
1

Estimating the longest increasing
sequence in polylogarithmic time

C. Seshadhri (Sandia National Labs,Livermore)

(work done in IBM Almaden)

Joint work with Michael Saks

(Rutgers University)

SAND2010-7479C

2

The problem

 Given array f:[n] → N, find (length of)

Longest Increasing Subsequence (LIS)

 Rather self-explanatory

 By now, textbook dynamic programming problem

 [CLRS 01] Chapter 15.4 (Longest Common Subsequence),
Starred Problem 15.4-6

 [Schensted, Fredman] O(n log n) algorithm

4 24 10 9 15 17 20 18 4 19 34 10 15 17 18 19

3

Almost 50 years…

 [Schensted 61] [Fredman 75] [Apostolica Guerra
87] [Atshul et al 90] [Ramanan 97] [Goldreich
Goldwasser Ron 97] [Baik Deift Johansson 99]
[Delcher et al 99] [Dodis et al 99] [Aldous Diaconis
99] [Ergun et al 99] [Bespamyatnuikh Segal 00]
[Fischer 01] [Liben-Nowell Vee Zhu 03] [Zhang
03] [Ailon et al 03] [Parnas Ron Rubinfeld 03]
[Gal Gopalan 07] [Gopalan et al 07] [Sun Woodruff
07] [Ergun Jowhari 08]

 LIS is simple version of Longest Common Subsequence
 Can’t list all references for LCS

4

Too much to read

 Array f is extremely large, so can’t read all of it

 What can we say about LIS length, if we see very little?
 |LIS| = LIS length

 Read only poly(log n) positions
 For n = billion, (log n) = 21

 Obviously randomized

Algorithm

5 7 4 8 9 2

|LIS| is in range
[0.4n, 0.6n]

5

Too much to read

 Array f is extremely large, so can’t read all of it

 What can we say about LIS length, if we see very little?
 |LIS| = LIS length

 Read only poly(log n) positions

 Obviously randomized

Algorithm

5 7 4 8 9 2

|LIS| is in range
[0.4n, 0.6n]

Mathematical question: How
to locate small portion of
array that tells about |LIS|?

Do such portions even exist?

6

Uniform sample says nothing

 Choose uniform random sample of poly(log n) size

 |LIS| = n/2, but random sample always increasing

 So not really that easy to learn about |LIS|…

2 1 4 3 6 5 8 7 10 94 9

7

Our result

 We want range to be small

0 n

|LIS|

Algorithm

|LIS| in
this range

8

Our result

 We want range to be small

 [This work] For any (constant) δ > 0

Algorithm gives additive δn approximation to |LIS|

Running time is 21/δ (log n)c

0 n

|LIS|

Algorithm

|LIS| in
this range

δn

9

Our result

 We want range to be small

 [This work] For any (constant) δ > 0

Algorithm gives additive δn approximation to |LIS|

Running time is 21/δ (log n)c

 [Ailon Chazelle Liu S 03] [Parnas Ron Rubinfeld 03]

Previous best: δ = ½

0 nn/2

|LIS|

δn

10

Estimating the distance

 Distance = (n - |LIS|)/n

 Plethora of algorithms: approximate distance

 [ACLS,PRR] 2-multiplicative approx to distance

 [This result] (1+δ)-approx to distance, for any

constant δ

4 24 10 9 15 17 20 18 4 19 34 10 15 17 18 1924 9 20 4 3

Red is distance
Algorithm

Distance in
[ε, 2ε]
Distance in
[ε, 1.1ε]

11

What I’m supposed to do

 First, the algorithm (for LIS)

 Then, a proof of why it works

 I won’t do that

12

A kind of brain dump

 Why is this problem hard?

 How did we arrive at this algorithm?

 If there’s time, you might even see it

Algorithm

13

Prelims: the array in space

4 20 10 9 154 10 15 4

10

15

20

1 2 3

14

Prelims: the array in space

 Input is points in plane, given as array

 (LIS is longest chain in partial order)

Increasing sequenceViolation

15

The use of randomness

 Find fraction of green

 Randomized - in constant time

 [Chernoff-Hoeffding] (log n)/α2 samples for error α

 From now on, assume we can do this

How many
green balls?

Let’s look at the history

16

17

Coloring points

 Characterize points as good (green) or bad (red)

18

Coloring points

 Characterize points as good (green) or bad (red)

 Good points are increasing seq.

 Not too many bad points (compared to distance)

 There is (log n) algo to tell if point is good/bad

19

The violation counting trick

Probably
not on LIS

Many violations

20

The violation counting trick

 Every point in [P,Q] is violation with either P or Q
 [Ergun Kannan Kumar Rubinfeld Viswanathan 99]

So at least half the points in [P,Q] are violation with
P or violation with Q

P

Q

Every point is violation
with P or Q

21

The generic algorithm

PP

Small random sample

22

The generic algorithm

PP

23

The generic algorithm

 Study samples in all “neighborhoods” of P
 Decide whether P is good or bad

 Uses neighborhoods of size 2k, so (log n) time overall

 Very nice, clean approach

PP

24

A major obstruction

 The decision of good/bad for a point depends on small
scale properties of “far away” portions

k

k

k 3k

k

k

k
3k

10 points in each

|LIS| = 4k |LIS| = 2k

25

A major obstruction

 Random samples in neighborhoods of points are
identical!

 “Can we really estimate LIS in polylog time?”

 We need to rethink our approach

k k

k

k 3k

k

k
3k

Back to the drawing board

26

27

The dynamic program

 Closest LIS point to left gives “splitter”

 Find LIS is each blue region. Piece together!
 So we break up original problem into subproblems

n/2

Splitter

Closest LIS point to left

28

The dynamic program

 But we don’t know right splitter.
 So try all possible! Only n different choices

 Choose the one that gives the largest sum of LIS’s
 MaxS (|LIS-below-S| + |LIS-above-S|)

n/2

S

29

The dynamic program

 If you LIS in all small boxes, you can build LIS for bigger
boxes

 Not the most efficient DP…

 So our sublinear algo has to mimic this process

n/2

30

The IP

n/2

Is this point
on LIS?

Where is the
splitter?

It is there.

LIS is in blue
region

Splitter

31

The IP

n/2

Where is the
splitter?

It is there.

LIS is in blue
region

This point
NOT on LIS

32

The IP

n/2

I wish we knew
the splitter in
that region

It is there.

3n/4

33

The IP

n/2

I think I know
what will happen

next

You’re
lucky I’m

here

3n/45n/8

34

The IP

n/2

I think I know
what will happen

next

You’re
lucky I’m

here

3n/45n/8

35

The IP

n/2

I think I know
what will happen

next

You’re
lucky I’m

here

3n/45n/8

36

The interactive protocol

 If point stays in blue region till very end, then it is
good (on LIS). Otherwise, bad.

 This takes (log n) steps, with the help of the wizard

37

The interactive protocol

 If point stays in blue region till very end, then it is
good (on LIS). Otherwise, bad.

 This takes (log n) steps, with the help of the wizard

THE
INTERACTIVE
PROTOCOL TO

ESTIMATE THE
LIS

38

The interactive protocol

 If point stays in blue region till very end, then it is
good (on LIS). Otherwise, bad.

 This takes (log n) steps, with the help of the wizard

 If we could simulate the wizard…

39

The interactive protocol

 If point stays in blue region till very end, then it is
good (on LIS). Otherwise, bad.

 This takes (log n) steps, with the help of the wizard

 If we could simulate the wizard…

What?? If you could
simulate the wizard,
you know the LIS!

40

An approximate splitter

n/2

41

An approximate splitter

 No. of LIS points lost < μn (violations with splitter)

n/2

Approximate splitter

LIS points lost

42

An approximate splitter

n/2n/4

43

An approximate splitter

 In interval of size k, we lose μk LIS points

 Total loss = μn log n
 Set μ = 1/(100 log n), then total loss is n/100 (1% of points)

n/2

No. of LIS pts < μ(n/2)

n/4

44

The interactive protocol

n/2

Is this point
on LIS?

Where is the
splitter?

Here is an
approximate

splitter

LIS is in blue
region

Approximate splitter

45

The interactive protocol

n/2

Is this point
on LIS?

Where is the
splitter?

Here is an
approximate

splitter

LIS is in blue
region

Approximate splitter

But even to find
approximate splitters,

you need the LIS!

46

Be conservative!

n/2

 Conservative splitter is definitely

approximate splitter

 How to check whether point gives

conservative splitter?

Total no. of points outside
blue< μn

Conservative splitter

47

Be conservative!

n/2

 Count fraction of sample outside blue

 Because μ = 1/(100 log n), poly(log n) samples
checks this accurately

 With this, we can run interactive protocol

48

Getting a conservative splitter

n/2

 We can sample (log n) different candidates and check all of
them

 You might miss a conservative splitter…

 What if no conservative splitter exists?

49

No splitters

 Every point is violation with at least n/100 points

 No conservative splitter

n/2

0.01n

50

A liberal paradise

n/2

 So we know that |LIS| < (1-μ) n

 Leads to the next idea. Boosting approximations!

Choose any lineNo. of points outside
at least μn

51

Can we beat the n/2-approx??

 We have an n/2-approx for |LIS|

 Can we get anything better than that?

 Maybe we can somehow convert a δn-approx to

δ�n-approx (δ > δ�)

 Call this a δ-approx algorithm

52

Boosting approximations

n/2

No. of points outside
at least μn

53

Boosting approximations

n/2

 Take sum of outputs as total LIS estimate

 |LIS| = |LIS1| + |LIS2|, Est = Est1 + Est2

 |Est1 – LIS1| < δn1 |Est2 – LIS2| < δn2

 So |Est – LIS| < δ(n1 + n2)

 n1+n2 < (1-μ)n, so |Est – LIS| < δ(1-μ)n !

Real splitter

No. of points outside
at least μn

Run δ-approx
on points in box

Run δ-approx
on points in box

n1

n2

54

Putting it together

n/2

 Check if each is conservative splitter
 If it is, we’re all set to run IP

 Otherwise…

Conservative splitter?

55

Putting it together

n/2

 One of these is “close enough” to real splitter

 Est(S) = Left-Est(S) + Right-Est(S)

Run δ-approx
on points in box

Run δ-approx
on points in box

S

56

Putting it together

n/2

 One of these is “close enough” to real splitter

 Est(S) = Left-Est(S) + Right-Est(S)

 Final Estimate = maxS Est(S)

 Looks like a great idea!

 We go from δ to δ(1- μ). Recurse to keep improving approximation

Run δ-approx
on points in box

Run δ-approx
on points in box

S

57

It fails, miserably

 As we go up each level, approx gets better by (1-μ).

 So to get δ0 = ¼, how many levels needed?

 ¼ = ½ (1-μ)t So t = 1/μ

 We have running time at least 21/μ.

So, μ needs to be > 1/log log n.

Alg

AlgAlg

AlgAlg AlgAlg

δ0 = δ1(1-μ)

δ1

δ2

AlgAlg AlgAlg ½

1/μ

58

An approximate splitter

 No. of LIS points lost < μn (violations with splitter)

 In interval of size k, we lose μk LIS points

 Total loss = μn log n
 Set μ = 1/(100 log n), then total loss is n/100 (1% of points)

n/2

No. of LIS pts < μ(n/2)

n/4

Remember?

59

The basic dichotomy

P

We find splitter

Continue IP

Cannot find splitter

The “Dynamic Programming”
phase

The “Interactive Protocol”
phase

 For IP, we need μ < 1/log n
 μn is error in each “level” of IP

 For DP, we need μ > 1/log log n
 (1-μ) is decrease in error

60

A weaker splitter

 Every point is violation with at least n/100 points

 No conservative splitter

 But surely, splitters are easy to find

 We’re being too conservative

n/2

0.01n

61

The basic dichotomy

P

We find splitter

Continue IP

Cannot find splitter

The “Dynamic Programming”
phase

The “Interactive Protocol”
phase

 For IP, we need μ < 1/log n
 μn is error in each “level” of IP

 For boosting, we need μ > 1/log log n
 (1-μ) is decrease in error

Weaken Strengthen

62

Have a look again…

s/2

 If no splitter, then only (1-μ)s points in any division

 We take max of all possible sums
 We get δ(1-μ)-approx

Run δ-approx
on points in box

Run δ-approx
on points in box

63

A small generalization

2s/3

 Suppose every “3-way” division has at most (1-μ)s points

s/3

64

A small generalization

2s/3

 Suppose every “3-way” division has at most (1-μ)s points

 Do this for all 3-way splits (only poly(log n) many)

 Take max over all sums – we get δ(1-μ)-approx

s/3

No. of points outside
at least μs

Run δ-approx
on points in box

Run δ-approx
on points in box

Run δ-approx
on points in box

65

A big generalization

 Suppose every “chain” has at most (1-μ)s points

s/(log n)

s/(log2 n)

Chain

66

A big generalization

 Suppose every “chain” has at most (1-μ)s points

 Find chain with largest sum of estimates

 We get δ(1-μ)-approx

 But there are more than poly(n) chains!
 (Not a problem. Why?)

s/(log n)

s/(log2 n)

No. of points outside
at least μs

Run δ-approx
in each box

67

It’s…a DP!

 Run δ-approx on all poly(log n) such boxes

 Use Dynamic Program to find chain with largest sum of
estimates
 Longest path in DAG

 Can solve in poly(log n) time

s/(log n)

s/(log2 n) Run δ-approx

68

A big generalization

 Suppose every “chain” has at most (1-μ)s points

 In poly(log n) time, with poly(log n) calls to δ-approx,

we get δ(1-μ)-approx

s/(log n)

s/(log2 n)

69

The basic dichotomy

P

We find splitter

Continue IP

Cannot find splitter

The “Dynamic Programming”
phase

The “Interactive Protocol”
phase

 For IP, we need μ < 1/log n
 μn is error in each “level” of IP

 For boosting, we need μ > 1/log log n
 (1-μ) is decrease in error

Weaken Strengthen

70

The new and improved…

 We set μ to be constant (say μ = 1/50)

n/2

μn outside blue

71

The new and improved…

 We set μ to be constant (say μ = 1/50)

 But we now ask for < μ-fraction of violations in every
interval

 As long as interval size s > n/(100log n)

 This is “improved splitter”

n/2

μs outside blue

Size s

72

The dichotomy, again

 We are unable to find improved splitter in this box

 Build grid in the box

 Lemma: Since we cannot find splitter, no chain has more
than (1-μ)s points

 We can find δ(1-μ)-approx for LIS in box

s/(log n)

s/(log2 n)

73

The algorithm, in one slide

 We get δ(1-μ)-approx

 Overall running time becomes (log n)1/δ

 *&^#$% miracle that the math works out

P

We find splitter

Continue IP

Cannot find splitter

Make poly(log n) calls to
δ-approx. Solve DP of
poly(log n) size.

74

The even better version

 Don’t exactly solve this dynamic program!

 Use our sublinear algo to approximately solve in
(loglog n) time. Then do it recursively…

 I know, my head is spinning too

 Greek list: α β γ δ ε ζ λ μ ξ ρ θ τ ψ
 We had ν, but got rid of it

75

What next?

 We get 21/δ (log n)c time. Can we get

(log n)/δ time?

 Would be extremely cool. Completely optimal

 There’s a lot going on here. We don’t completely get
it.

 Applications for other dynamic programs?

 Longest common subsequence

 Approximating edit distance

 …?

Questions?

Surely, the talk was not that clear.

Or that confusing…

76

77

Why does this help?

 μ = 1/50, so the small set of violations doesn’t hurt

 Point “too far” from real splitter not allowed

n/2

0.01n

n/(1000 log n)

Too many
outside blue

78

Why does this help?

 μ = 1/50, so the small set of violations doesn’t hurt

 Point “too far” from real splitter not allowed

 At least n/(100log n) points are improved splitters

 So we can find one by sampling

n/2

0.01n

n/(1000 log n)

Few points
outside blue

79

At long last, the algorithm

 Is P good or bad?

 Find improved splitter

n/2

P

80

At long last, the algorithm

 Is P good or bad?

 Find improved splitter

 So P is bad. We’re done

n/2

P

81

At long last, the algorithm

 Is P good or bad?

 Find improved splitter

 Continue with the IP
 Find next improved splitter, etc, etc,

n/2

P

3n/4

82

At long last, the algorithm

 Is P good or bad?

 Find improved splitter

 Continue with the IP
 Find next improved splitter, etc, etc,

n/2

P

3n/4

83

What if…?

 We are unable to find splitter in this box

P

84

A liberal paradise

n/2

 So we know that |LIS| < (1-μ) n

 Leads to the next idea. Boosting approximations!

Choose any lineNo. of points outside
at least μn

Remember?

It’s going to get
more complicated.

Chain of grid
boxes

85

Grid building

 We are unable to find splitter in this box

 Build grid in the box

s/(100 log n)

s/(100 log2 n)

86

The recursive calls

 For grid box B, length(B) = δ-approx LIS estimate in B

 Only poly(log n) calls to δ-approx algorithm

s/(100 log n)

s/(100 log2 n)

87

Grid building

 Length of chain is just sum of length of boxes
 This is sort of estimate of LIS inside chain

 The longest chain is our estimate of where is LIS of box
 Longest path in DAG of size (log n)c: Solve by dynamic program

s/(100 log n)

s/(100 log2 n)

88

Grid building

 The longest chain is our estimate of where is LIS of box
 Longest path in DAG of size (log n)c: Solve by dynamic program

 If P in longest chain: in box B, use δ-approx to check if P
is good.

s/(100 log n)

s/(100 log2 n)

PP

