads)

- “Way 1” in some parts of the execution (the app)

- “Way 2" in others (the solver)

Challenges for bimodal programming model
- Utilizing all cores (in Way 1 mode)
- Interfacing between two modes

Solution: MPI shared memory allocation

18
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i" MPI Shared Memory Allocation

ldea:

» Shared memory alloc/free functions:
— MPI_Comm_alloc_mem
— MPI_Comm_free_mem

» Predefined communicators:
MP1_COMM_NODE - ranks on node
MPI_COMM_SOCKET — UMA ranks
MPI_COMM_NETWORK - inter node

 Status:

— Available in current development
branch of OpenMPI

— Under development in MPICH

— Demonstrated usage with threaded
triangular solve

— Proposed to MPI-3 Forum

Collaborators: B. Barrett, R. Brightwell - SNL; Vallee, Koenig - ORNL
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L Simple MPI Program

double *x = new double[4];
double *y = new double[4];

MPIkernell(x,y);
MP Ikernel2(x,y);

delete [| x;
delete [| ¥:

« Simple MPI application
— Two distributed memory/MPI kernels

* Want to replace an MPI kernel with more efficient
hybrid MPl/threaded

— Threading on multicore node
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Simple MPI + Hybrid Program

double *x = new double[4];
double *y = new double[4];

y):
X,y):

MPIkernell(x,
MPTkernel2(

delete [] x
delete [] v;

MPI_Comm _size(MPI.COMM_NODE, &nodeSize);
MPI_Comm _rank(MPI.COMM_NODE, &nodeRank);

double *x, *y;

MPI_Comm_alloc_mem(MPI_COMM _NODE n*nodeSize*sizeof(double),
MPIINFO_NULL, &x);

MPI _Comm_alloc_mem(MPI_.COMM_NODE,n*nodeSize*sizeof(double),
MPIINFO_NULL, &y);

MPIkernell (& (x[nodeRank * n]).&(y[nodeRank * nl));

if(nodeRank==0)

. hybridKernel2(x,y);

}

MPI_Comm_free_mem(MPI_COMM_NODE, &x);

MPI_Comm_free_mem(MPI_COMM_NODE, &yv);

* Very minor changes to code
— MPIKernel1 does not change

* Hybrid MPI/Threaded kernel runs on rank 0 of each

node

— Threading on multicore node @ Sandia
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o> Iterative Approach to Hybrid Parallelism

* Many sections of parallel applications scale
extremely well using flat MPI

« Approach allows introduction of multithreaded kernels
in iterative fashion
— “Tune” how multithreaded an application is

« Can focus on parts of application that don’t scale with
flat MPI
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> Iterative Approach to Hybrid Parallelism

MPI_Comm size(MPI.COMM_NODE, &nodeSize);
MPI_Comm _rank(MPI_COMM_NODE, &nodeRank};

double *x, *y;
MPI_Comm_alloc_mem(MPI_.COMM _NODTI n*nodeSize*sizeof(double),
MPI_INFO_NULL, &x)

MPI Comm_alloc_mem (MPI_COMM _NODE,n*nodeSize*sizeof(double),
MPI_INFO_NULL, &3)

MPTkernell(&(x[nodeRank * nl) & (y[nodeRank * n]));
if(nodeRank——0)

. hybridKernel2(x,y);

}
MPI_Comm_free_mem(MPILLCOMM_NODE, &x);
MPI_Comm_free_mem(MPI.COMM_NODE, &y);

« Can use 1 hybrid kernel
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> Iterative Approach to Hybrid Parallelism

MPI_Comm _size(MPI_.COMM_NODE, &nodeSize);
MPI_Comm_rank(MPI_.COMM_NODE, &nodeRank);

double *x, *y;

MPI_Comm_alloc_mem(MPI_.COMM _NODE,n*nodeSize*sizeof(double),
MPIINFO_NULL. &,X)

MPI Comm_alloc_mem(MPI_.COMM NODE n*nodeSize*sizeof(double),
MPI_INFO NULL, &y):

if(nodeRank——0)

hybridKernel1(x,y);
. hybridKernel2(x,y);
}
MPI_Comm _free_mem(MPIT_COMM_NODE, &x);
MPI_Comm_free_mem(MPI_.COMM_NODE, &y);

* Or use 2 hybrid kernels
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}"' PCG Algorithm

To — b — AIO
20 — ]\4—17‘0
Po = =0

for (k = 0; k < maxit, ||r;|| < tol)

{

Tr4+1 = Tk + QEPk

The1 = T — Q. Apy
—1,.

Zk4+1 = M I'l4+-1

.11
Tit1%k+1
Br =

T
T Zk

Pk+1 — Zk+1 + /kak

Used symmetric Gauss-
Seidel as preconditioner
(2 triangular solves)
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;\ﬁ*’ PCG Algorithm

To — b — AIO
20| = ]\4—17‘0
Po = =0

for (k = 0; k < maxit, ||r;|| < tol)

{

Tr4+1 = Tk + QEPk
The1 = T — Q. Apy

—1[.
“k+1 M I'k+1
A Shared memory
O — Pt Pyl variables
T Zk

Pk+1 — Zk+1 + /kak
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PCG Algorithm — MPI part

To — b — AIO
20 = ]\4—17‘0
Po = =0

for (k = 0; k < maxit, ||r;|| < tol)

{

Tr4+1 = Tk + QEPk
The1 = T — Q. Apy

—
Zk4+1 = M I'l4+-1

.11
/8 _ Tk41#*k+1
k rT 2,

Pk+1 — Zk+1 + /kak

27
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}»' PCG Algorithm — Threaded Part

To — b — AIO

20 — ]\4—17‘0

Po = <o

for (k = 0; k < maxit;Ngg || < tol)

{

. Multithreaded block
X — TkA " preconditioning to reduce
P <Pk number of subdomains
Tr4+1 = Tk + QEPk

Tee1 = T — Q. Apy
-1,
Zh4+1 = M I'l4-1

.11
/8 _ Tk41#*k+1
& rT 2,

Pk+1 — Zk+1 + /kak
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=724 Preliminary PCG Results

250 M threads=1

S igg i B threads=2

g 100 - B threads=4

£ 50 - “ threads=8
M threads=16

0 -
| |
/ FD10 \ FD15 FD20
Flat MPI PCG

Threaded Preconditioning

o 3'2 B threads=2
£ 2'3 E threads=4
i)
S 1'? . @ threads=8
® 05 -

0 - W threads=16

FD10 FD15 FD20
Runtime relative to flat MPI PCG
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L Summary: Kokkos Package in Trilinos

* API for programming generic shared-memory nodes

« C++ template meta-programming approach
— Allows write-once, run-anywhere portability
— Support new nodes by writing parallel constructs for node

* Nodes implemented support
— Intel TBB, Pthreads, CUDA-capable GPUs (via Thrust)

* Provide shared-memory linear algebra objects and
kernels
— Currently used by the Tpetra distributed linear algebra library

* For more info about Kokkos, Trilinos:
— http://trilinos.sandia.gov/
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http://trilinos.sandia.gov/
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;;‘"Summary: MPI + Hybrid MPIl/threaded Programming

* MPI shared memory allocation useful

— Allows seamless combination of traditional MPI
programming with multithreaded or hybrid kernels

* [terative approach to multithreading

* Implemented PCG using MPI shared memory
extensions and level set method

— Effective in reducing iterations
— Runtime did not decrease (work in progress)

* Better triangular solver algorithms needed for
matrices with small average level size
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;ﬁ" Limitations/Issues

 Constructs limited
— Much more limited than TBB
 Data partitioning to simplistic
— May be problematic for stencils
— Handles nested parallel loops poorly
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> Kokkos Compute Model

* Have to find the correct level for programming the node:

— Too low: code kernel for each node
* Too much work to move to a new platform.
» Duplicated effort: aot () is a lot like norm1 () Too many

— Too high: code once for all nodes. implementations!
« Difficult to exploit hardware features. mkernels + k ops * nnodes =m + k *n

« APl is too blg and always gr.owmg. Too manv instructions!
« A programming language without a compller. )

- Somewhere in the middle: ~ mkemels + 2 constructs * n nodes = m + 2 *n

— Parallel reduction is the intersection of dot () and norm1 ()
— Parallel for loop is the intersection of axpy () and mat-vec

— We need a way of fusing kernels with these basic
constructs.

m kernels * n nodes =m *n
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o> Kokkos Compute Model

» Template meta-programming

— Dispatch model (function + partitionable data)
* Node provides generic parallel constructs:

— Node::parallel for() and Node::parallel reduce()
» User develops kernels for parallel constructs

* Template meta-programming does the rest:
— TBBNode< ComputePotentials<3D,LJ> >::parallel for

e Parallel for:

template <class WDP>
void Node::parallel_for(int beg, int end, WDP workdata);

» Work-data pair (WDP) struct provides:

— loop body via WDP::execute(int i)
« Semantics: execute(i) will be called exactly once for all i in [beg,end)
 Calls may occur in parallel and in any order.
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o> Kokkos Compute Model

« Template meta-programming is the answer.
— This is the same approach that Intel TBB and Thrust take.

* Node provides generic parallel constructs:
— Node::parallel for() and Node::parallel reduce()

 User fills the holes in the generic constructs via custom kernels.

template <class WDP> template <class WDP>

void WDP: :ReductionType

Node: :parallel_for(int beg, int end, Node: :parallel_reduce(int beg, int end,
WDP workdata ) WDP workdata )5

Work-data pair (WDP) struct provides: Work-data pair (WDP) struct provides:

* loopbhody viawpe: :execute (int i) * reduction type wop: :rReductionType

« element generation viawpe: : generate (int i)
* identity element viawop: :identity()
o reduction viawpe: : reduce(. . .)

Semantics: execute (1) Will be called exactly Semantics: generate (i) Will be called exactly
once for all i in [beg, end) once for all i in [beg, end)
Calls may occur in parallel and in any order. Calls may occur in parallel and in any order.
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Example Kernels: axpy() and dot()

template <class WDP>

void

Node: :parallel_for(int beg, int end,

WDP workdata

template <class T»>
struct AxpyOp {
const T * x;

T *y;

T alpha, beta;
void execute(int i)

alpha*x[i]

AxpyOp<double> op;

{ y[i] =
}s
op.X = ..
op.y = ..

node.parallel_for< AxpyOp<double> >
(0, length, op);

°5

°5

op.alpha
op.beta

)5

+ beta*y[i]; }

‘.;

‘.;

template <class WDP>
WDP: :ReductionType

Node: :parallel_reduce(int beg, int end,

template <class T>
struct DotOp {

T identity()
T generate(int i)

WDP workdata )5

{ return (T)0; }
{ return x[i]*y[i]; }

T reduce(T x, T y) { return x + y; }

}s

DotOp<float> op;

op.X = ..
float dot;

°5

Op.y= e o0

dot = node.parallel_reduce< DotOp<float> >

37

(0, length, op);
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