

From Sylvester-Gallai Configurations to Rank Bounds: Improved Black-box Identity Test for Depth-3 Circuits

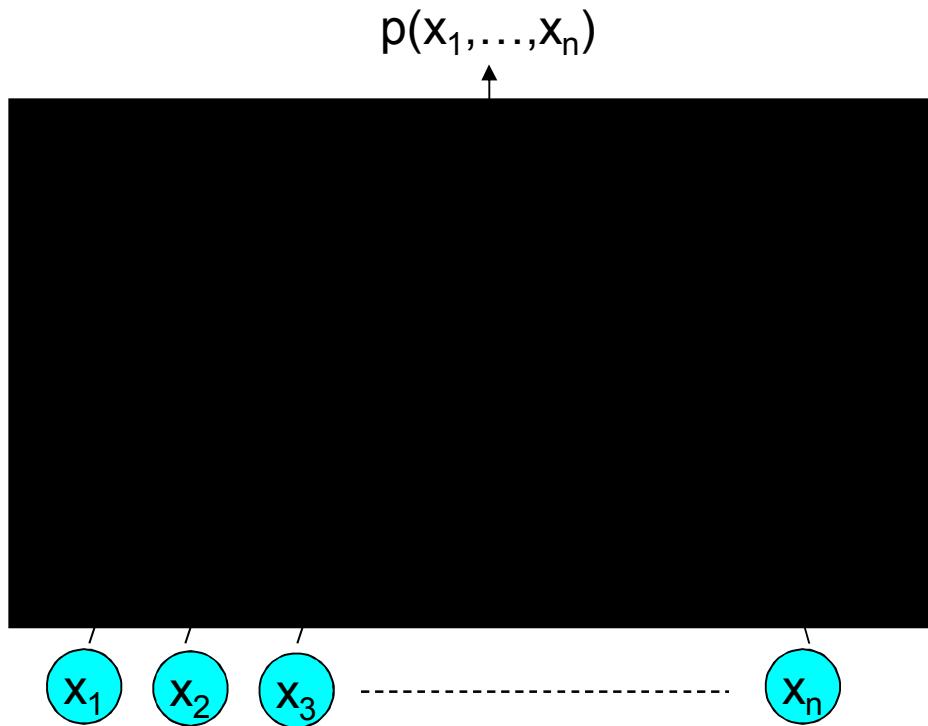
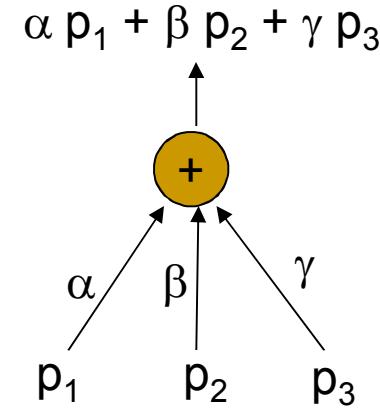
C. Seshadhri (Sandia National Labs, Livermore)
(Work done in IBM Almaden)

Joint work with
Nitin Saxena (Hausdorff Center for Mathematics)

The problem of PIT

- Polynomial identity testing: given a polynomial $p(x_1, x_2, \dots, x_n)$ over F , is it **identically zero**?
 - All coefficients of $p(x_1, \dots, x_n)$ are zero.
 - $(x+y)^2 - x^2 - y^2 - 2xy$ is identically zero.
 - So is: $(a^2+b^2+c^2+d^2)(A^2+B^2+C^2+D^2)$
 - $(aA+bB+cC+dD)^2 - (aB-bA+cD-dC)^2$
 - $(aC-bD-cA+dB)^2 - (aD-dA+bC-cB)^2$
 - $x(x-1)$ is NOT identically zero over F_2 .

Circuits: Blackbox or not



We want algorithm whose running time is polynomial in size of the circuit (that includes # var, degree)

- Non blackbox: can analyze structure of C
- Blackbox: cannot C
 - Feed values and see what you get

A simple, randomized test

If output is 0, we guess it is identity.
Otherwise, we know it isn't.

- [Schwartz80, Zippel79] This is a randomized blackbox poly-time algorithm.
- Big big open problem: Find a deterministic polynomial time algorithm.
 - We would really like a black box algorithm
 - Base field Q is of special interest

Why?

- Come on, it's an interesting mathematical problem.
Do you need a reason?
- [Impagliazzo Kabanets 04] Derandomization implies circuit lower bounds
- [AKS] $(x + a)^n = x^n + a \pmod{n}$
- [L, MVV] Bipartite matching in NC?...
- Many more

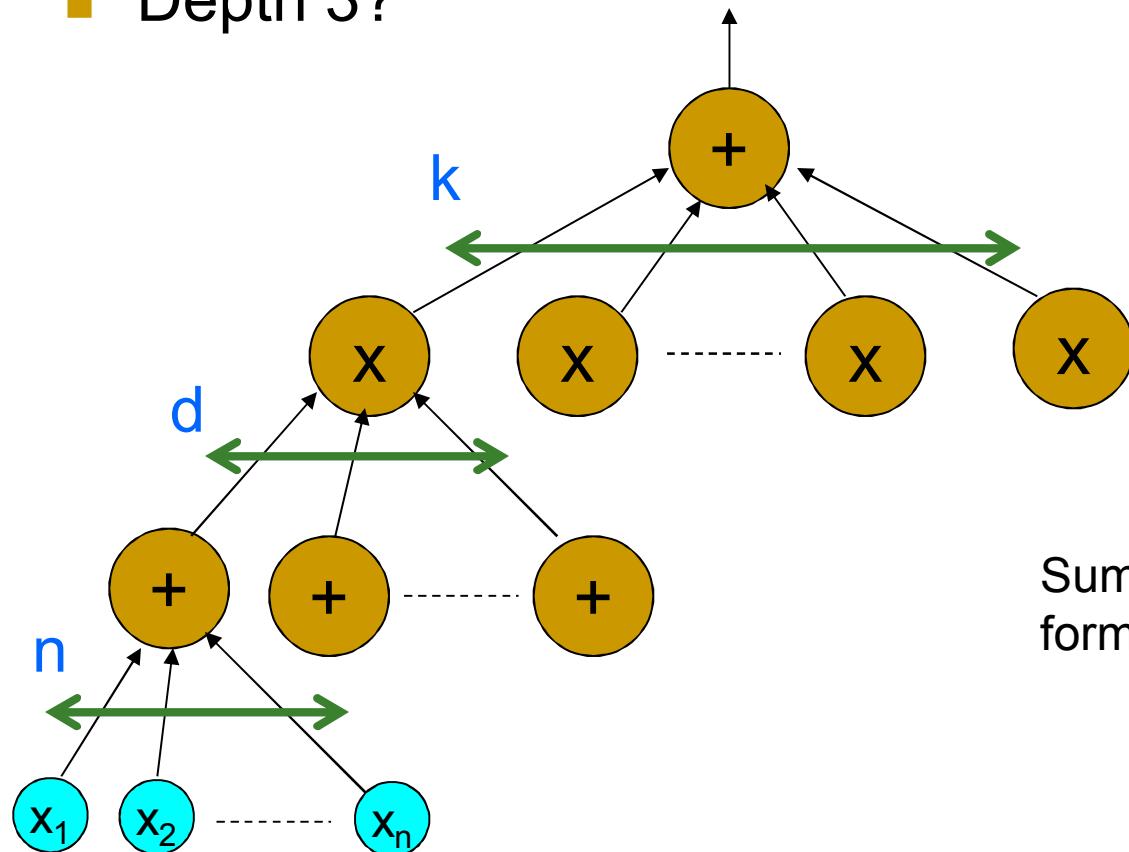
What do we do?

George Polya

If you can't solve a problem, then there is an easier problem you *can* solve. Find it.

Get shallow results

- Let's restrict the depth and see what we get
- Depth 2? Non-blackbox trivial!
 - [GK, BOT, ..., KS] Polytime with blackbox
- Depth 3?



$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{ij} = \sum_{i=1}^k T_i$$

Sum of products of kd linear forms in n variables

Some examples

■ Over \mathbb{Q}

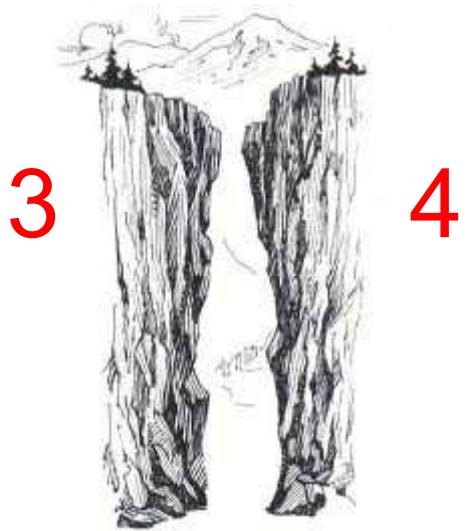
$$(x+z)(y+z) - xy - z(x+y+z) = 0$$

$$\begin{aligned} x_1x_2x_3(2y + x_1 + x_2 + x_3) - (y + x_1)(y + x_2)(y + x_3)(y + x_1 + x_2 + x_3) \\ + y(y + x_1 + x_2)(y + x_2 + x_3)(y + x_1 + x_3) = 0 \end{aligned}$$

■ Over \mathbb{F}_2

$$\begin{aligned} \prod_{\sum_i b_i=0} (b_1x_1 + b_2x_2 + b_3x_3) + \prod_{\sum_i b_i=1} (y + b_1x_1 + b_2x_2 + b_3x_3) \\ + \prod_{\sum_i b_i=0} (y + b_1x_1 + b_2x_2 + b_3x_3) = 0 \end{aligned}$$

Some good news



- [Agrawal Vinay 08] Chasm at Depth 4!
- If you can solve blackbox PIT for depth 4, then you've solved it for all depths.
- Ok, maybe it's bad news, but we have our excuse...

Our results

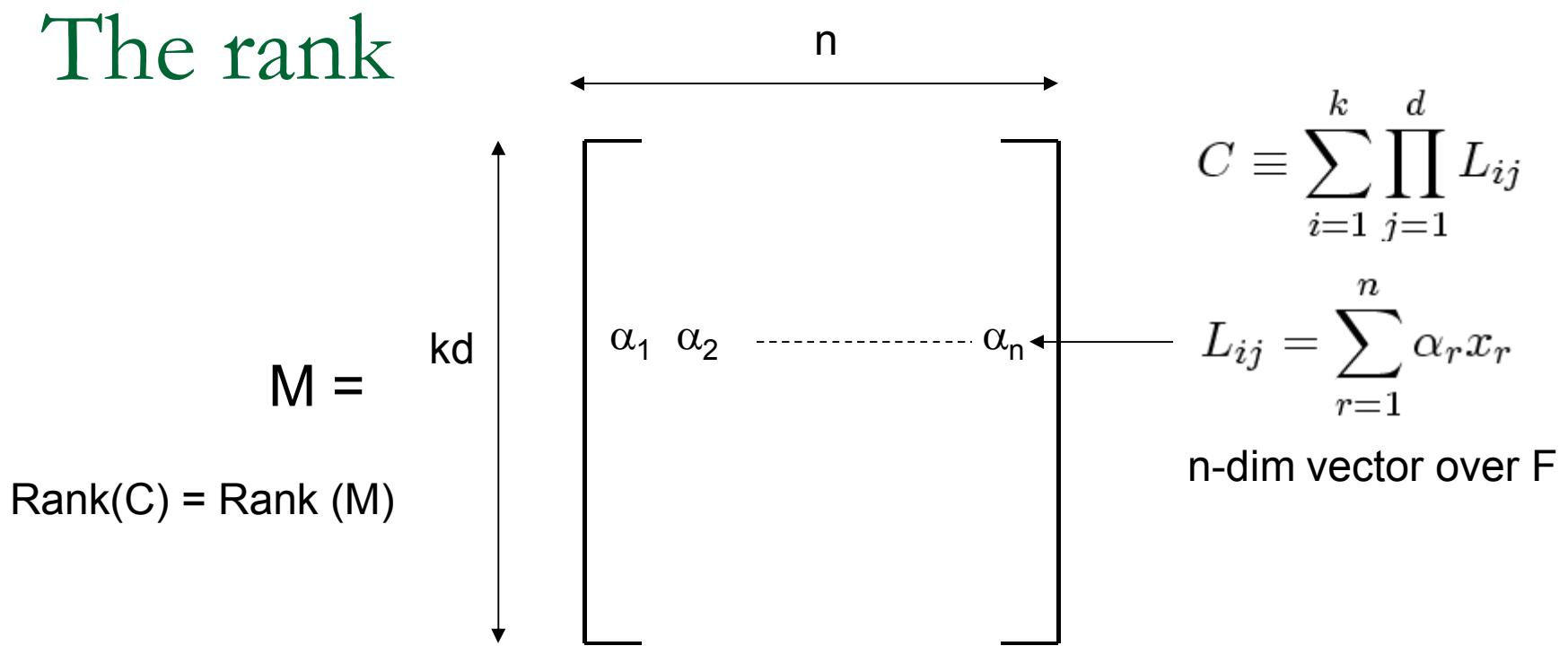
- So what's the best black-box running time?
 - Parameters n, d, k (think of k as constant)

$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{ij}$$

Who	What
[Karnin Shpilka 08] [Dvir Shpilka 06]	$\text{poly}(n)d^{(\log d)^k}$
[Saxena S 09]	$\text{poly}(n)d^{k^3(\log d)}$
[Kayal Saraf 09]	$\text{poly}(n)d^{k^k}$
This paper	$\text{poly}(n)d^{k^2}$

- Almost matches non-blackbox test of $\text{poly}(n)d^k$

The rank



- Introduced by [DS]: fundamental property of depth 3 circuits
- How many independent variables can an identity have?
 - An identity is very constrained, so few degrees of freedom
- [KS] Blackbox test of time $\text{poly}(n)d^{\text{rank}}$
- [DS] **Rank of simple, minimal identity $< (\log d)^{k-2}$**
(compare with kd)

Some examples

- Behold!

$$(x + 2y + 2z + 3w)(2x + 2y + z + 2w) - (x + y + z + w)(2x + y) - (y + z + 2w)(3x + 3y + 2z + 3w) = 0$$

- A linear transformation tells us

$$X = x + y + z + w \quad Y = y + z + 2w \quad Z = 2x + y$$

- Not so impressed, are you?

$$(X + Z)(Y + Z) - XY - Z(X + Y + Z) = 0$$

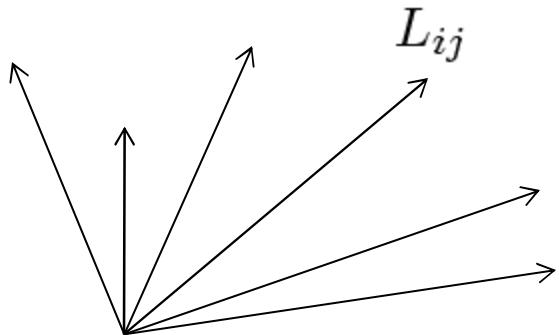
What we did

- [DS 06] What is the rank of depth-3 identity (k, d, n) ?
 - “We think that it is $\text{poly}(k)$.”
- [Us] Yes, the rank is $O(k^2)$
- [Kayal Saraf] Rank is at most k^k
- Lower bound of rank k
- Over finite fields, rank can be $(k \log d)$
 - We also show general bound of $k^2 \log d$

What we did

- [Kayal Saraf] Connections to Sylvester-Gallai type theorems
- We nail down this connection for all fields
 - Tighter bounds for rank
- “Building the theory of depth-3”
 - Matching structures in identities

The vector picture



$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{ij}$$

$$L_{ij} = \sum_{r=1}^n \alpha_r x_r$$

n -dim vector over \mathbb{Q}

- Totally kd vectors
- But lots of linear dependencies between them, so rank is much smaller

What dependencies?

- $C = T_1 + T_2 + T_3 = \prod L_i + \prod M_j + \prod N_k = 0$
- [AB,AKS,KS] Go modulo!

$$\prod L_i + \prod M_j + \prod N_k = 0$$

Vanishes! \longrightarrow $\prod L_i$ $\prod M_j + \prod N_k = 0 \pmod{L_1}$

$$\prod M_j = -\prod N_k \pmod{L_1}$$

- By unique factorization, there is 1-1 mapping between M 's and N 's (they are same upto constants)

$$M_j \equiv \alpha N_k \pmod{L_i}$$

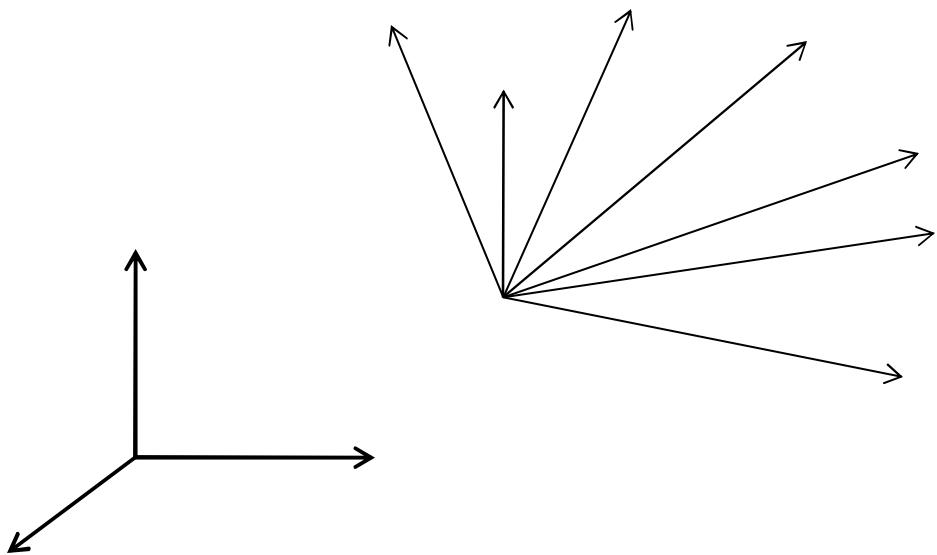
$$M_j = \alpha N_k + \beta L_i \quad (\text{Linear dependency. Yay!})$$

"Mathematical question 11851", *Educational Times*, 1893

J. J. Sylvester

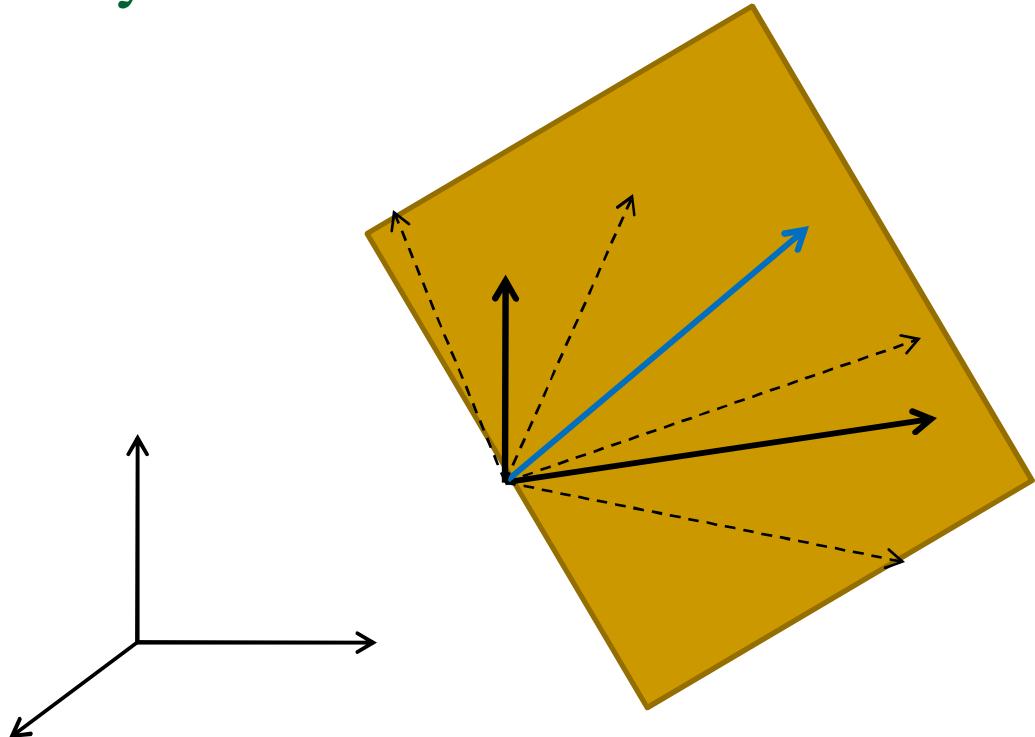
Prove that it is not possible to arrange any finite number of real points so that a right line through every two of them shall pass through a third, unless they all lie in the same right line.

Sylvester and Gallai



- Set of distinct vectors
- For every pair v_1, v_2 , some v_3 is in span

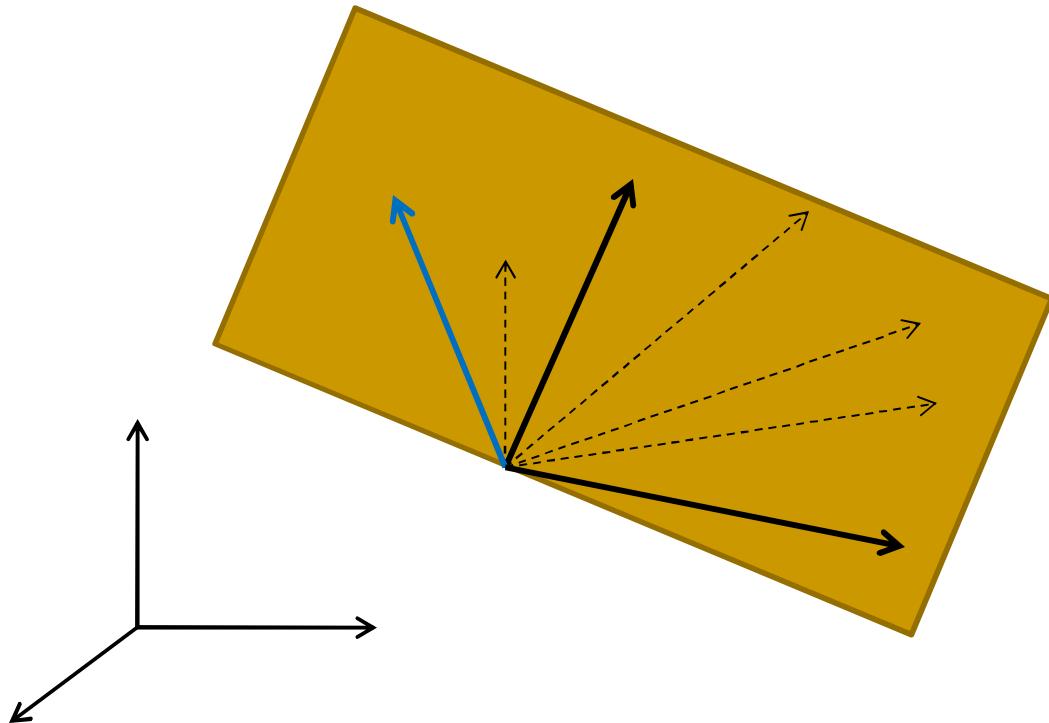
Sylvester and Gallai



- Set S is SG_2-closed

- Set of distinct vectors
- For every pair v_1, v_2 , some v_3 is in span

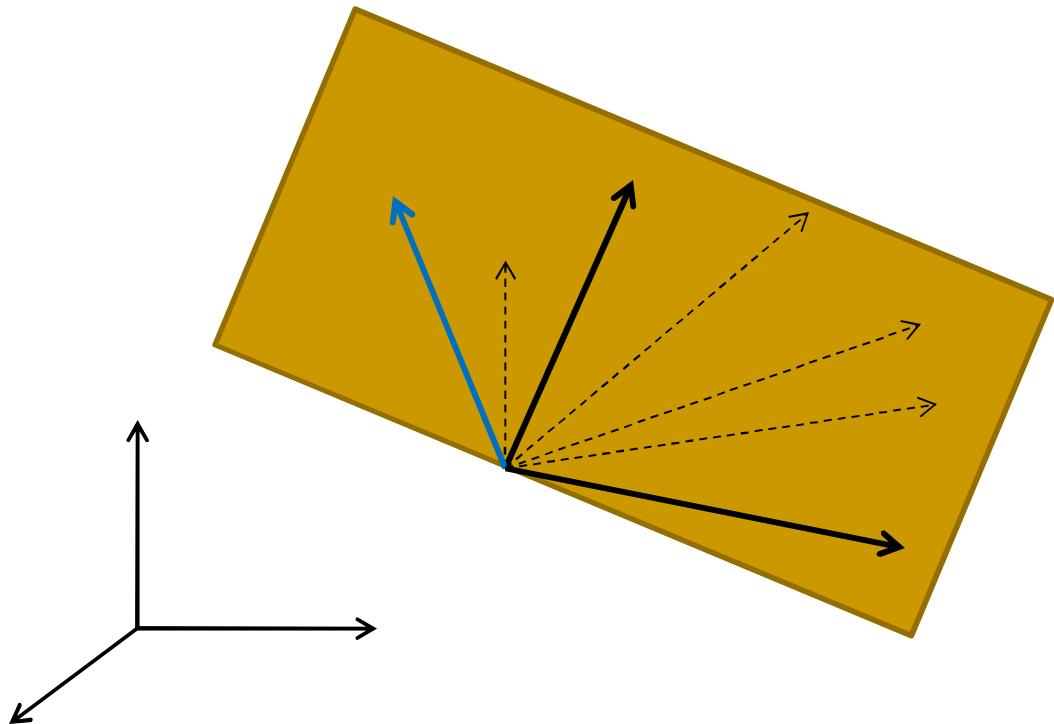
Sylvester and Gallai



- Set S is SG_2-closed

- Set of distinct vectors
- For every pair v_1, v_2 , some v_3 is in span

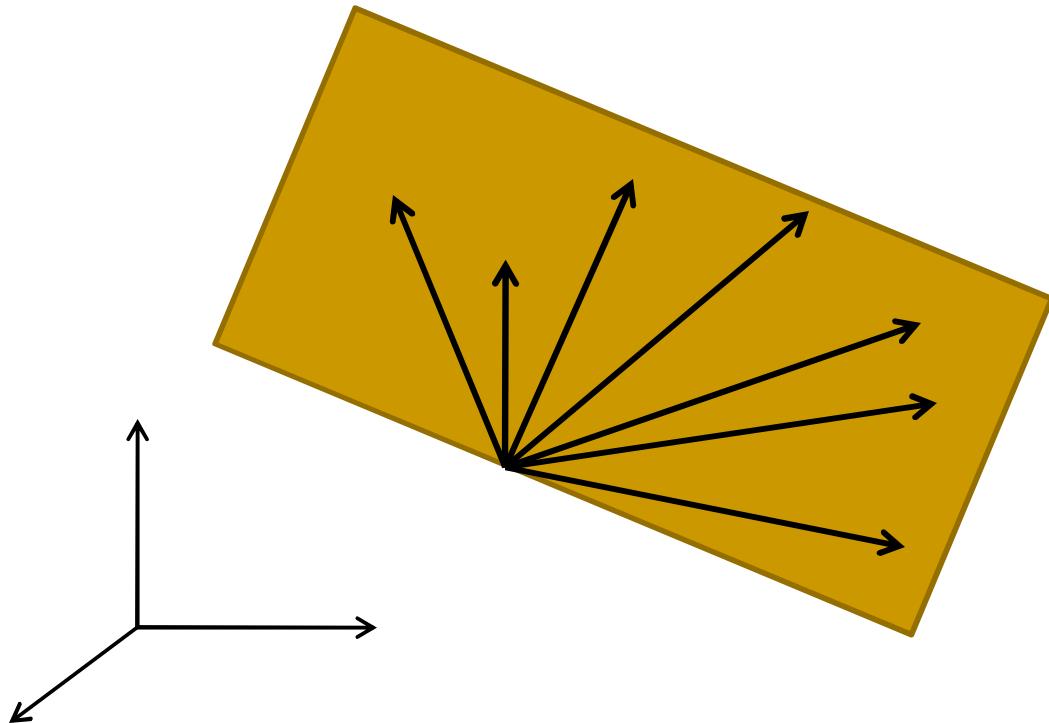
Sylvester and Gallai



- Set of distinct vectors
- For every pair v_1, v_2 , some v_3 is in span

- Set S is SG_2-closed
- [Sylvester-Gallai] Rank of SG_2-closed set over reals is at most 2!

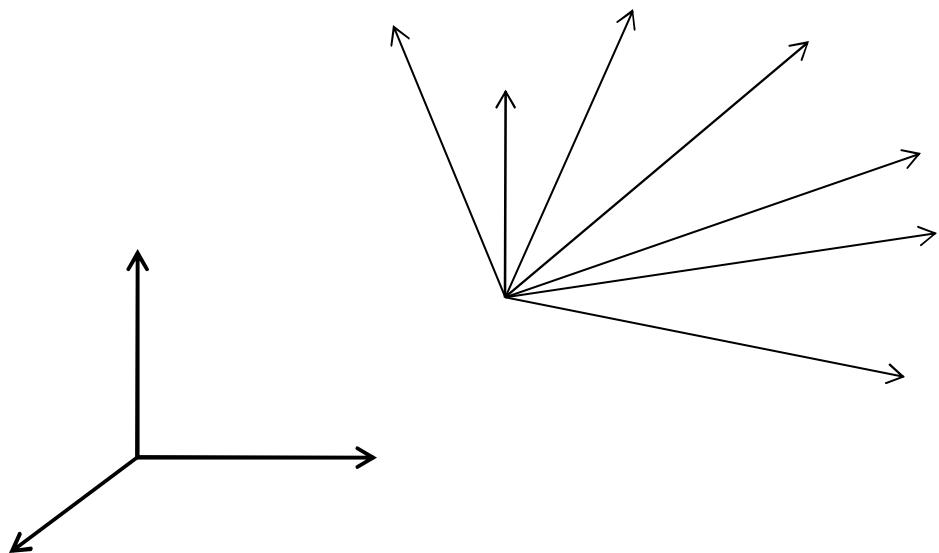
Sylvester and Gallai



- Set S is SG_2-closed
- [Sylvester-Gallai] Rank of SG_2-closed set over reals is at most 2!
 - All vectors coplanar

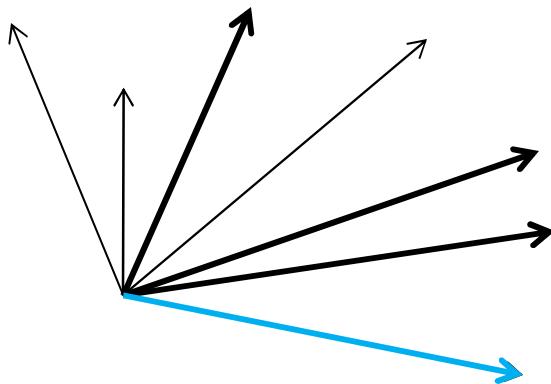
- Set of distinct vectors
- For every pair v_1, v_2 , some v_3 is in span

Higher dimensions



- Set of distinct vectors
- For every v_1, v_2, v_3 some v_4 is in span

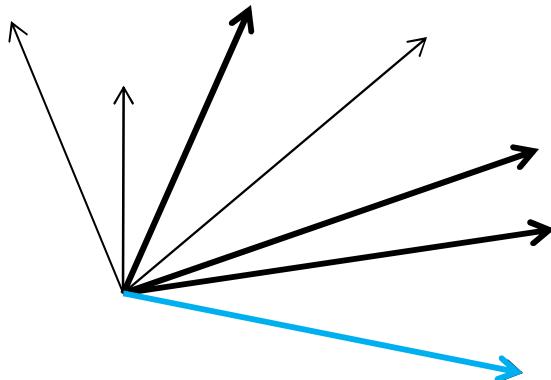
Higher dimensions



- Set of distinct vectors
- For every v_1, v_2, v_3 some v_4 is in span

- This set is SG_3-closed
- If every subset of k vectors has another vector in span, S is SG_ k -closed
- Can SG_ k -closed sets have high rank?

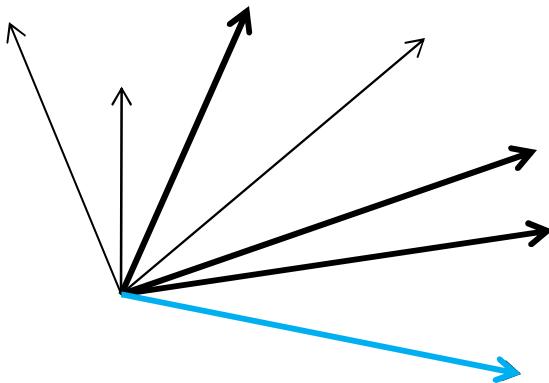
Higher dimensions



- Set of distinct vectors
- For every v_1, v_2, v_3 some v_4 is in span

- [Hansen] The rank of an SG_k -closed set $< 2k-1$
- Given set of m vectors over F that is SG_k -closed, what is largest possible rank?
- Sylvester-Gallai rank bound: $SG_k(F, m)$
 - Rank of any such set $< SG_k(F, m)$

Higher dimensions



- Set of distinct vectors
- For every v_1, v_2, v_3 some v_4 is in span

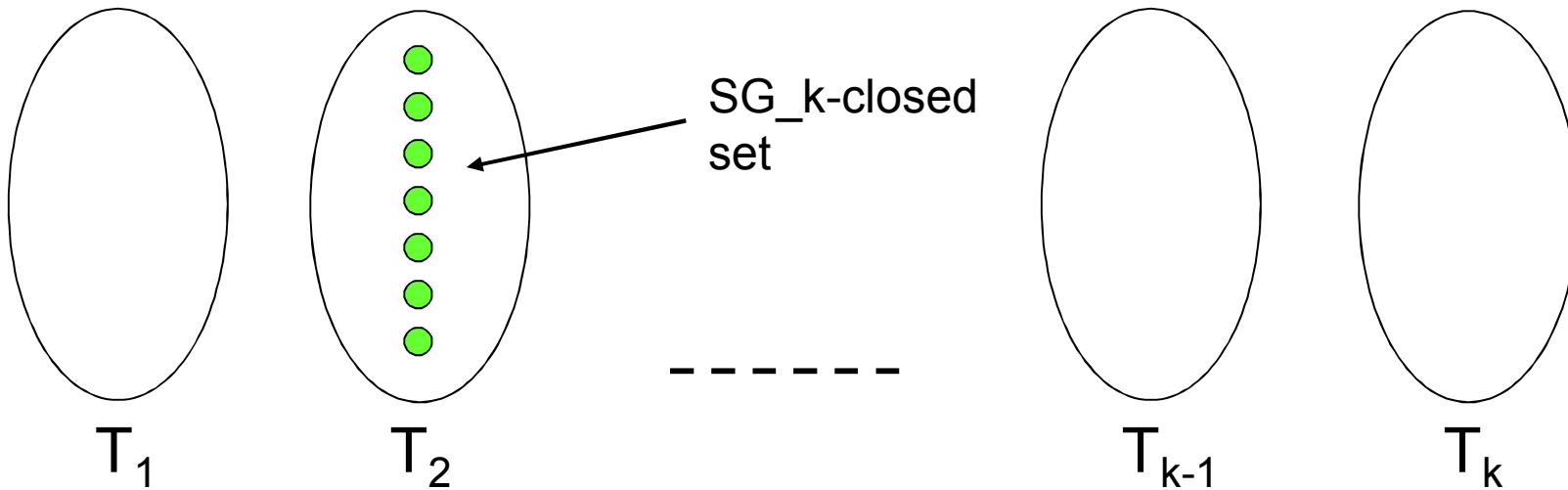
- [SG] $SG_2(R, m) < 3$
- [Hansen] $SG_k(R, m) < 2k-1$
- We also prove $SG_k(F, m) < k \log m$
 - Tight ONLY for F_2

SG → Rank

- Rank of depth-3 identity over F is...

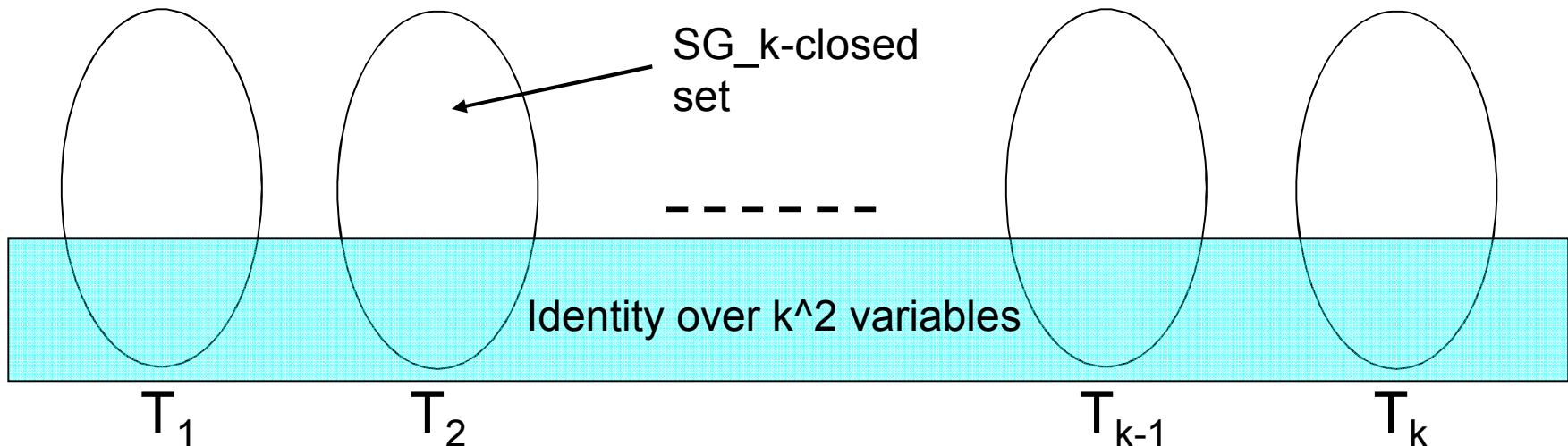
$$k^2 + k \text{ SG}_k(F, d)$$

$$C \equiv \sum_{i=1}^k \prod_{j=1}^d L_{ij} = \sum_{i=1}^k T_i$$



- So for $F = Q, R$ Rank is $O(k^2)$
- For any F Rank is $O(k^2 \log d)$

The nucleus identity



- [Structural theorem alert!]
- Every identity contains a nucleus identity of k^2 variables
- Everything else within a term is SG_k closed
 - All terms “look the same”
- All interesting complexity is inside nucleus

So...

- We prove that the rank of depth-3 identity is $k^2 + k \text{ SG_k}(F, d)$
 - $O(k^2)$ for reals, setting DS conjecture
 - This is pretty much the end of the rank story
- Involves the kitchen sink of tools used for depth-3
 - [DS, KS, KS, KS, SS]
- Insight into depth-3 identities
 - The presence of the nucleus, the SG-relations

The road ahead

- Umm...solve identity testing
 - Surely, something intermediate...?
- Get truly polynomial (black-box or otherwise) for depth 3
 - How to remove exponential dependence on k ?
- So we get d^k for R , but only $d^{k \log d}$ for general F
 - Can we get at least get polynomial in d in general?
 - Need different approach than rank bounds
- What about SG_k rank bounds?
 - $(k \log d)$ is just the beginning. Get better bound for finite fields.

