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The problem

 Given array f:[n] → N, find (length of) 

Longest Increasing Subsequence (LIS)

 Rather self-explanatory

 By now, textbook dynamic programming problem

 [CLRS 01] Chapter 15.4 (Longest Common Subsequence), 
Starred Problem 15.4-6

 [Schensted, Fredman] O(n log n) algorithm
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Almost 50 years…

 [Schensted  61] [Fredman 75]      [Apostolica Guerra 
87]       [Atshul et al 90]      [Ramanan 97]      [Goldreich 
Goldwasser Ron 97]      [Baik Deift Johansson 99] 
[Delcher et al 99]      [Dodis et al 99]      [Aldous Diaconis 
99]      [Ergun et al 99]       [Bespamyatnuikh Segal 00] 
[Fischer 01]       [Liben-Nowell Vee Zhu 03]      [Zhang 
03]      [Ailon et al 03]      [Parnas Ron Rubinfeld 03]    
[Gal Gopalan 07]      [Gopalan et al 07]     [Sun Woodruff 
07]     [Ergun Jowhari 08] 

 LIS is simple version of Longest Common Subsequence
 Can’t list all references for LCS
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Too much to read

 Array f is extremely large, so can’t read all of it

 What can we say about LIS length, if we see very little?
 |LIS| = LIS length

 Read only poly(log n) positions
 For n = billion, (log n) = 21

 Obviously randomized

Algorithm

5 7 4 8 9 2

|LIS| is in range 
[0.4n, 0.6n]
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Too much to read

 Array f is extremely large, so can’t read all of it

 What can we say about LIS length, if we see very little?
 |LIS| = LIS length

 Read only poly(log n) positions

 Obviously randomized

Algorithm

5 7 4 8 9 2

|LIS| is in range 
[0.4n, 0.6n]

Mathematical question: How 
to locate small portion of 
array that tells about |LIS|?

Do such portions even exist?



6

Uniform sample says nothing

 Choose uniform random sample of poly(log n) size

 |LIS| = n/2, but random sample always increasing

 So not really that easy to learn about |LIS|…

2 1 4 3 6 5 8 7 10 94 9
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Our result

 We want range to be small

0 n

|LIS|

Algorithm

|LIS| in 
this range
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Our result

 We want range to be small

 [This work] For any (constant) δ > 0

Algorithm gives additive δn approximation to |LIS|

Running time is 21/δ (log n)c

0 n

|LIS|

Algorithm

|LIS| in 
this range

δn



9

Our result

 We want range to be small

 [This work] For any (constant) δ > 0

Algorithm gives additive δn approximation to |LIS|

Running time is 21/δ (log n)c

 [Ailon Chazelle Liu S 03] [Parnas Ron Rubinfeld 03] 

Previous best: δ = ½  

0 nn/2

|LIS|

δn
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Estimating the distance

 Distance = (n - |LIS|)/n

 Plethora of algorithms: approximate distance

 [ACLS,PRR] 2-multiplicative approx to distance

 [This result] (1+δ)-approx to distance, for any 

constant δ

4 24 10 9 15 17 20 18 4 19 34 10 15 17 18 1924 9 20 4 3

Red is distance
Algorithm

Distance in 
[ε, 2ε]
Distance in 
[ε, 1.1ε]
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What I’m supposed to do

 First, the algorithm (for LIS)

 Then, a proof of why it works

 I won’t do that
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A kind of brain dump

 Why is this problem hard?

 How did we arrive at this algorithm?

 If there’s time, you might even see it

Algorithm
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Prelims: the array in space

4 20 10 9 154 10 15 4

10

15

20

1 2 3
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Prelims: the array in space

 Input is points in plane, given as array

 (LIS is longest chain in partial order)

Increasing sequenceViolation
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The use of randomness

 Find fraction of green

 Randomized - in constant time

 [Chernoff-Hoeffding] (log n)/α2 samples for error α

 From now on, assume we can do this

How many 
green balls?



Let’s look at the history

16



17

Coloring points

 Characterize points as good (green) or bad (red)
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Coloring points

 Characterize points as good (green) or bad (red)

 Good points are increasing seq.

 Not too many bad points (compared to distance)

 There is (log n) algo to tell if point is good/bad
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The violation counting trick

Probably
not on LIS

Many violations
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The violation counting trick

 Every point in [P,Q] is violation with either P or Q
 [Ergun Kannan Kumar Rubinfeld Viswanathan 99] 

So at least half the points in [P,Q] are violation with 
P or violation with Q

P

Q

Every point is violation 
with P or Q
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The generic algorithm

PP

Small random sample
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The generic algorithm

PP



23

The generic algorithm

 Study samples in all “neighborhoods” of P
 Decide whether P is good or bad

 Uses neighborhoods of size 2k, so (log n) time overall

 Very nice, clean approach

PP
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A major obstruction

 The decision of good/bad for a point depends on small 
scale properties of “far away” portions

k

k

k 3k

k

k

k
3k

10 points in each

|LIS| = 4k |LIS| = 2k
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A major obstruction

 Random samples in neighborhoods of points are 
identical!

 “Can we really estimate LIS in polylog time?”

 We need to rethink our approach

k k

k

k 3k

k

k
3k



Back to the drawing board

26
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The dynamic program

 Closest LIS point to left gives “splitter”

 Find LIS is each blue region. Piece together!
 So we break up original problem into subproblems

n/2

Splitter

Closest LIS point to left
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The dynamic program

 But we don’t know right splitter.
 So try all possible! Only n different choices

 Choose the one that gives the largest sum of LIS’s
 MaxS (|LIS-below-S| + |LIS-above-S|)

n/2

S
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The dynamic program

 If you LIS in all small boxes, you can build LIS for bigger 
boxes

 Not the most efficient DP…

 So our sublinear algo has to mimic this process

n/2
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The IP

n/2

Is this point
on LIS?

Where is the 
splitter?

It is there.

LIS is in blue 
region 

Splitter
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The IP

n/2

Where is the 
splitter?

It is there.

LIS is in blue 
region 

This point
NOT on LIS
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The IP

n/2

I wish we knew 
the splitter in 
that region 

It is there.

3n/4
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The IP

n/2

I think I know 
what will happen 

next

You’re 
lucky I’m 

here

3n/45n/8
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The IP

n/2

I think I know 
what will happen 

next

You’re 
lucky I’m 

here

3n/45n/8
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The IP

n/2

I think I know 
what will happen 

next

You’re 
lucky I’m 

here

3n/45n/8
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The interactive protocol

 If point stays in blue region till very end, then it is 
good (on LIS). Otherwise, bad.

 This takes (log n) steps, with the help of the wizard
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The interactive protocol

 If point stays in blue region till very end, then it is 
good (on LIS). Otherwise, bad.

 This takes (log n) steps, with the help of the wizard

THE 
INTERACTIVE 
PROTOCOL TO 

ESTIMATE THE 
LIS
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The interactive protocol

 If point stays in blue region till very end, then it is 
good (on LIS). Otherwise, bad.

 This takes (log n) steps, with the help of the wizard

 If we could simulate the wizard…
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The interactive protocol

 If point stays in blue region till very end, then it is 
good (on LIS). Otherwise, bad.

 This takes (log n) steps, with the help of the wizard

 If we could simulate the wizard…

What?? If you could 
simulate the wizard, 
you know the LIS!
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An approximate splitter

n/2
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An approximate splitter

 No. of LIS points lost < μn (violations with splitter)

n/2

Approximate splitter

LIS points lost
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An approximate splitter

n/2n/4
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An approximate splitter

 In interval of size k, we lose μk LIS points

 Total loss = μn log n
 Set μ = 1/(100 log n), then total loss is n/100 (1% of points)

n/2

No. of LIS pts < μ(n/2)

n/4
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The interactive protocol

n/2

Is this point
on LIS?

Where is the 
splitter?

Here is an
approximate 

splitter

LIS is in blue 
region 

Approximate splitter
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The interactive protocol

n/2

Is this point
on LIS?

Where is the 
splitter?

Here is an
approximate 

splitter

LIS is in blue 
region 

Approximate splitter

But even to find 
approximate splitters, 

you need the LIS!
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Be conservative!

n/2

 Conservative splitter is definitely

approximate splitter

 How to check whether point gives

conservative splitter?

Total no. of points outside 
blue< μn

Conservative splitter
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Be conservative!

n/2

 Count fraction of sample outside blue

 Because μ = 1/(100 log n), poly(log n) samples 
checks this accurately

 With this, we can run interactive protocol
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Getting a conservative splitter

n/2

 We can sample (log n) different candidates and check all of 
them

 You might miss a conservative splitter…

 What if no conservative splitter exists?
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No splitters

 Every point is violation with at least n/100 points

 No conservative splitter

n/2

0.01n
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A liberal paradise

n/2

 So we know that |LIS| < (1-μ) n

 Leads to the next idea. Boosting approximations!

Choose any lineNo. of points outside
at least μn
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Can we beat the n/2-approx??

 We have an n/2-approx for |LIS|

 Can we get anything better than that?

 Maybe we can somehow convert a δn-approx to 

δ�n-approx (δ > δ�)

 Call this a δ-approx algorithm
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Boosting approximations

n/2

No. of points outside
at least μn
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Boosting approximations

n/2

 Take sum of outputs as total LIS estimate

 |LIS| = |LIS1| + |LIS2|, Est = Est1 + Est2

 |Est1 – LIS1| < δn1 |Est2 – LIS2| < δn2

 So |Est – LIS| < δ(n1 + n2)

 n1+n2 < (1-μ)n, so |Est – LIS| < δ(1-μ)n !

Real splitter

No. of points outside
at least μn

Run δ-approx
on points in box

Run δ-approx
on points in box

n1

n2
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Putting it together

n/2

 Check if each is conservative splitter
 If it is, we’re all set to run IP

 Otherwise…

Conservative splitter?
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Putting it together

n/2

 One of these is “close enough” to real splitter

 Est(S) = Left-Est(S) + Right-Est(S)

Run δ-approx
on points in box

Run δ-approx
on points in box

S
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Putting it together

n/2

 One of these is “close enough” to real splitter

 Est(S) = Left-Est(S) + Right-Est(S)

 Final Estimate = maxS Est(S)

 Looks like a great idea!

 We go from δ to δ(1- μ). Recurse to keep improving approximation

Run δ-approx
on points in box

Run δ-approx
on points in box

S
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It fails, miserably

 As we go up each level, approx gets better by (1-μ).

 So to get δ0 = ¼, how many levels needed?

 ¼ = ½ (1-μ)t So t = 1/μ

 We have running time at least 21/μ. 

So, μ needs to be > 1/log log n.

Alg

AlgAlg

AlgAlg AlgAlg

δ0 = δ1(1-μ)

δ1

δ2

AlgAlg AlgAlg ½

1/μ
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An approximate splitter

 No. of LIS points lost < μn (violations with splitter)

 In interval of size k, we lose μk LIS points

 Total loss = μn log n
 Set μ = 1/(100 log n), then total loss is n/100 (1% of points)

n/2

No. of LIS pts < μ(n/2)

n/4

Remember?
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The basic dichotomy

P

We find splitter

Continue IP

Cannot find splitter

The “Dynamic Programming”
phase

The “Interactive Protocol”
phase

 For IP, we need μ < 1/log n
 μn is error in each “level” of IP

 For DP, we need μ > 1/log log n
 (1-μ) is decrease in error
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A weaker splitter 

 Every point is violation with at least n/100 points

 No conservative splitter

 But surely, splitters are easy to find

 We’re being too conservative 

n/2

0.01n
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The basic dichotomy

P

We find splitter

Continue IP

Cannot find splitter

The “Dynamic Programming”
phase

The “Interactive Protocol”
phase

 For IP, we need μ < 1/log n
 μn is error in each “level” of IP

 For boosting, we need μ > 1/log log n
 (1-μ) is decrease in error

Weaken Strengthen
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Have a look again…

s/2

 If no splitter, then only (1-μ)s points in any division

 We take max of all possible sums
 We get δ(1-μ)-approx

Run δ-approx
on points in box

Run δ-approx
on points in box
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A small generalization

2s/3

 Suppose every “3-way” division has at most (1-μ)s points

s/3
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A small generalization

2s/3

 Suppose every “3-way” division has at most (1-μ)s points

 Do this for all 3-way splits (only poly(log n) many)

 Take max over all sums – we get δ(1-μ)-approx

s/3

No. of points outside
at least μs

Run δ-approx
on points in box

Run δ-approx
on points in box

Run δ-approx
on points in box
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A big generalization

 Suppose every “chain” has at most (1-μ)s points

s/(log n)

s/(log2 n)

Chain
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A big generalization

 Suppose every “chain” has at most (1-μ)s points

 Find chain with largest sum of estimates

 We get δ(1-μ)-approx

 But there are more than poly(n) chains!
 (Not a problem. Why?)

s/(log n)

s/(log2 n)

No. of points outside
at least μs

Run δ-approx
in each box
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It’s…a DP!

 Run δ-approx on all poly(log n) such boxes

 Use Dynamic Program to find chain with largest sum of 
estimates 
 Longest path in DAG

 Can solve in poly(log n) time

s/(log n)

s/(log2 n) Run δ-approx
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A big generalization

 Suppose every “chain” has at most (1-μ)s points

 In poly(log n) time, with poly(log n) calls to δ-approx,

we get δ(1-μ)-approx

s/(log n)

s/(log2 n)
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The basic dichotomy

P

We find splitter

Continue IP

Cannot find splitter

The “Dynamic Programming”
phase

The “Interactive Protocol”
phase

 For IP, we need μ < 1/log n
 μn is error in each “level” of IP

 For boosting, we need μ > 1/log log n
 (1-μ) is decrease in error

Weaken Strengthen
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The new and improved…

 We set μ to be constant (say μ = 1/50)

n/2

μn outside blue
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The new and improved…

 We set μ to be constant (say μ = 1/50)

 But we now ask for < μ-fraction of violations in every 
interval

 As long as interval size s > n/(100log n)

 This is “improved splitter”

n/2

μs outside blue

Size s
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The dichotomy, again

 We are unable to find improved splitter in this box

 Build grid in the box

 Lemma: Since we cannot find splitter, no chain has more 
than (1-μ)s points

 We can find δ(1-μ)-approx for LIS in box

s/(log n)

s/(log2 n)
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The algorithm, in one slide

 We get δ(1-μ)-approx

 Overall running time becomes (log n)1/δ

 *&^#$%  miracle that the math works out

P

We find splitter

Continue IP

Cannot find splitter

Make poly(log n) calls to 
δ-approx. Solve DP of 
poly(log n) size.
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The even better version

 Don’t exactly solve this dynamic program!

 Use our sublinear algo to approximately solve in 
(loglog n) time. Then do it recursively…

 I know, my head is spinning too

 Greek list: α β γ δ ε ζ λ μ ξ ρ θ τ ψ
 We had ν, but got rid of it
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What next?

 We get 21/δ (log n)c time. Can we get 

(log n)/δ time?

 Would be extremely cool. Completely optimal

 There’s a lot going on here. We don’t completely get 
it.

 Applications for other dynamic programs?

 Longest common subsequence

 Approximating edit distance

 …?



Questions?

Surely, the talk was not that clear.

Or that confusing…

76
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Why does this help?

 μ = 1/50, so the small set of violations doesn’t hurt

 Point “too far” from real splitter not allowed

n/2

0.01n

n/(1000 log n)

Too many
outside blue
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Why does this help?

 μ = 1/50, so the small set of violations doesn’t hurt

 Point “too far” from real splitter not allowed

 At least n/(100log n) points are improved splitters

 So we can find one by sampling

n/2

0.01n

n/(1000 log n)

Few points
outside blue



79

At long last, the algorithm

 Is P good or bad?

 Find improved splitter

n/2

P
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At long last, the algorithm

 Is P good or bad?

 Find improved splitter

 So P is bad. We’re done

n/2

P
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At long last, the algorithm

 Is P good or bad?

 Find improved splitter

 Continue with the IP
 Find next improved splitter, etc, etc,

n/2

P

3n/4
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At long last, the algorithm

 Is P good or bad?

 Find improved splitter

 Continue with the IP
 Find next improved splitter, etc, etc,

n/2

P

3n/4
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What if…?

 We are unable to find splitter in this box

P
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A liberal paradise

n/2

 So we know that |LIS| < (1-μ) n

 Leads to the next idea. Boosting approximations!

Choose any lineNo. of points outside
at least μn

Remember?

It’s going to get 
more complicated.



Chain of grid
boxes
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Grid building

 We are unable to find splitter in this box

 Build grid in the box

s/(100 log n)

s/(100 log2 n)
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The recursive calls 

 For grid box B, length(B) = δ-approx LIS estimate in B

 Only poly(log n) calls to δ-approx algorithm

s/(100 log n)

s/(100 log2 n)
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Grid building

 Length of chain is just sum of length of boxes
 This is sort of estimate of LIS inside chain

 The longest chain is our estimate of where is LIS of box
 Longest path in DAG of size (log n)c: Solve by dynamic program

s/(100 log n)

s/(100 log2 n)
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Grid building

 The longest chain is our estimate of where is LIS of box
 Longest path in DAG of size (log n)c: Solve by dynamic program

 If P in longest chain: in box B, use δ-approx to check if P 
is good.

s/(100 log n)

s/(100 log2 n)

PP


