SAND2010- 7479C

Estimating the longest increasing
sequence in polylogarithmic time

C. Seshadhri (Sandia National Labs,Livermore)
(work done in IBM Almaden)

Joint work with Michael Saks
(Rutgers University)

The problem

4 (24110 9 |15 (1712018 4 |19 | 3

Given array f:;[n] — N, find (length of)
Longest Increasing Subsequence (LIS)
o Rather self-explanatory

By now, textbook dynamic programming problem

o [CLRS 01] Chapter 15.4 (Longest Common Subsequence),
Starred Problem 15.4-6

o [Schensted, Fredman] O(n log n) algorithm

' Almost 50 years. ..

= [Schensted 61] [Fredman 75] [Apostolica Guerra
87] [Atshul et al 90] [Ramanan 97] [Goldreich
Goldwasser Ron 97] [Baik Deift Johansson 99]
[Delcheretal 99] [Dodis etal 99] [Aldous Diaconis
99] [Ergun et al 99] [Bespamyatnuikh Segal 00]
[Fischer 01] [Liben-Nowell Vee Zhu 03] [Zhang
03] [Ailonetal 03] [Parnas Ron Rubinfeld 03]
[Gal Gopalan 07] [Gopalan etal 07] [Sun Woodruff
07] [Ergun Jowhari O8]

= LIS is simple version of Longest Common Subsequence
o Can't list all references for LCS

Too much to read

ILIS| is in range
[0.4n, 0.6n]

Array f is extremely large, so can't read all of it

o What can we say about LIS length, if we see very little?
ILIS| = LIS length

o Read only poly(log n) positions
For n = billion, (log n) = 21
o Obviously randomized

Too much to read

Mathematical question: How
to locate small portion of
array that tells about |LIS|?

Do such portions even exist?

Uniform sample Say’s nothing

21114 |36 |58 7 (109 (|(~~~"""-

Choose uniform random sample of poly(log n) size
ILIS| = n/2, but random sample always increasing

So not really that easy to learn about [LIS]|...

LIS]| i
‘ Our result

0

C—
———H

LIS|

= We want range to be small

‘ Our result
; n,

LIS|

= We want range to be small
= [This work] For any (constant) 6 > 0

Algorithm gives additive 6n approximation to |LIS|
Running time is 2% (log n)°

‘ Our result

LIS|

= We want range to be small
= [This work] For any (constant) 6 > 0

Algorithm gives additive 6n approximation to |LIS|
Running time is 2% (log n)°

= [Ailon Chazelle Liu S 03] [Parnas Ron Rubinfeld 03]
Previous best: 6 =

‘ Estimating the distance

Distance in

[, 1.1¢€]
Red is distance

\ Algorithm

= Distance = (n - |LIS])/n
= Plethora of algorithms: approximate distance
= [ACLS,PRR] 2-multiplicative approx to distance

= [This result] (1+0)-approx to distance, for any
constant o

10

What I’'m supposed to do

First, the algorithm (for LIS)
Then, a proof of why it works

| won’t do that

11

‘ A kind of brain dump

bt
o,

e

= Why is this problem hard?

= How did we arrive at this algorithm?
o If there’s time, you might even see it

12

Prelims: the array in space

4 | 20

10

15

20

15

10

4

13

Prelims: the array in space

Violation

Increasing sequence

Input is points in plane, given as array
(LIS is longest chain in partial order)

14

‘ The use of randomness

Qg): “
:“'@2 :

e @@0 @0

= Find fraction of green

How many
green balls?

= Randomized - in constant time
o [Chernoff-Hoeffding] (log n)/a? samples for error o
= From now on, assume we can do this

15

Let’s look at the history

16

Coloring points

Characterize points as good (green) or bad (red)

17

Coloring points

Characterize points as good (green) or bad (red)
Good points are increasing seq.

Not too many bad points (compared to distance)
There is (log n) algo to tell if point is good/bad

18

‘ The violation counting trick

|
I
I
|
Probably S +
noton LIS , O
|
I
I
I
I
I

O< Many violations

A

19

The violation counting trick

Every point is violation
with P or Q

O

O

0

I
I
I
I
I
I
i
I
I
I
I
I
I
I
I

Every point in [P,Q] is violation with either P or Q

[Ergun Kannan Kumar Rubinfeld Viswanathan 99]

So at least half the points in [P,Q] are violation with
P or violation with Q

20

Small random sample

“The generic algorithm

21

“The generic algorithm

22

The generic algorithm

|
|
|
|
|
|
|
|
|
I O
|
|
|
|
|
|

I
I
I
I
I
I
P
I
I
I
I
I
I
I
I

Study samples in all “neighborhoods” of P
o Decide whether P is good or bad

Uses neighborhoods of size 2%, so (log n) time overall
Very nice, clean approach

23

A major obstruction
Kk X 2 K @
[

@
Kk o k 10 points in each
/|LIS|=4k ILIS| = 2k j

The decision of good/bad for a point depends on small
scale properties of “far away” portions

24

Random samples in neighborhoods of points are
identical!

“Can we really estimate LIS in polylog time?”
We need to rethink our approach

25

Back to the drawing board

@
7+

Closest LIS point to Iefti " o © ©

@ |

o | ©

e Ny i_____‘_ ________________________________
¢ | e e
(@) :)
@ @ | @ @

. .

® © o iSpIitter

Closest LIS point to left gives “splitter”

Find LIS is each blue region. Piece together!
o So we break up original problem into subproblems

27

| ® o
i o © ¢
° | o
o ¢ ® i ®
® . ® ®
I O =1 S
® ® ’\ ® °
(¥
® ® |
® ® i
n:/2

But we don’t know right splitter.
o So try all possible! Only n different choices

Choose the one that gives the largest sum of LIS’s
o Maxg (|[LIS-below-S| + |LIS-above-S|)

28

The dynamic program

n/2

If you LIS in all small boxes, you can build LIS for bigger
boxes

Not the most efficient DP...
So our sublinear algo has to mimic this process

29

The IP

:)Snttifé goint_> ° Ir_égi;snin blue
N , ______________________________________
\Splitter
n!/2

Where is the
splitter?

30

The IP

This point

NOT on LIS—> @ LIS is in blue

region

Where is the
splitter?

31

The IP

3n/4

C
Q
(@)
o
| -
'’
®
e
o

| wish we knew

£
| -
O
=
o
(7]
o
e
e

The IP

e e

A ___

5n/8 3n/4

n/2

—_t—-——————————— e e

| think | know
what will happen

next

33

The IP

$+—————— - —————

A ___

5n/8 3n/4

n/2

—_t—-——————————— e e

| think | know
what will happen

next

34

The IP

5n/8 3n/4

n/2

| think | know
what will happen

next

35

The interactive protocol

-t

If point stays in blue region till very end, then it is
good (on LIS). Otherwise, bad.

This takes (log n) steps, with the help of the wizard

36

The interactive protocol

| 3) ——

B S — THE = [““““““““““

INTERACTIVE
PROTOCOL TO
If point stays in bl LIS nd, then it is
g09d (on LIS). é)i
This takes (log\—/

- of the wizard

37

The interactive protocol

-t

:

If point stays in blue region till very end, then it is
good (on LIS). Otherwise, bad.

This takes (log n) steps, with the help of the wizard
If we could simulate the wizard...

38

]

The interactive protoco

m | |
| |
] 2
lllllll e	
o O 5 —.	
¢ 3 g2	
] o N	
IIIIIIIIIII -t __}	
o 5 3 O	
@ S v =	
L	
o == 32	
lllllll S R e N mm c	
_ _ _ - —	
. W 5 >	
I C EOQ	
o =	
o	
R
T

‘ An approximate splitter

) ®
| o ©
) | ©
® \ ® © ~
_____ _.__________________________‘ :______________________________________
¢ e e
(@) :)
® O ® | ® ®
Q)
@ ® :
O ® |
n/2

40

No. of LIS points lost < un (violations with splitter)

41

‘ An approximate splitter

S S S e
® @ O |
| Q)
@ @ |
° e
n/4 n/2

42

An approximate splitter

No. of LIS pts < p(n/2) |
T N O R
® ® O |
| @
B D @ T T
o ° o i
n/4 n/2

In interval of size k, we lose pk LIS points

Total loss = pnlog n
o Set u=1/(100 log n), then total loss is n/100 (1% of points)

43

The interactive protocol

Is this point

onlLlIs? ——>© LIS is in blue

region

n/2

Here is an
approximate
splitter

Where is the
splitter?

The interactive protocol

Is this point

onlLlIs? ——>© LIS is in blue

region

\Approximate splitter

But even to find
approximate splitters,
you need the LIS!

Where is the
splitter?

Be conservative!

Total no. of points outside
blue< un

Conservative splitter is definitely
approximate splitter

How to check whether point gives
conservative splitter?

Be conservative!

i

n/2
Count fraction of sample outside blue

Because u = 1/(100 log n), poly(log n) samples
checks this accurately

With this, we can run interactive protocol

47

— .___G _______________________________ :_ ______________________________________
N _@___:_ ______________________________________
-4 __ _@___________________i_ ______________________________________
-4 _ @_ ________________________ II_ ______________________________________
I S
-4 __ _G ____________ }_ ______________________________________
n:/2
= We can sample (log n) different candidates and check all of

them

= What if no conservative splitter exists?

48

No splitters

n:/2
Every point is violation with at least n/100 points
o No conservative splitter

49

A liberal paradise

No. of points outside i Choose any line
at least yn i

So we know that |LIS| < (1-y) n

Leads to the next idea. Boosting approximations!

50

Can we beat the n/2-approx??

We have an n/2-approx for |LIS]

Can we get anything better than that?

Maybe we can somehow convert a dn-approx to
ol ln-approx (6 > 6[1)

o Call this a 0-approx algorithm

51

Boosting approximations

No. of points outside i
at least un i

52

Boosting approximations

i Run ¢-approx
No. of points outside i on points in box
at least un |
| Ny
Run 6-approx i
on points in box | ,
: Real splitter
n, |
n/2
Take sum of outputs as total LIS estimate
ILIS| = |LIS,| + |LIS,|, Est = Est, + Est,

[Est, — LIS,| < dn, |Est,—LIS,| <dn, y
So |Est — LIS| < §(n, + n,) .
n,+n, < (1-p)n, so |Est — LIS| < 3(1-u)n ! /

53

Putting it together

Conservative splitter?

|
|
|
S I O___i_/___ _______________________________
|
|
I N
|
e S
|
N o S— T
B P
e S YN i_ ______________________________________
|
|
|
|

n/2
Check if each is conservative splitter
o Ifitis, we're all setto run IP

Otherwise...

54

Putting it together

|
|
|
S mmmmm oo @
|
|
|

Run ¢-approx
-4----—-——— b —— B TR _ _ _
| on points in box

N o SL
N o S l:_ ______________________________________
N @____:L ______________________________________
-4 _ _6 _______________________ e —

Run é-approx i

on points in box |

n/2

One of these is “close enough” to real splitter
Est(S) = Left-Est(S) + Right-Est(S)

55

Putting it together

e __ i _________ @ T
| Run §-approx
-4----—-——— b —— B TR _ _ _
| on points in box
S _@___________________:_ ______________________________________
Jo oS
R @____:L ______________________________________
-4 _ _6 _______________________ e —
Run é-approx i
on points in box |
n/2

One of these is “close enough” to real splitter
Est(S) = Left-Est(S) + Right-Est(S)
Final Estimate = maxg Est(S)

Looks like a great idea!
o Wego from o to 6(1- p). Recurse to keep improving approximation

56

It tails, miserably

N

1/u

Alg

Alg

Alg

N

Alg

Alg

Alg

Og =

61(1-p)

/\

Alg

Alg

Alg

N

Alg

Iz

As we go up each level, approx gets better by (1-p).

So to get 0, = 74, how many levels needed?
So t=1/p

We have running time at least 2"V,
So, U needs to be > 1/log log n.

Q

Va

= %% (1-4)

57

‘ An approximate splitter

| | Remember?

No. of LIS pts < u(n/2) |

e S S e
® @ O |
| @

T ® @ T TTTTTTTTTTTTTI T T T s
0 o i

n/4 n/2

= No. of LIS points lost < un (violations with splitter)
= Ininterval of size k, we lose pk LIS points

= Totalloss = unlogn
o Set u=1/(100 log n), then total loss is /100 (1% of points)

58

The basic dichotomy

Continue IP

A\ 4
T e

We find split} Qt find splitter

I
I
. | . ————————————— (@ USSR

I
— — — — — — — — _I_ ________
|
|
|
|
1

The “Interactive Protocol”

The “Dynamic Programming”
phase

phase
For IP, we need u < 1/log n
o Mnis error in each “level” of IP

For DP, we need u > 1/log log n

o (1-y) is decrease in error .

A weaker splitter

n:/2
Every point is violation with at least n/100 points
o No conservative splitter

But surely, splitters are easy to find
o We're being too conservative

60

The basic dichotomy

T e

Strengthen

The “Interactive Protocol”
phase

The “Dynamic Programming”
phase

For IP, we need u < 1/log n
o Mnis error in each “level” of IP

For boosting, we need p > 1/log log n

o (1-y) is decrease in error .

Have a look again...

B I Rund-approx |
| on points in box
R :L ___________________________________
| Runsapprox -
on points in box |

s/2

If no splitter, then only (1-u)s points in any division

We take max of all possible sums
o We get 6(1-u)-approx

62

A small generalization

I ji _________________________ 1: _____________________
s/3 2s/3

Suppose every “3-way” division has at most (1-ju)s points

63

A small generalization

Run o-approx
on points in box

Run ¢-approx

on points in box

Suppose every “3-way” division has at most (1-ju)s points
Do this for all 3-way splits (only poly(log n) many)

Take max over all sums — we get o(1-p)-approx

64

A big generalization

N N N N
R N N
R N N
0 T T O
T Y T O
T Y T O
N N N N
e
B
I T R T N R
e Y T Y
e Y T Y
I Y O
I Y T O
I Y T O
-+ A= — - — b ——
T R R T Y
T R R T Y
I T T O
R T N O
R T N O
S T [T N
T R R T Y
—+ A== — = — b — - —
I e O
R e N R
R e N R
S T Y O Y O
I A e O
I A e O
I e O
-+—4—F—F—F—F—F—F—-
R N T
S T N O O
I R Y T O
I R Y T O
I R T R
R N T
R N T
—+—4—tF—F—F—F—F—F—-
I A Y O O
I A Y O O
N N N R B
R N N
N N
A R B I
+ — = -——
| | | |
| | |
| | |
| | |
|| | |
|| | |

N
7

<€

~J

s/(log? n) 1

Chain

s/(log n)

Suppose every “chain” has at most (1-u)s points

65

A big generalization

------ S U O O
—————— [R S DR
_No.ofpointsoutside | 1 1
at least ys | 1 i |
______ R
______ Ll s
______ T______T_______T____S\Q;:______T_______
______ T______T______&_‘%i_ N~ T~
sllogzn){|] A R |Run 3-approx _____
| } | 1in each box
—————— o ————
| | | | |
<€ >
s/(log n)

Suppose every “chain” has at most (1-u)s points
Find chain with largest sum of estimates
We get o(1-p)-approx

But there are more than poly(n) chains!
o (Not a problem. Why?)

66

It’s...a DP!

| | | | | |
—————— et s st S et ot
—————— T A N e S
______ I 2 D s
______ T______T_______T_______T_______'I_____—__':________'
| | | | |
______ T . e
______ T e 0
______ T______T_______T_______T_______'I_____—__':________'
| | | |
/ | >N T~ T _&_‘%i_'r _______ T ——"—77 "7
sliog?n)J| o [T~ !Run 5-approx L
| | | | | |
| | | | | |
—————— et s st T e ittt
| | | | | |
<€ >
s/(log n)

Run o-approx on all poly(log n) such boxes

Use Dynamic Program to find chain with largest sum of
estimates

o Longest path in DAG

o Can solve in poly(log n) time

67

A big generalization

s/(log? n) 1

A-
A\ 4

s/(log n)

Suppose every “chain” has at most (1-u)s points
In poly(log n) time, with poly(log n) calls to 0-approx,
we get o(1-p)-approx

68

The basic dichotomy

T e

Strengthen

The “Interactive Protocol”
phase

The “Dynamic Programming”
phase

For IP, we need u < 1/log n
o Mnis error in each “level” of IP

For boosting, we need p > 1/log log n

o (1-y) is decrease in error .

The new and improved...

KN outside blue

n/2

We set U to be constant (say u = 1/50)

70

The new and improved...

I |
| Size s I
< >
I |
I |
I |
N e S T
I |
I us outside blue I
| |
n/2 |

We set U to be constant (say u = 1/50)

But we now ask for < p-fraction of violations in every
interval

o As long as interval size s > n/(100log n)
This is “improved splitter”

71

| | | | | |
————T————T————————— r————————- r————-
————f————ft———— = ———— F————g————— e
- ———t————t————————— fp————g———— f————-
. __]
| | | | | |
I T EPS R b [
| | | | | |
————f————f———— = ———— fF————————— f————-
. _ A __
| | | | | |
I S S Fp—— e — ————
| | | | | | i s/(log? n)
|l ____ L __ L
| | | | | |
A __
| | | | | |

We are unable to find improved splitter in this box
Build grid in the box

Lemma: Since we cannot find splitter, no chain has more
than (1-y)s points
o We can find 6(1-p)-approx for LIS in box

72

The algorithm, in one slide

Continue IP

> ®

P
We find splitter Wt find splitter
| oA -d-—d==E= =k
®e | o F5=3=355==F=F-]
| =S === - —f—
——————— F—————— AN N U DR N N A
| - - - —
| L ——

Make poly(log n) calls to
We get o(1-u)-approx §-approx. Solve DP of

Overall running time becomes (log n)' Poly(log n) size.
o *&M$% miracle that the math works out

73

The even better version

— A —d—d——l=—====—
F3=3F=3=S==F=F=
I D R D [NN B
- == A== —]
AN (O R D PR IR N
- —]] |- — - —]
[————— —{

Don’t exactly solve this dynamic program!

Use our sublinear algo to approximately solve Iin
(loglog n) time. Then do it recursively...
2 | know, my head is spinning too

Greek list aByoelApncpOtvy
2 We had v, but got rid of it

74

What next?

We get 2'° (log n)¢ time. Can we get
(log n)/6 time?
o Would be extremely cool. Completely optimal

There’s a lot going on here. We don’t completely get

1.

Applications for other dynamic programs?
o Longest common subsequence

o Approximating edit distance
a ..

75

Questions?

Surely, the talk was not that clear.
Or that confusing...

76

Why does this help?

n/ 1000 Iog n)

0.01n

\I\Too many ‘

outside blue

U = 1/50, so the small set of violations doesn’t hurt
Point “too far” from real splitter not allowed

77

Why does this help?

n/ 1000 Iog n)

™~

Few points
outside blue

|
|
|
|
|
|
|
|
I
-_- r———
|
|
|
|
|
|
|
|
|
|

I I
I I
I I
I I
I
e e

I I
I I
I

I I
I I

nI2
U = 1/50, so the small set of violations doesn’t hurt
Point “too far” from real splitter not allowed

At least n/(100log n) points are improved splitters
o So we can find one by sampling

78

At long last, the algorithm

U

n/2

Is P good or bad?
Find improved splitter

79

@%TU

Is P good or bad?
Find improved splitter
So P is bad. We're done

80

At long last, the algorithm

i o | ®
| o ® °
® | | P
————————————————— @ Tttt @b s
| . |
° ° |
* | o | o
S ®____________ . i B
® o I o o
° |
°® ® | |
® ® i |
n/2 3n/4

Is P good or bad?
Find improved splitter
Continue with the IP

o Find next improved splitter, etc, etc,

81

At long last, the algorithm

| o | ®
: o ® °
® | | P
————————————————— @ Tt @bt
| . |
° ° |
* | o | o
S ®____________ I - ——————— e
® o I o o
° |
°® ® | |
® ® i |
n/2 3n/4

Is P good or bad?
Find improved splitter
Continue with the IP

o Find next improved splitter, etc, etc,

82

What if...?

T e

We are unable to find splitter in this box

83

A lib

Remember?

Choose any line

It's going to get
more complicated.

—

/

w n/2

So we know that |LIS| < (1-U) n

Leads to the next idea. Boosting approximations!

84

Grld buﬂdlﬂg s/(100 log n)

| | | | | |
L D D L I A |
e i e A r————"=—"———— |
————t————t————————- e F————
|l
Chainofgrid | ___4_ 4 4 ___ R N b
poxes IR SN N (S N N
\Y+—___:______:_____:______:_____:_ _____
- e — —— I ——

| . | | | | | s/(10010g2 n)

! _) | .

I I I I I I
)l

I I ! I I I

We are unable to find splitter in this box
Build grid in the box

85

The recursive calls s/(100 log n)

| | | | | |
L D L I |
e e r—— = |
-———t-————t—-—————-———- t————-———- F————"
Y IS IO RO AU S I
I I I I I I
- | - _
I I I I I I
i D r—— == |
bl
I I I I I I
] ———— = e — b ——— -
! ! I ! I ! $ s/(100 log? n)
Y Y r - 1 | .
I I I I I I
Ll _.
I I I I I I
1

For grid box B, length(B) = o-approx LIS estimate in B
Only poly(log n) calls to o-approx algorithm

86

Grld buﬂdlﬂg s/(100 log n)

| | | | | |
L D D L I | I
e i e A r—— = | I
-———t-————t—————-———- t———————— F————"
I ISR SO R EOOOR S I
I I I I I I
- | L — — — | . _
I I I I I I
i e e) i R |
)Ll ___.
I I I I I I
] — = b — — — b ——— -
I ! ! ! ! ! $ s/(100 log? n)
- _) | .
I I I I I I
Ll __.
I I I I I I
1 1 1 1

Length of chain is just sum of length of boxes
o This is sort of estimate of LIS inside chain

The longest chain is our estimate of where is LIS of box
o Longest path in DAG of size (log n)¢: Solve by dynamic program

87

Grld buﬂdlﬂg s/(100 log n)

| | | | | |
-———t————7————q————= r————q-—-—-—- r————
- ———— g — ——— e ————-
et ——— fm———g———— F————
I R NN N O S R
I I | i | I
I SO T R I S e]
| | | | | |
- ———— g ———— fm————g———— f————
I I A R B NN S
| | | | | i
I R SO R S S ——]
| | | | | | $ s/(100 log? n
1. ® L_%;_J _____ Lo (g°n)
| | | | | |
I N v IO R AL S I
| | | | | i
1 1 1

The longest chain is our estimate of where is LIS of box
o Longest path in DAG of size (log n)¢: Solve by dynamic program

If P in longest chain: in box B, use é-approx to check if P
IS good.

88

