

Estimating the longest increasing sequence in polylogarithmic time

C. Seshadhri (Sandia National Labs, Livermore)
(work done in IBM Almaden)

Joint work with Michael Saks
(Rutgers University)

The problem

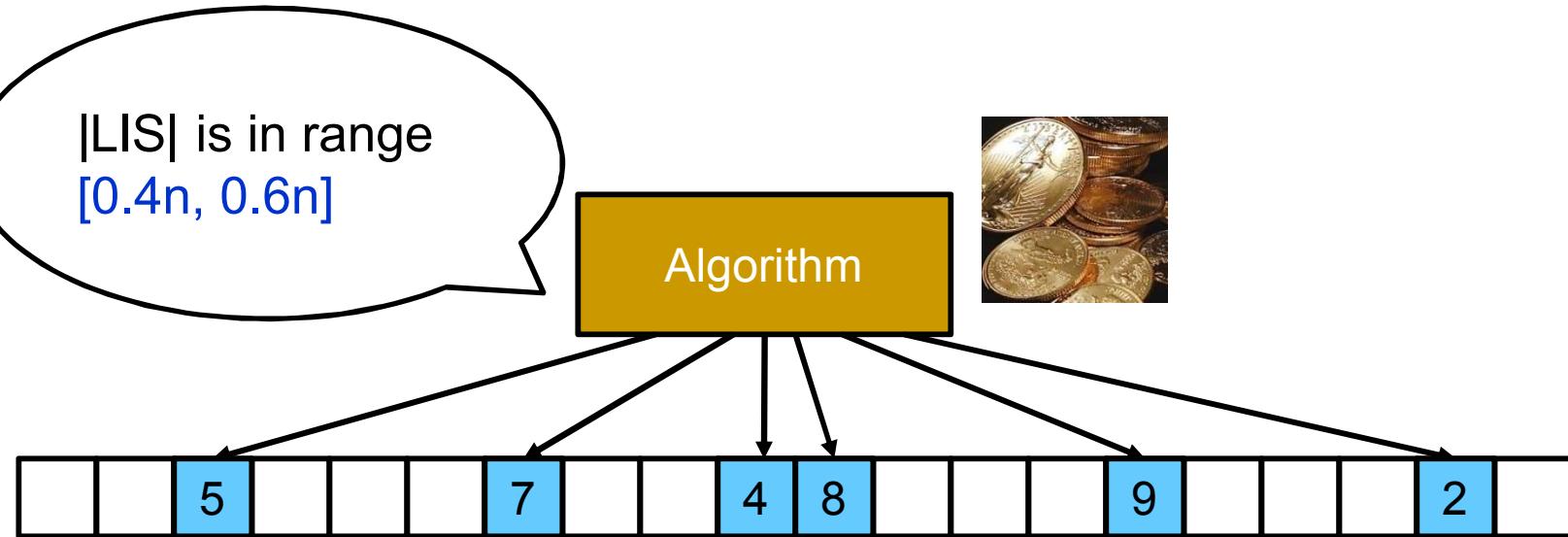
4	24	10	9	15	17	20	18	4	19	3
---	----	----	---	----	----	----	----	---	----	---

- Given array $f:[n] \rightarrow \mathbb{N}$, find (length of)
Longest Increasing Subsequence (LIS)
 - Rather self-explanatory
- By now, textbook dynamic programming problem
 - [CLRS 01] Chapter 15.4 (Longest Common Subsequence), Starred Problem 15.4-6
 - [Schensted, Fredman] $O(n \log n)$ algorithm

Almost 50 years...

- [Schensted 61] [Fredman 75] [Apostolica Guerra 87] [Atshul et al 90] [Ramanan 97] [Goldreich Goldwasser Ron 97] [Baik Deift Johansson 99] [Delcher et al 99] [Dodis et al 99] [Aldous Diaconis 99] [Ergun et al 99] [Bespamyatnuikh Segal 00] [Fischer 01] [Liben-Nowell Vee Zhu 03] [Zhang 03] [Ailon et al 03] [Parnas Ron Rubinfeld 03] [Gal Gopalan 07] [Gopalan et al 07] [Sun Woodruff 07] [Ergun Jowhari 08]
- LIS is simple version of Longest Common Subsequence
 - Can't list all references for LCS

Too much to read



- Array f is extremely large, so can't read all of it
 - What can we say about LIS length, if we see very little?
 - $|LIS| = \text{LIS length}$
 - Read only $\text{poly}(\log n)$ positions
 - For $n = \text{billion}$, $(\log n) = 21$
 - Obviously randomized

Too much to read

$|\text{LIS}|$ is in range
 $[0.4n, 0.6n]$

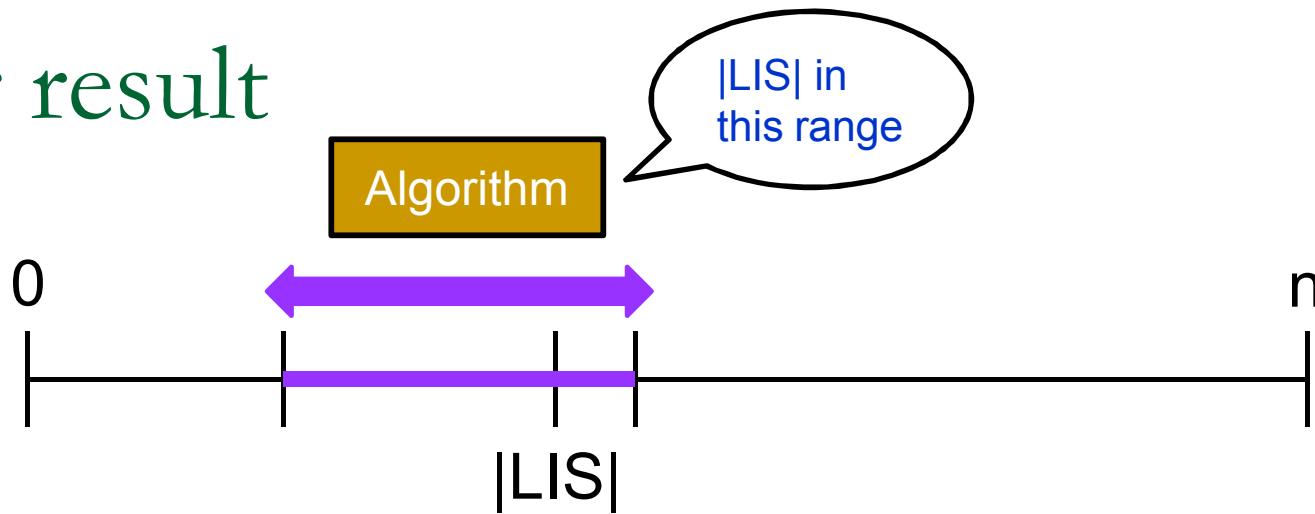
Mathematical question: How
to locate small portion of
array that tells about $|\text{LIS}|$?

- Array
 - What is $|\text{LIS}|$?
 - Read only $|\text{LIS}|$ elements
 - Obviously read all elements

Uniform sample says nothing

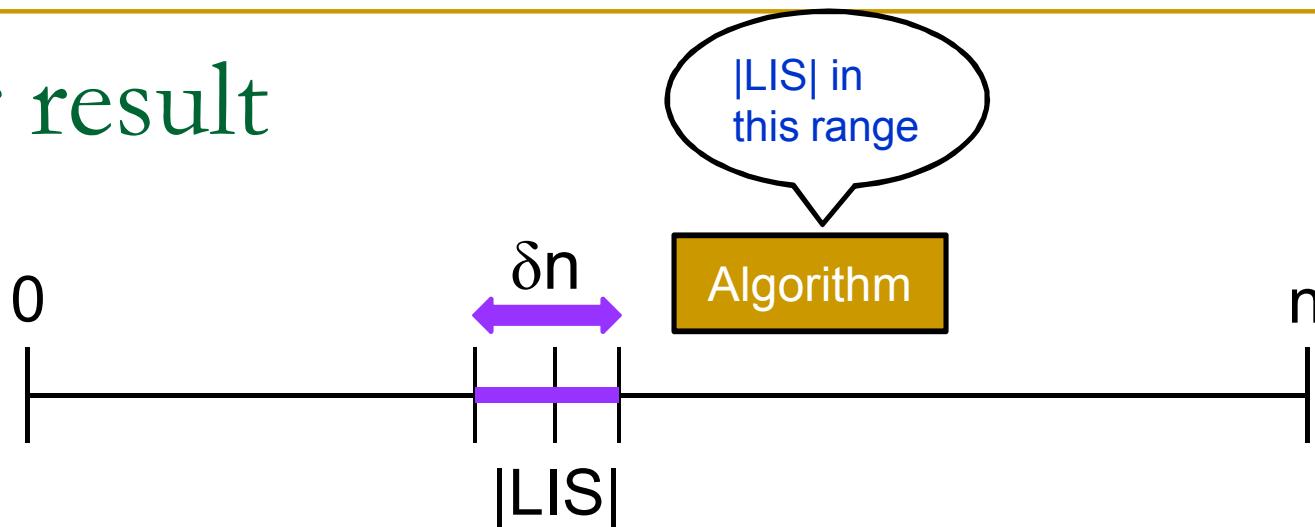
- Choose uniform random sample of $\text{poly}(\log n)$ size
- $|\text{LIS}| = n/2$, but random sample always increasing
- So not really that easy to learn about $|\text{LIS}|$...

Our result



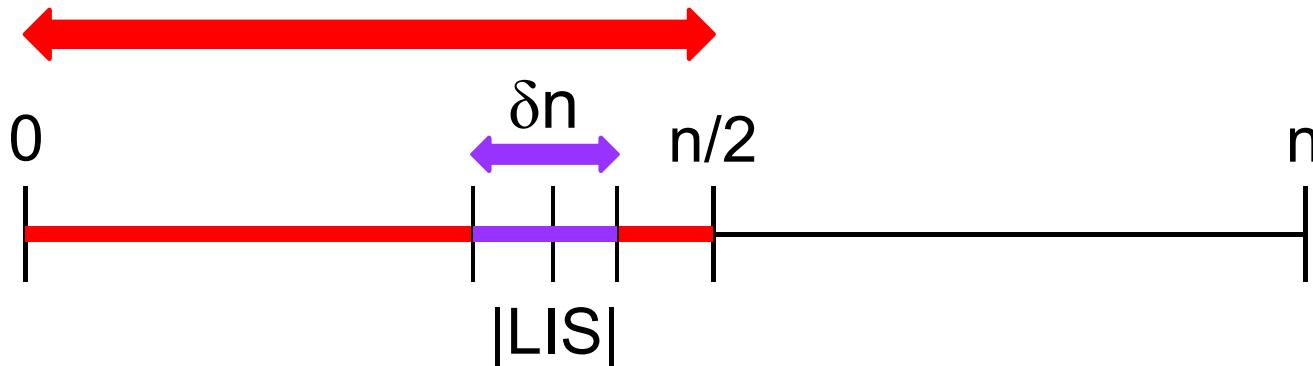
- We want range to be small

Our result



- We want range to be small
- [This work] For any (constant) $\delta > 0$
Algorithm gives additive δn approximation to $|LIS|$
Running time is $2^{1/\delta} (\log n)^c$

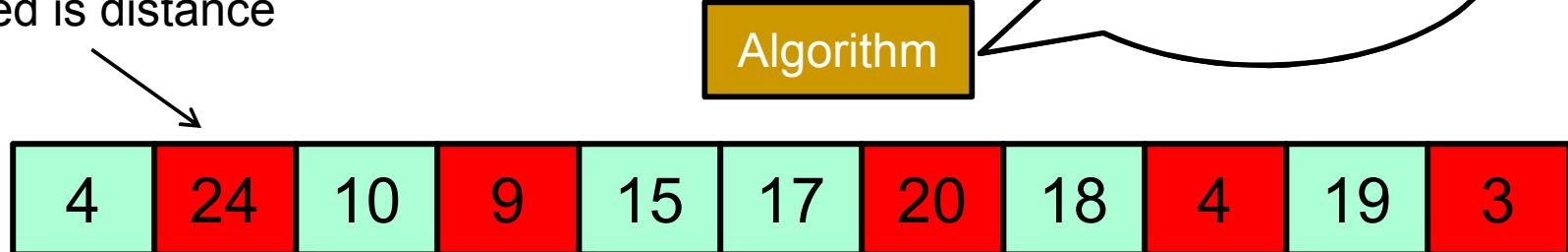
Our result



- We want range to be small
- [This work] For any (constant) $\delta > 0$
 - Algorithm gives additive δn approximation to $|\text{LIS}|$
 - Running time is $2^{1/\delta} (\log n)^c$
- [Ailon Chazelle Liu S 03] [Parnas Ron Rubinfeld 03]
 - Previous best: $\delta = \frac{1}{2}$

Estimating the distance

Red is distance

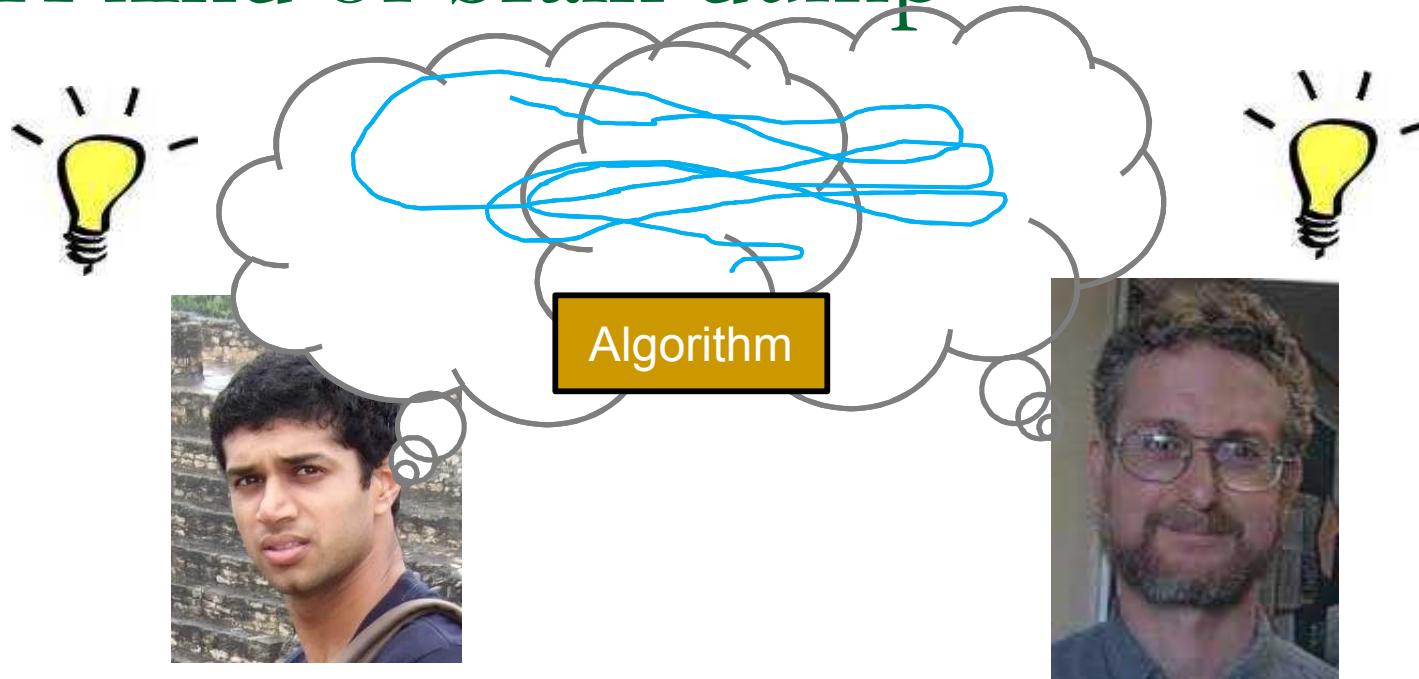


- Distance = $(n - |\text{LIS}|)/n$
- Plethora of algorithms: approximate distance
- [ACLS, PRR] 2-multiplicative approx to distance
- [This result] $(1+\delta)$ -approx to distance, for any constant δ

What I'm supposed to do

- First, the algorithm (for LIS)
- Then, a proof of why it works
- I won't do that

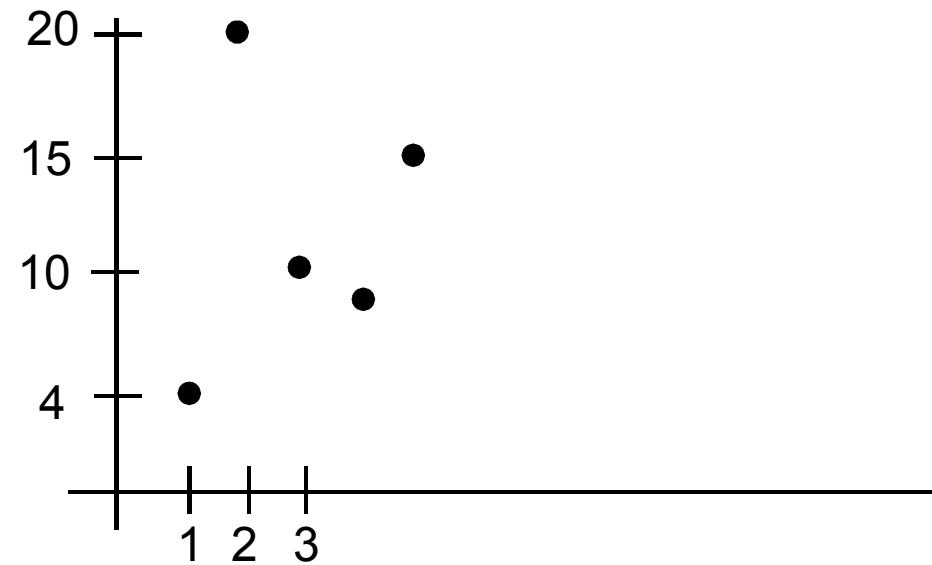
A kind of brain dump



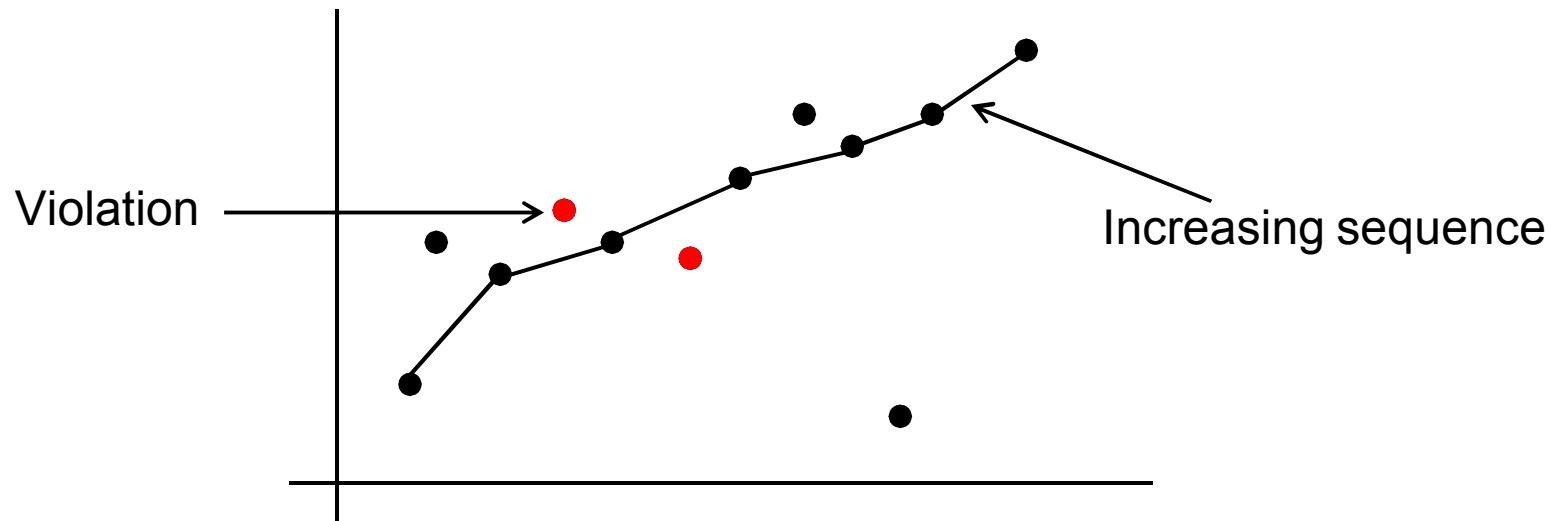
- Why is this problem hard?
- How did we arrive at this algorithm?
 - If there's time, you might even see it

Prelims: the array in space

4	20	10	9	15
---	----	----	---	----



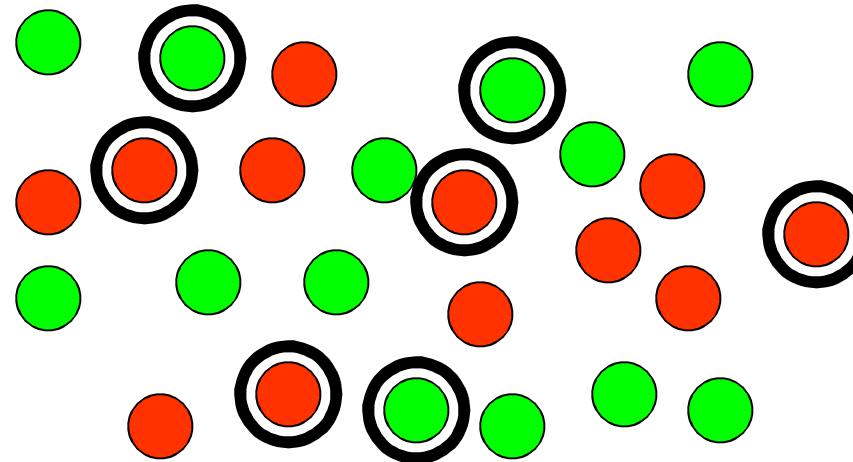
Prelims: the array in space



- Input is points in plane, given as array
- (LIS is longest chain in partial order)

The use of randomness

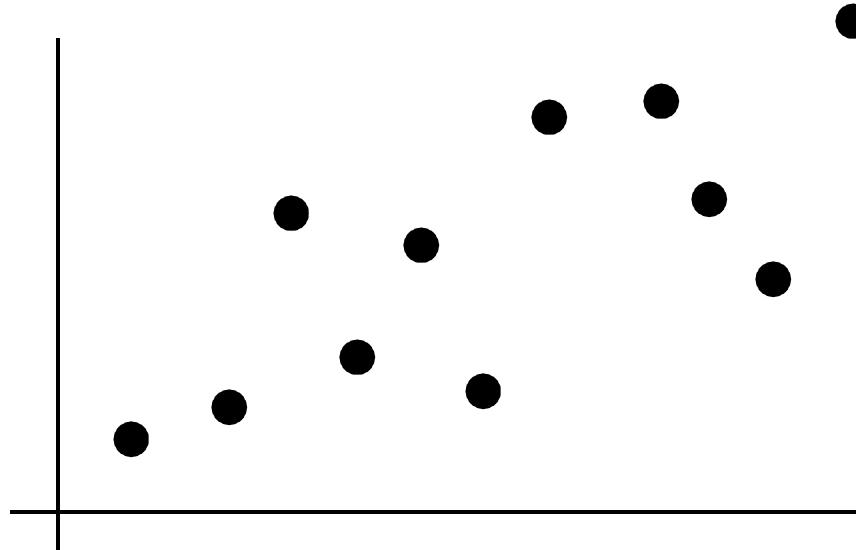
How many green balls?



- Find fraction of green
- Randomized - in **constant** time
 - [Chernoff-Hoeffding] $(\log n)/\alpha^2$ samples for error α
- From now on, assume we can do this

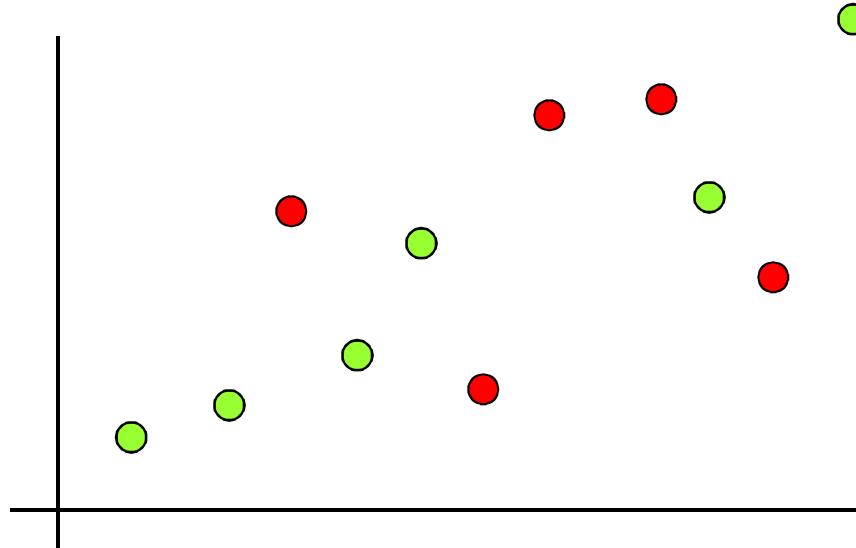
Let's look at the history

Coloring points



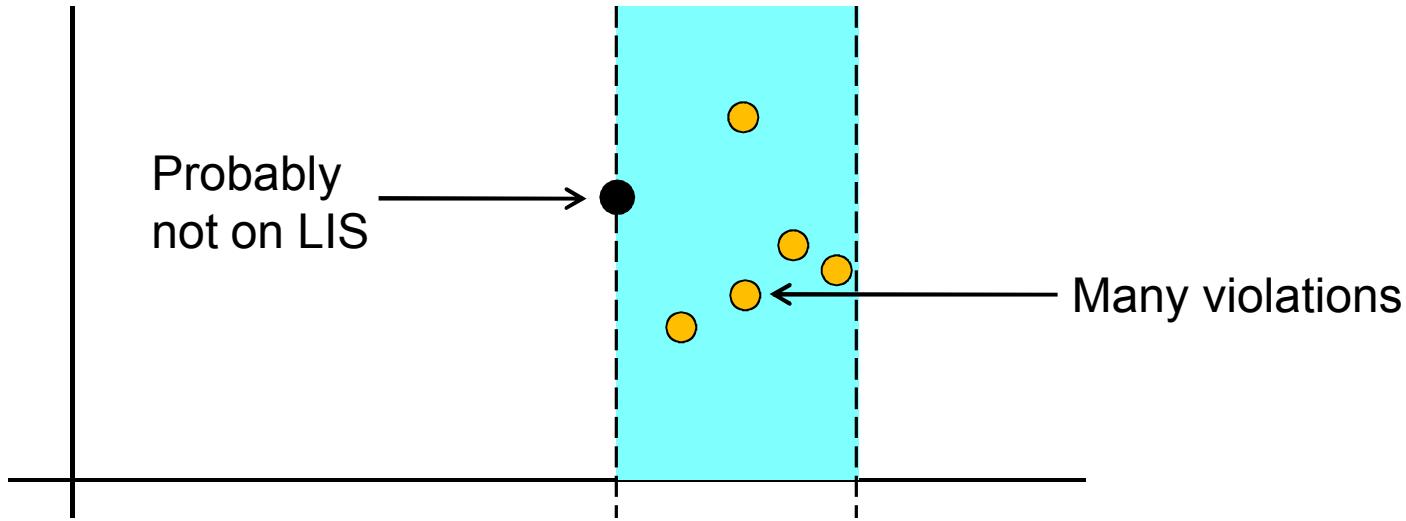
- Characterize points as good (green) or bad (red)

Coloring points

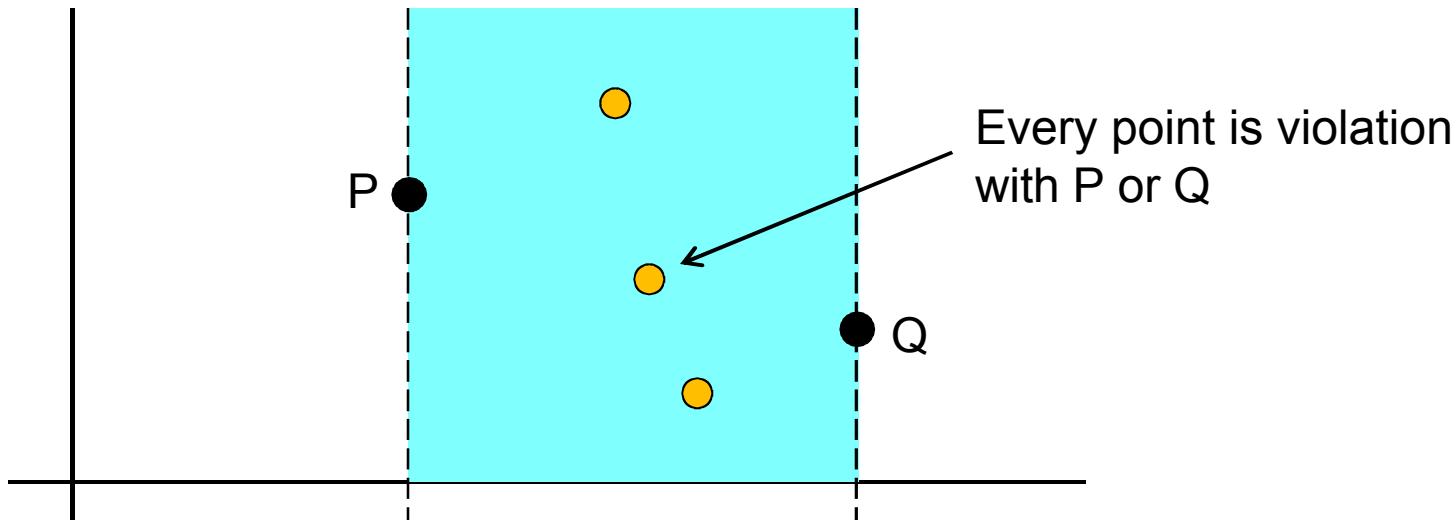


- Characterize points as good (green) or bad (red)
- Good points are increasing seq.
- Not too many bad points (compared to distance)
- There is $(\log n)$ algo to tell if point is good/bad

The violation counting trick

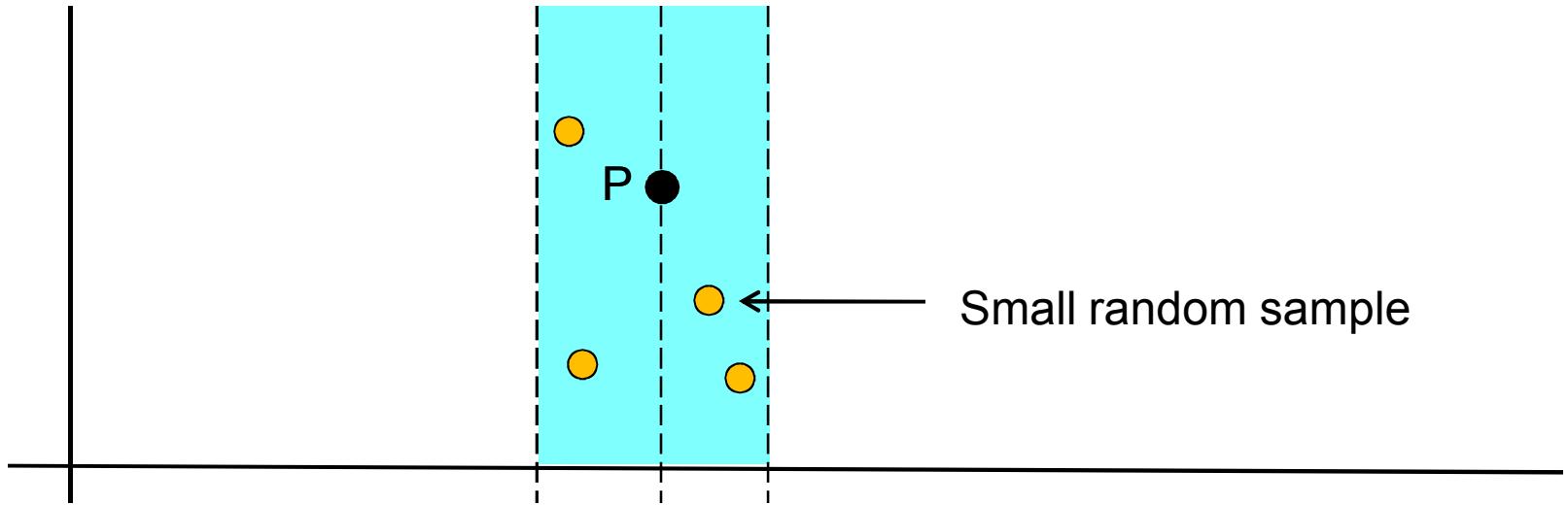


The violation counting trick

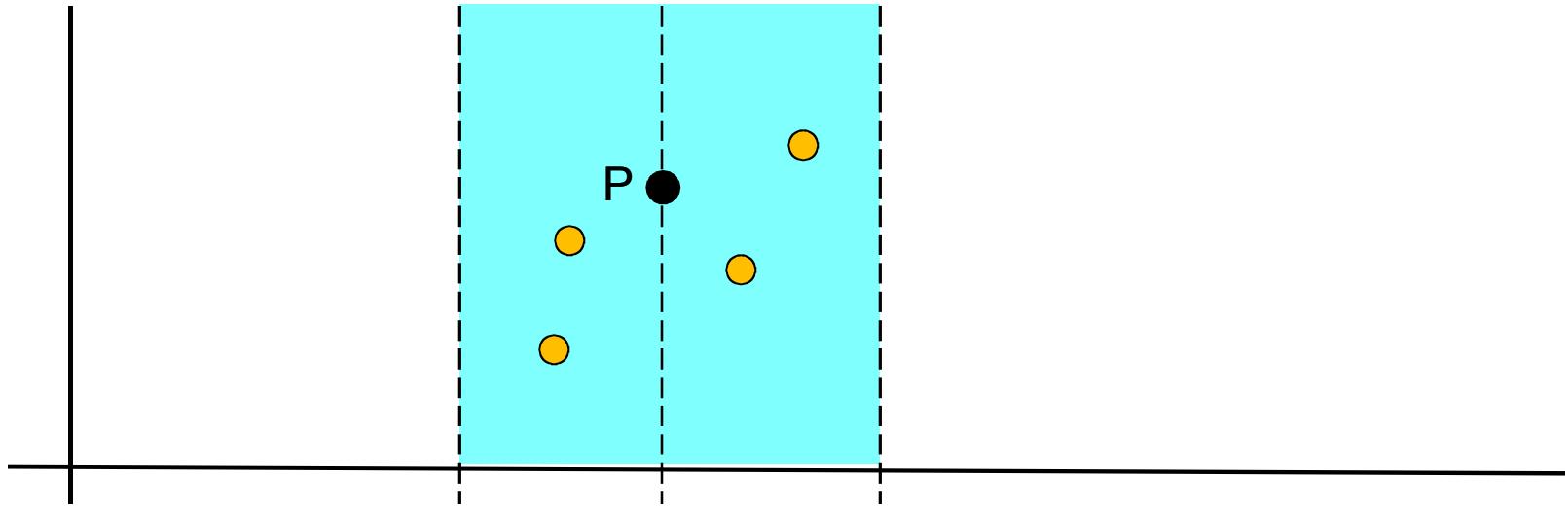


- Every point in $[P, Q]$ is violation with either P or Q
- [Ergun Kannan Kumar Rubinfeld Viswanathan 99]
So at least half the points in $[P, Q]$ are violation with P or violation with Q

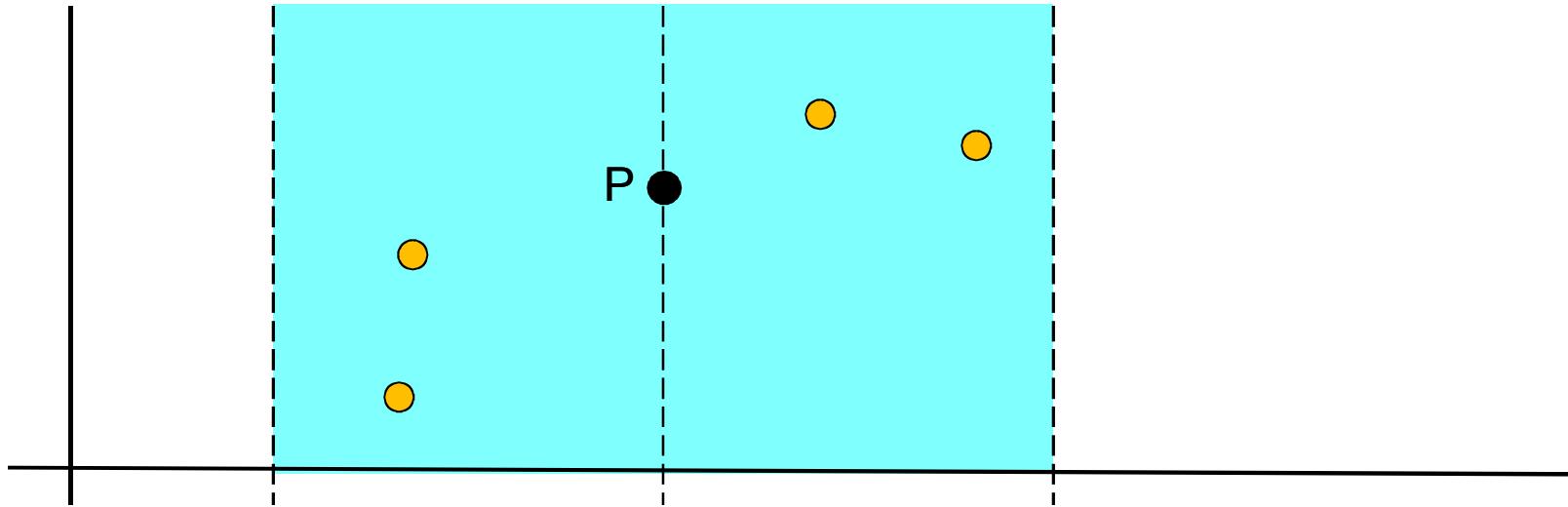
The generic algorithm



The generic algorithm

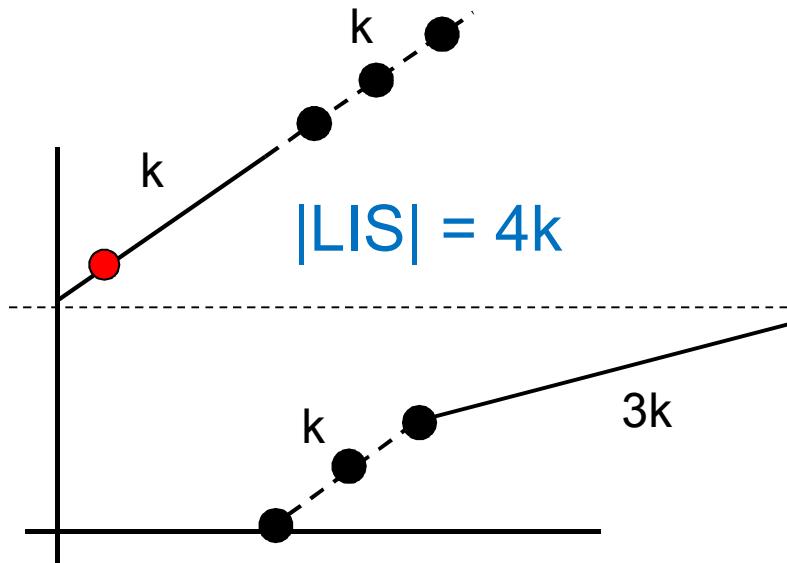
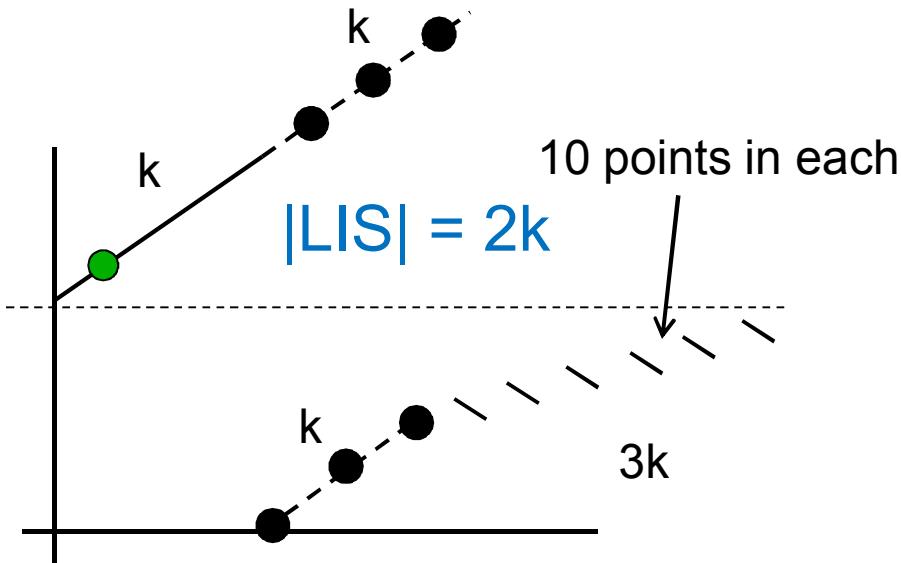


The generic algorithm



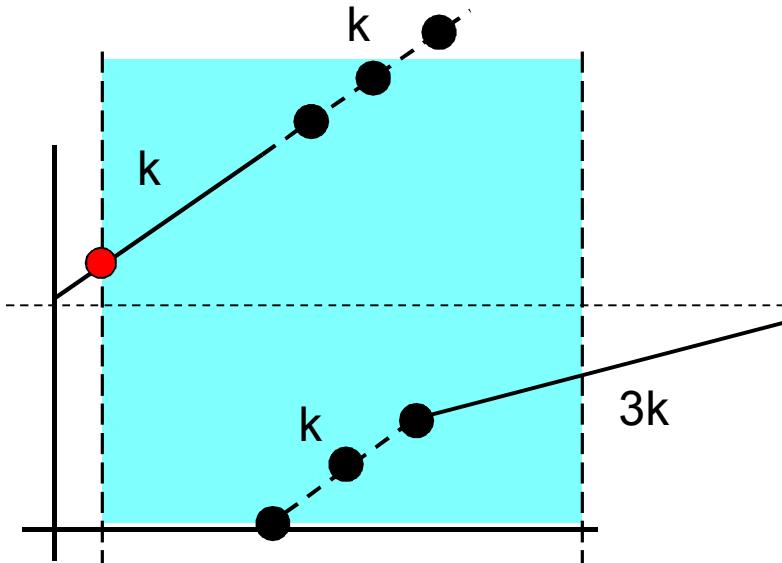
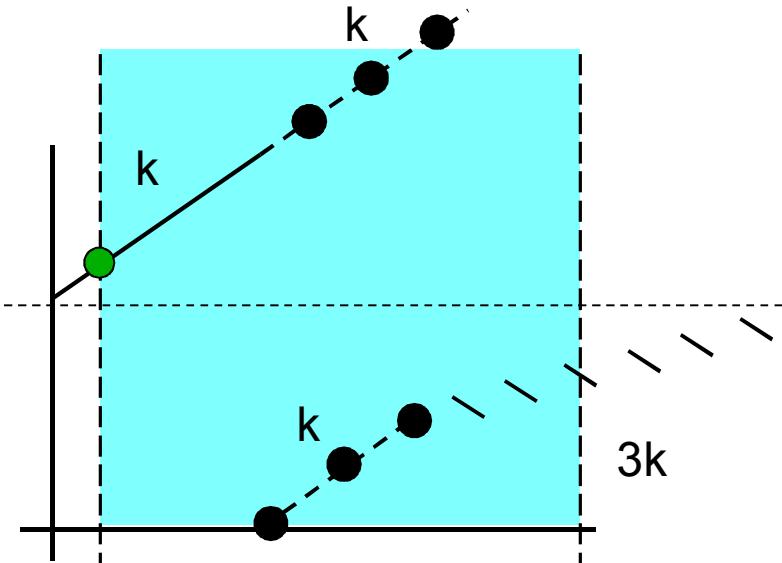
- Study samples in all “neighborhoods” of P
 - Decide whether P is good or bad
- Uses neighborhoods of size 2^k , so $(\log n)$ time overall
- Very nice, clean approach

A major obstruction



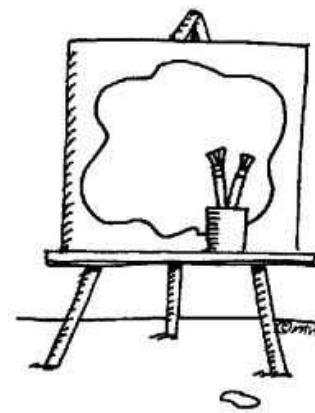
- The decision of good/bad for a point depends on small scale properties of “far away” portions

A major obstruction

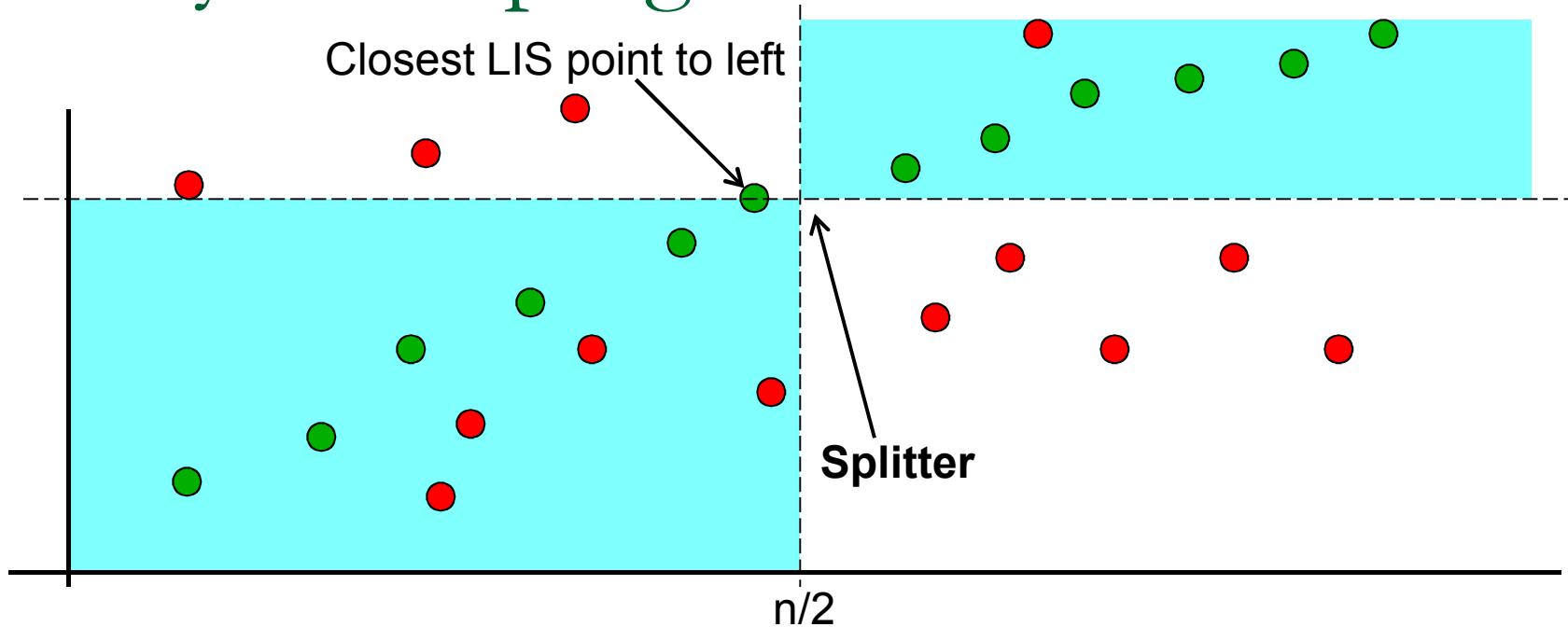


- Random samples in neighborhoods of points are identical!
- “Can we really estimate LIS in polylog time?”
- We need to rethink our approach

Back to the drawing board

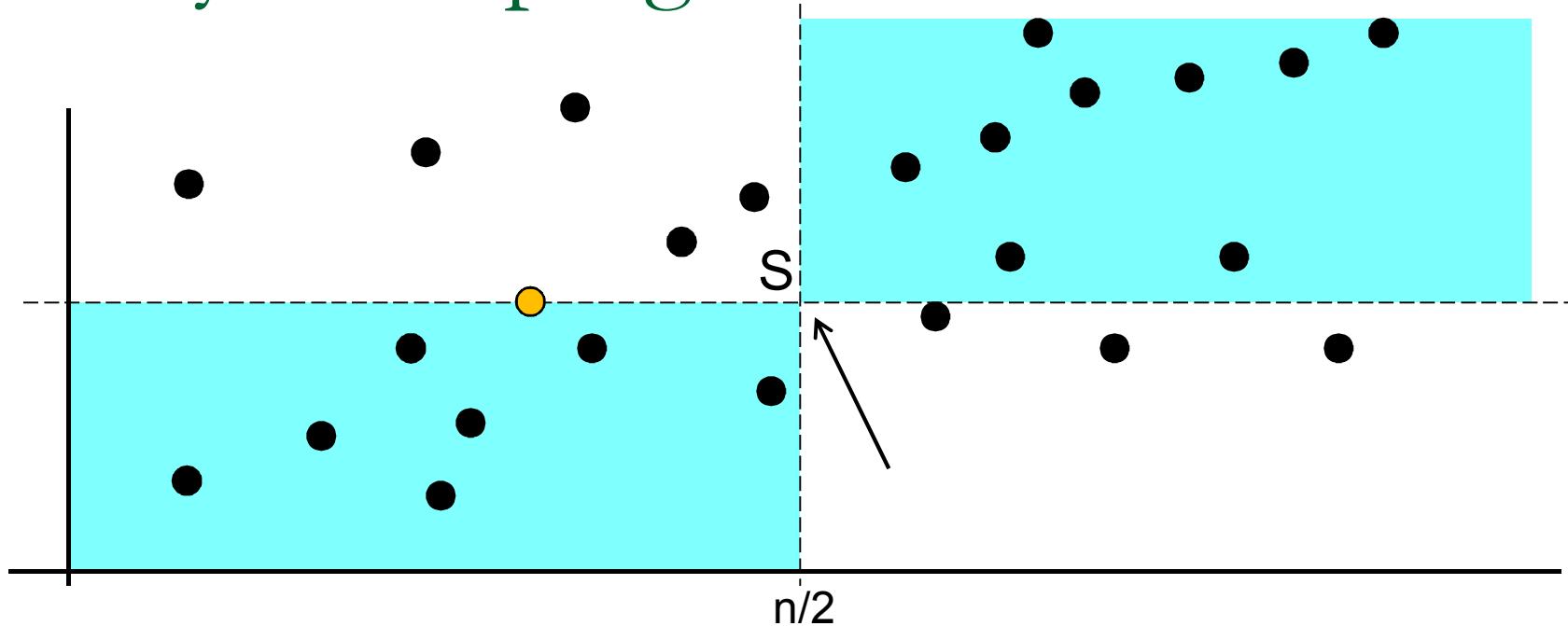


The dynamic program



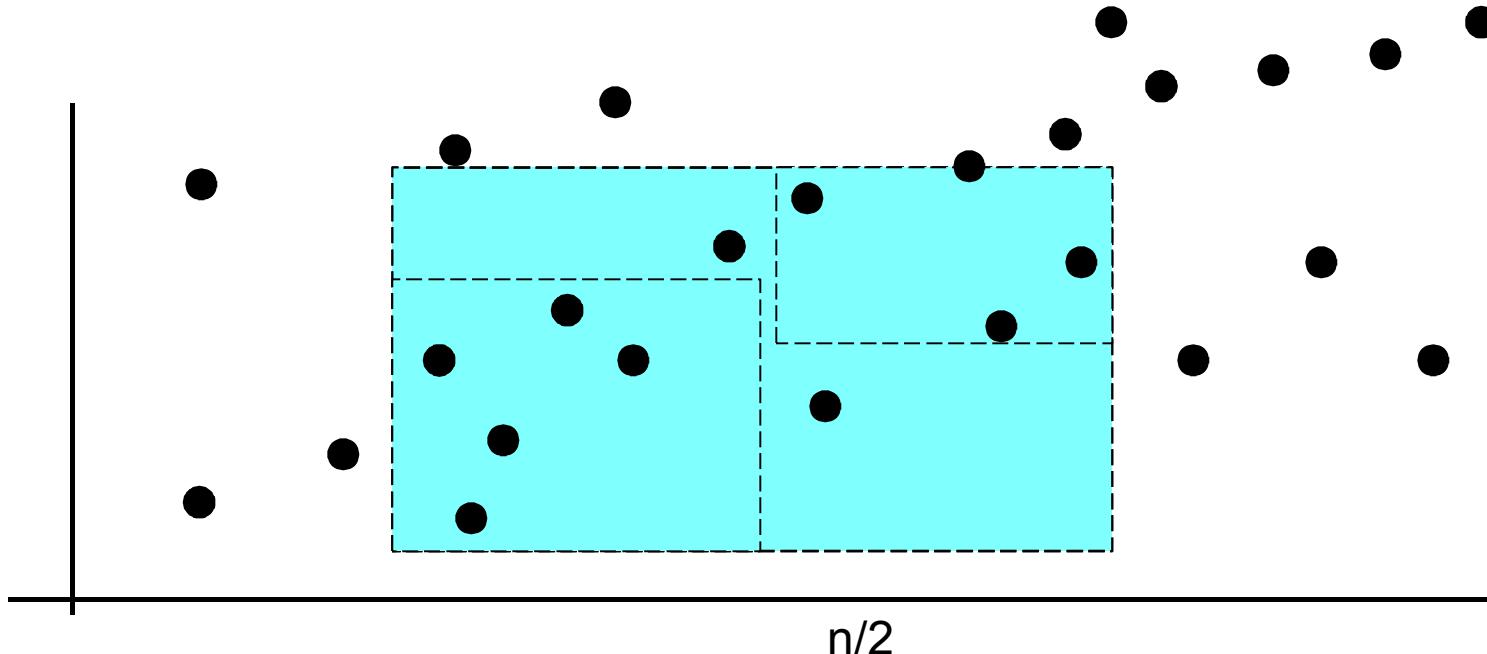
- Closest LIS point to left gives “splitter”
- Find LIS in each blue region. Piece together!
 - So we break up original problem into subproblems

The dynamic program



- But we don't know right splitter.
 - So try all possible! Only n different choices
- Choose the one that gives the largest sum of LIS's
 - $\text{Max}_S (|\text{LIS-below-S}| + |\text{LIS-above-S}|)$

The dynamic program



- If you LIS in all small boxes, you can build LIS for bigger boxes
- Not the most efficient DP...
- So our sublinear algo has to mimic this process

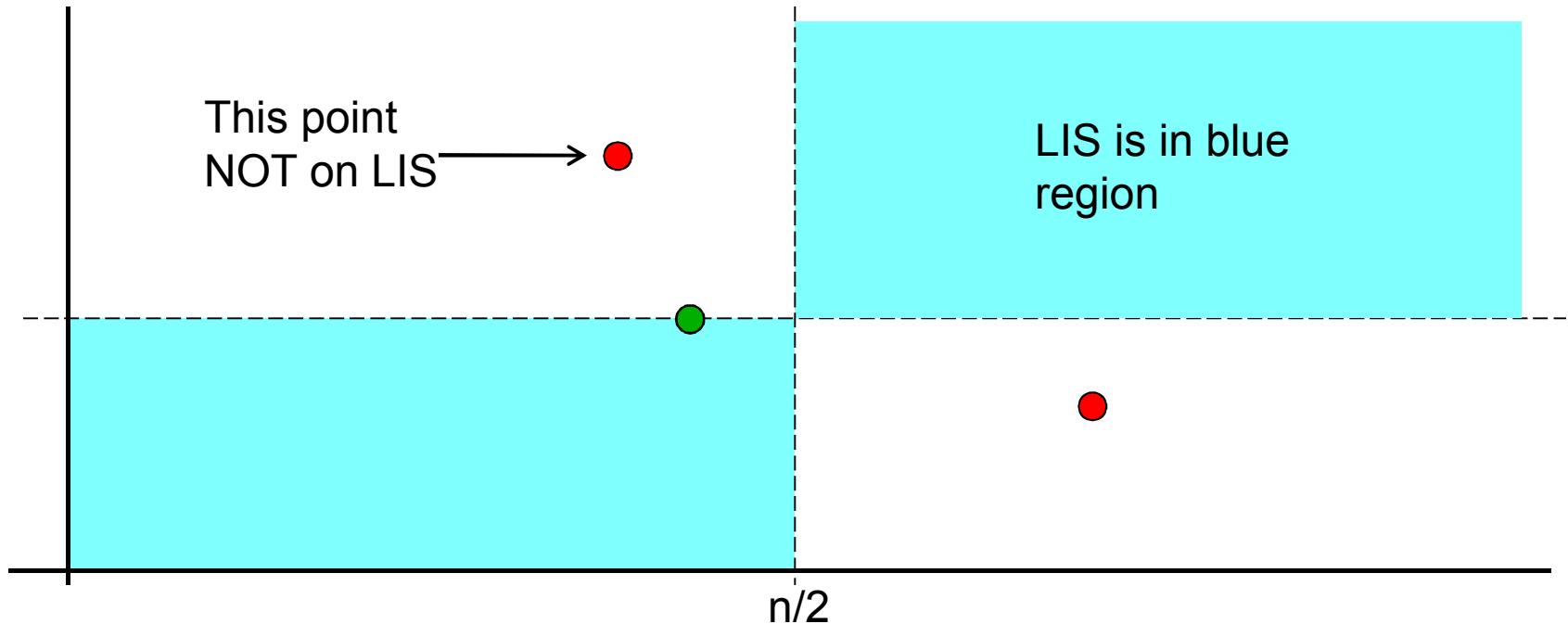
The IP



Where is the splitter?

It is there.

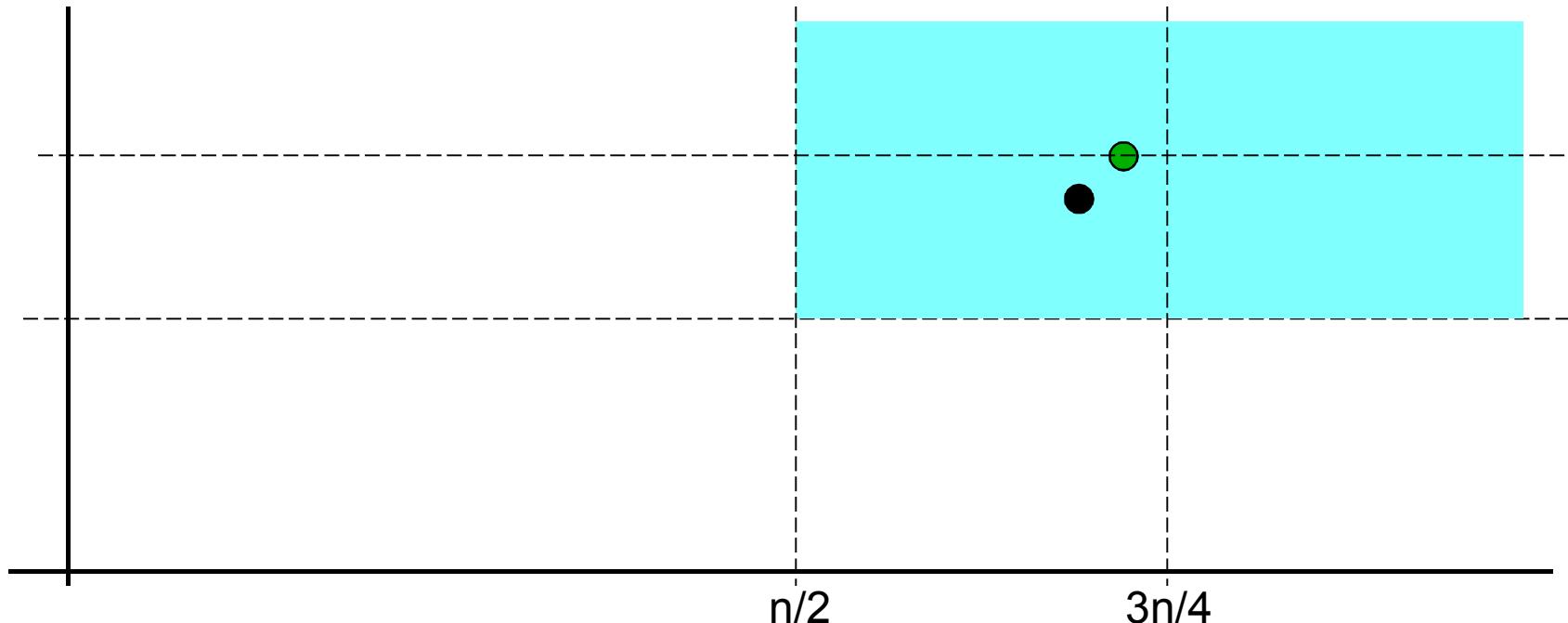
The IP



Where is the
splitter?

It is there.

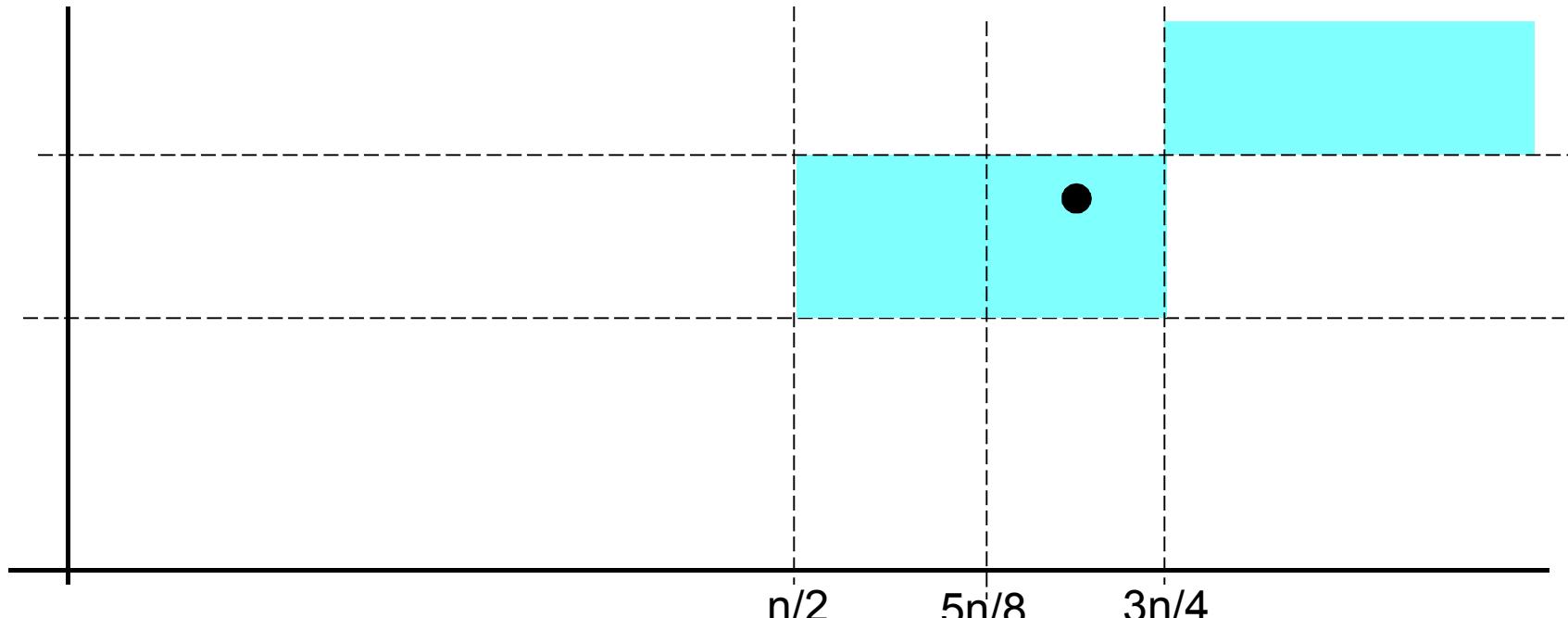
The IP



I wish we knew
the splitter in
that region

It is there.

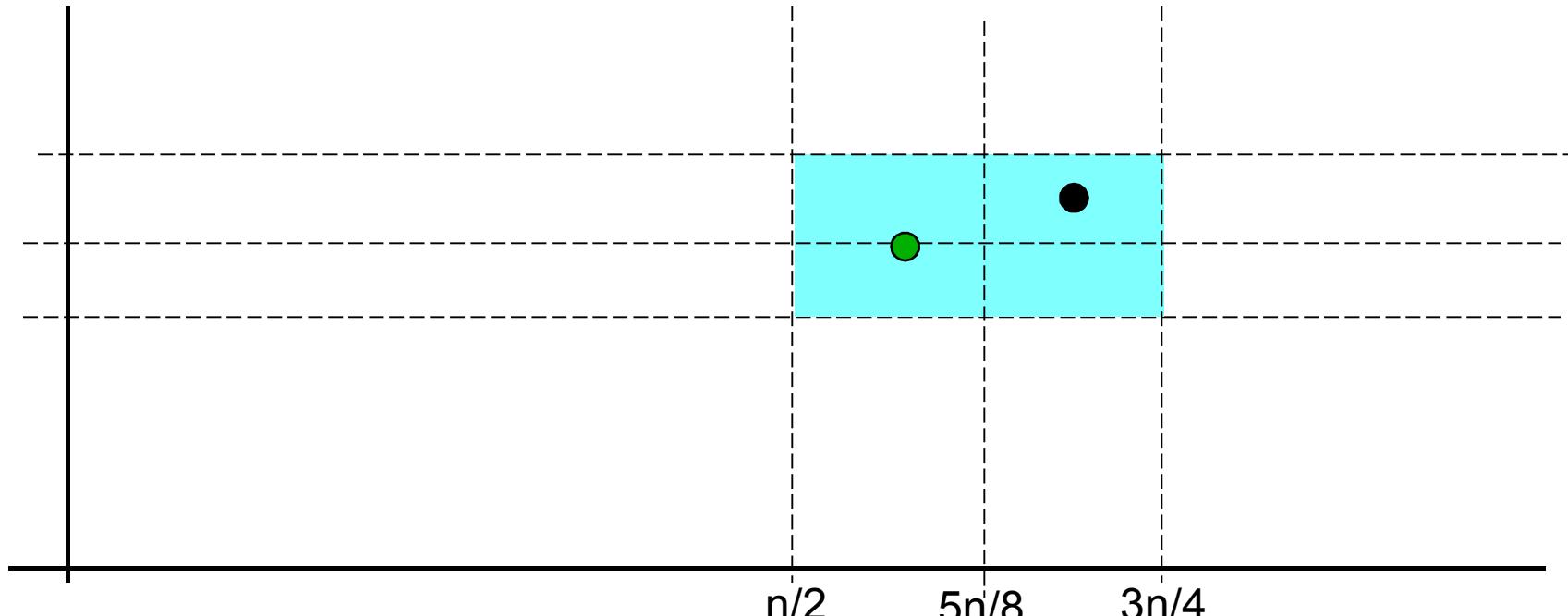
The IP



I think I know
what will happen
next

You're
lucky I'm
here

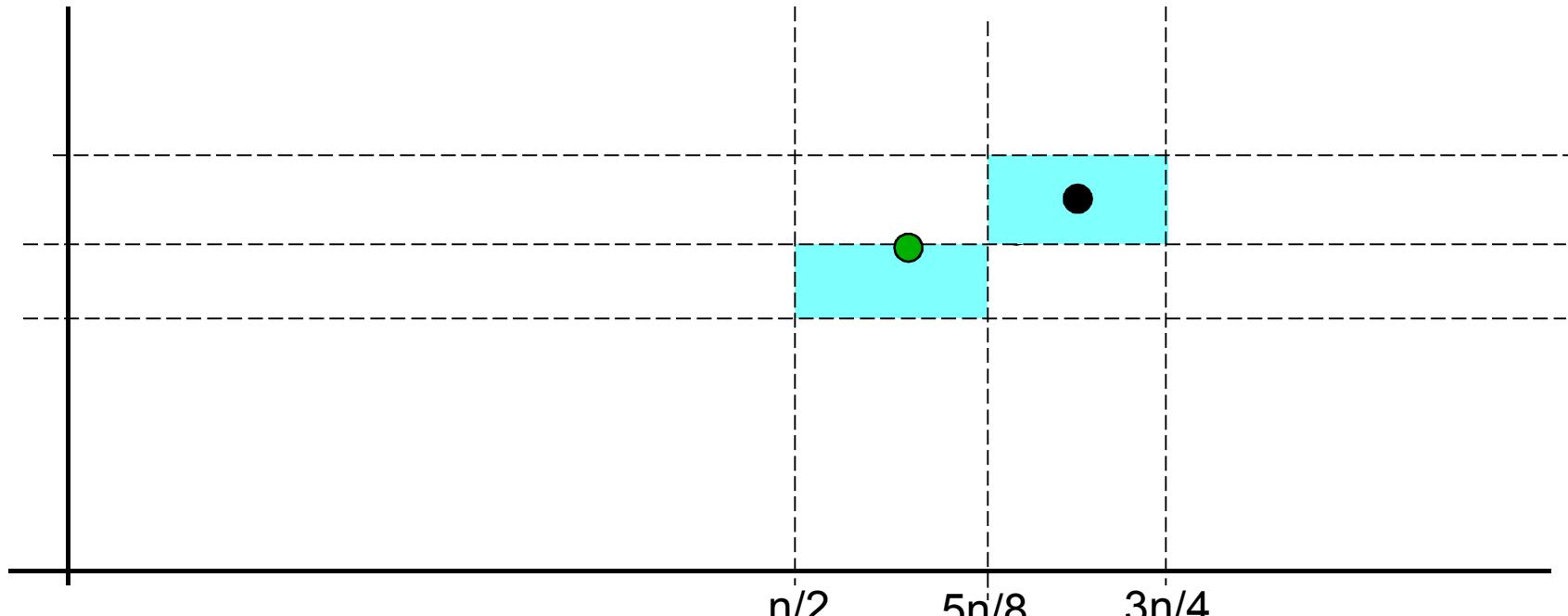
The IP



I think I know
what will happen
next

You're
lucky I'm
here

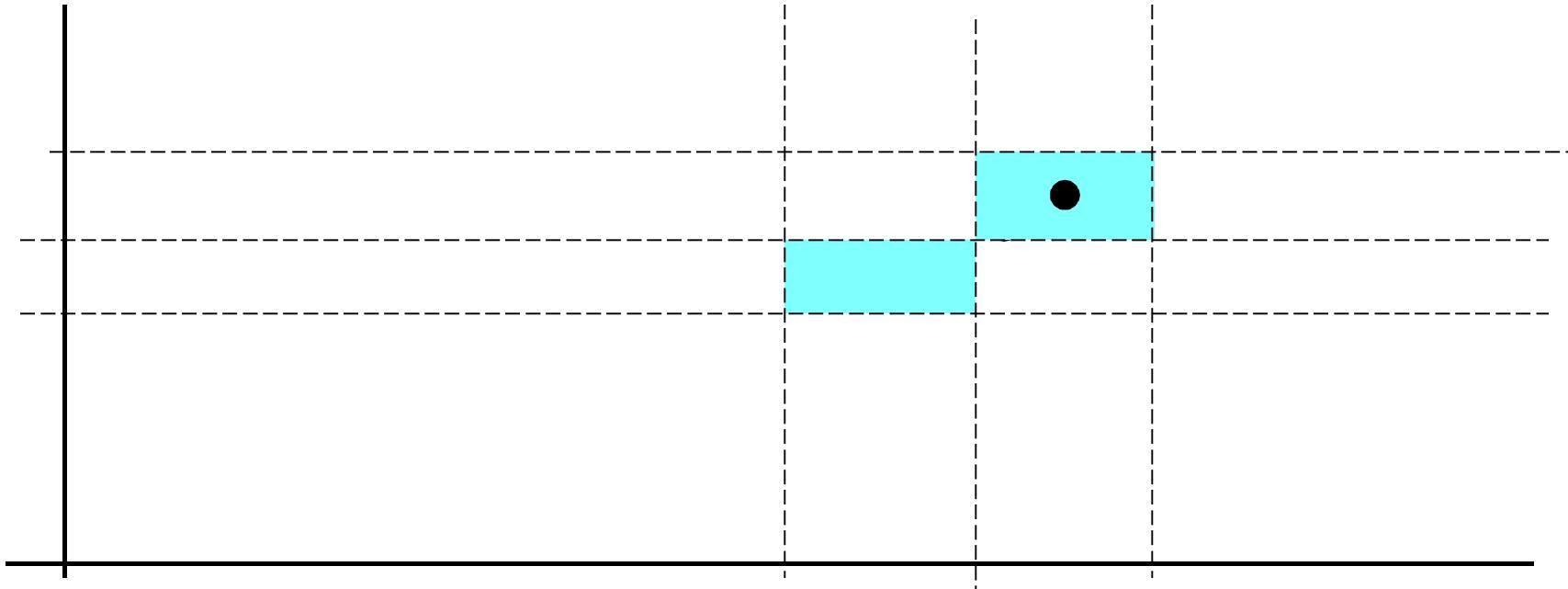
The IP



I think I know
what will happen
next

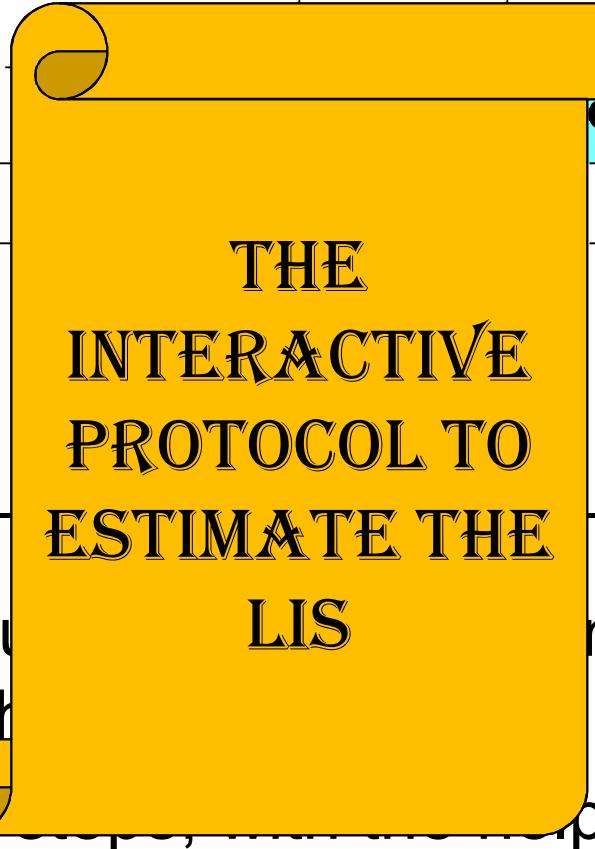
You're
lucky I'm
here

The interactive protocol



- If point stays in blue region till very end, then it is good (on LIS). Otherwise, bad.
- This takes $(\log n)$ steps, with the help of the wizard

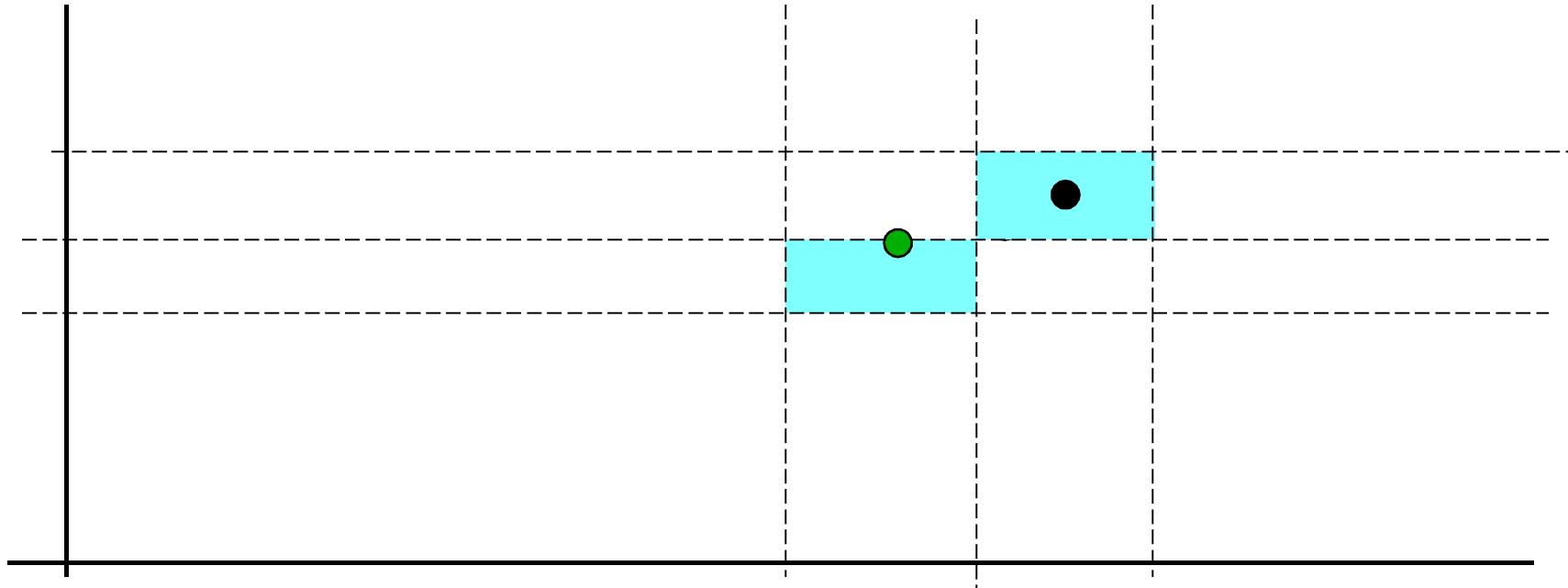
The interactive protocol



THE
INTERACTIVE
PROTOCOL TO
ESTIMATE THE
LIS

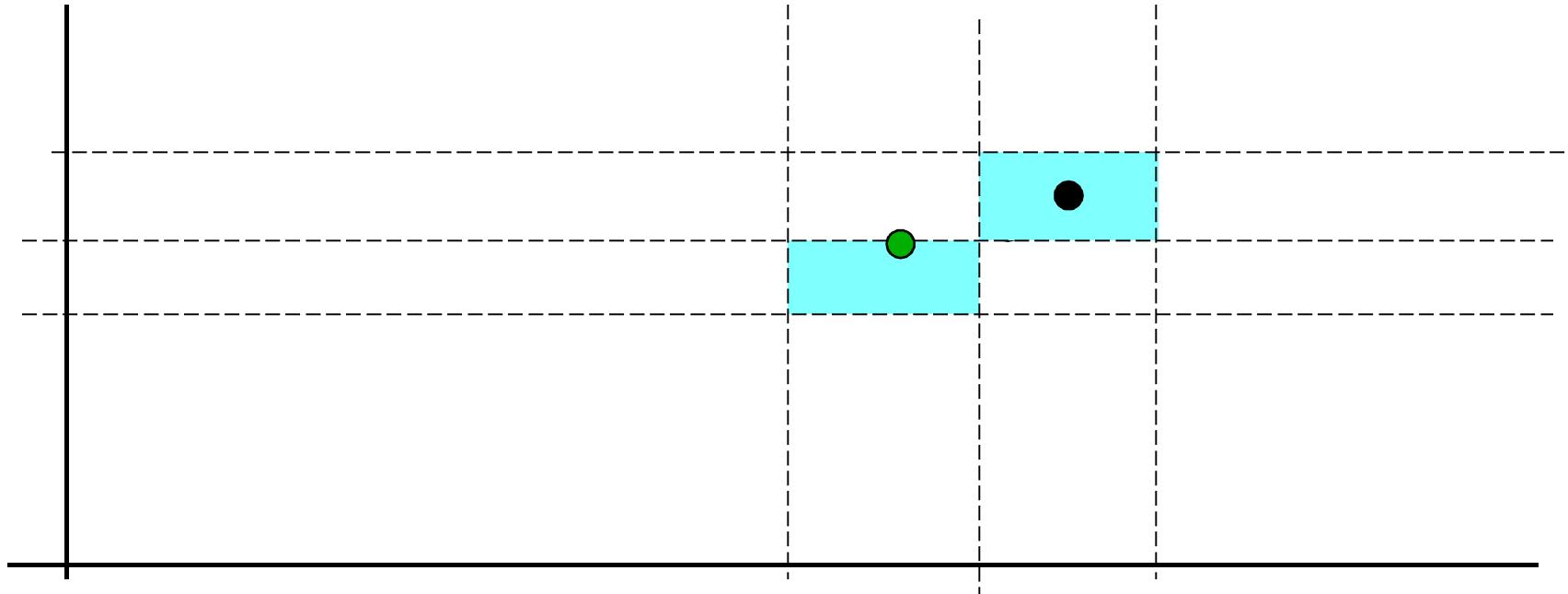
- If point stays in blue band, then it is good (on LIS). Otherwise, then it is not.
- This takes $(\log n)^{O(1)}$ steps of the wizard

The interactive protocol



- If point stays in blue region till very end, then it is good (on LIS). Otherwise, bad.
- This takes $(\log n)$ steps, with the help of the wizard
- If we could simulate the wizard...

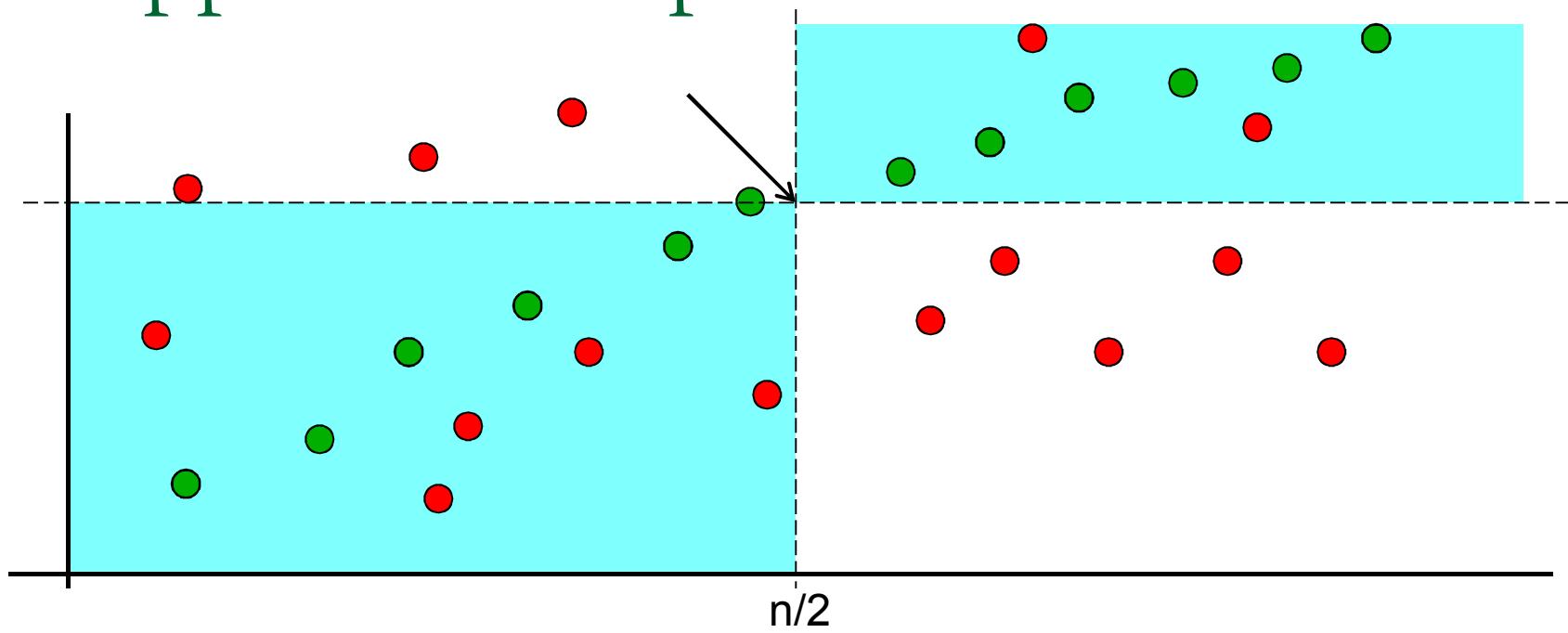
The interactive protocol



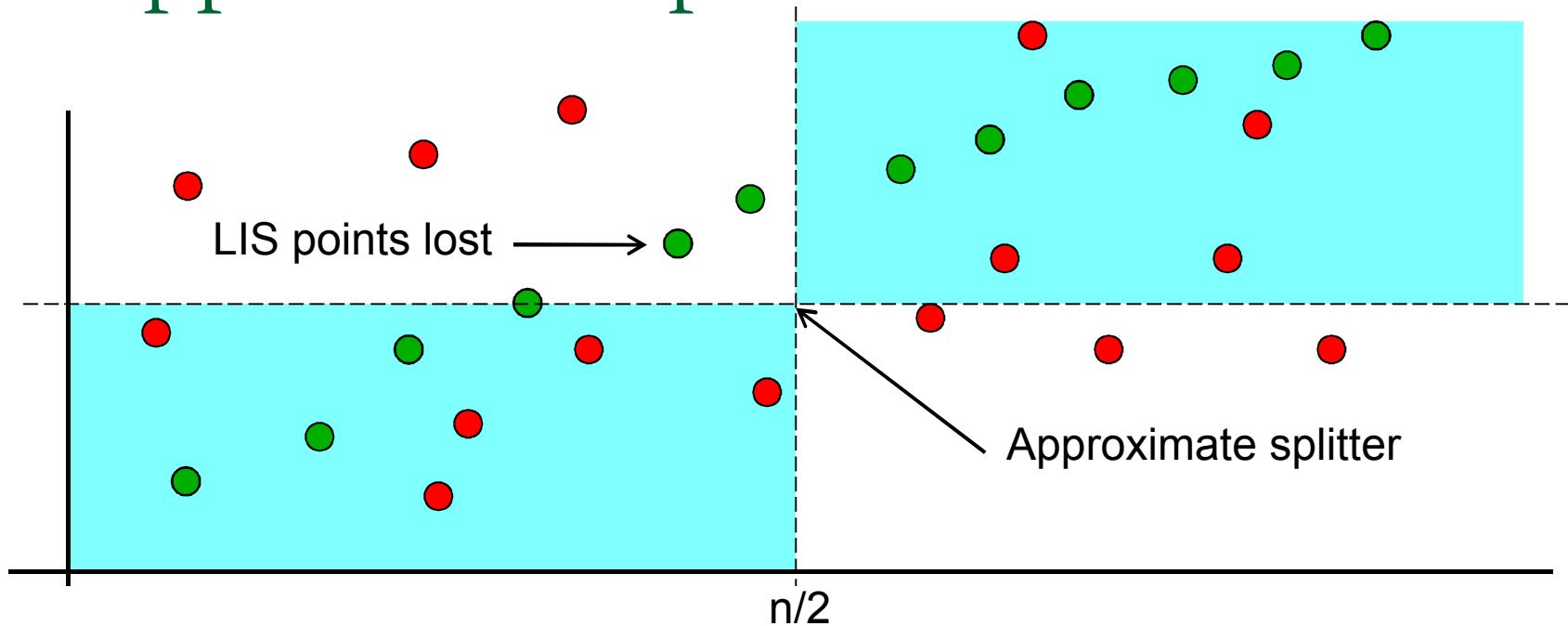
- If point stays in blue region till very end, then it is good (on LIS). Otherwise, bad
- This takes $(\log n)$ steps
- If we could simulate the wizard, you know the LIS!

What?? If you could simulate the wizard, you know the LIS!

An approximate splitter

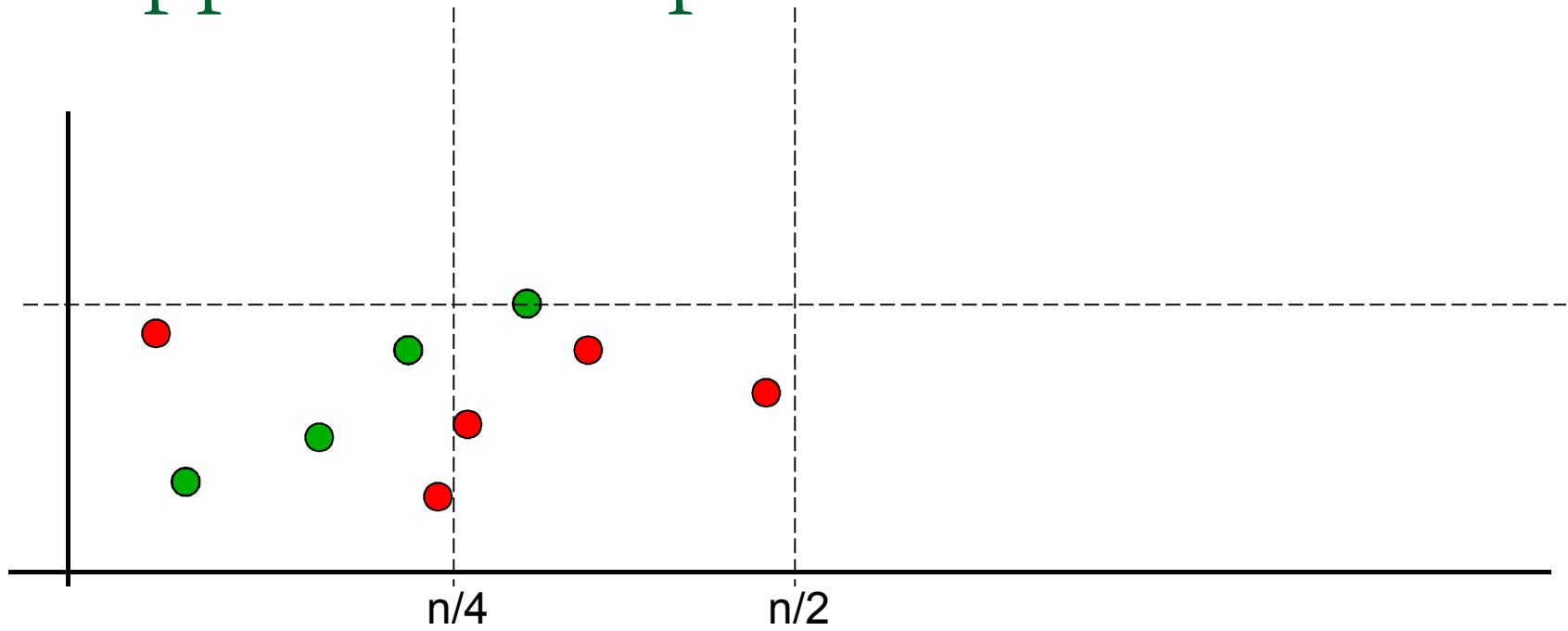


An approximate splitter

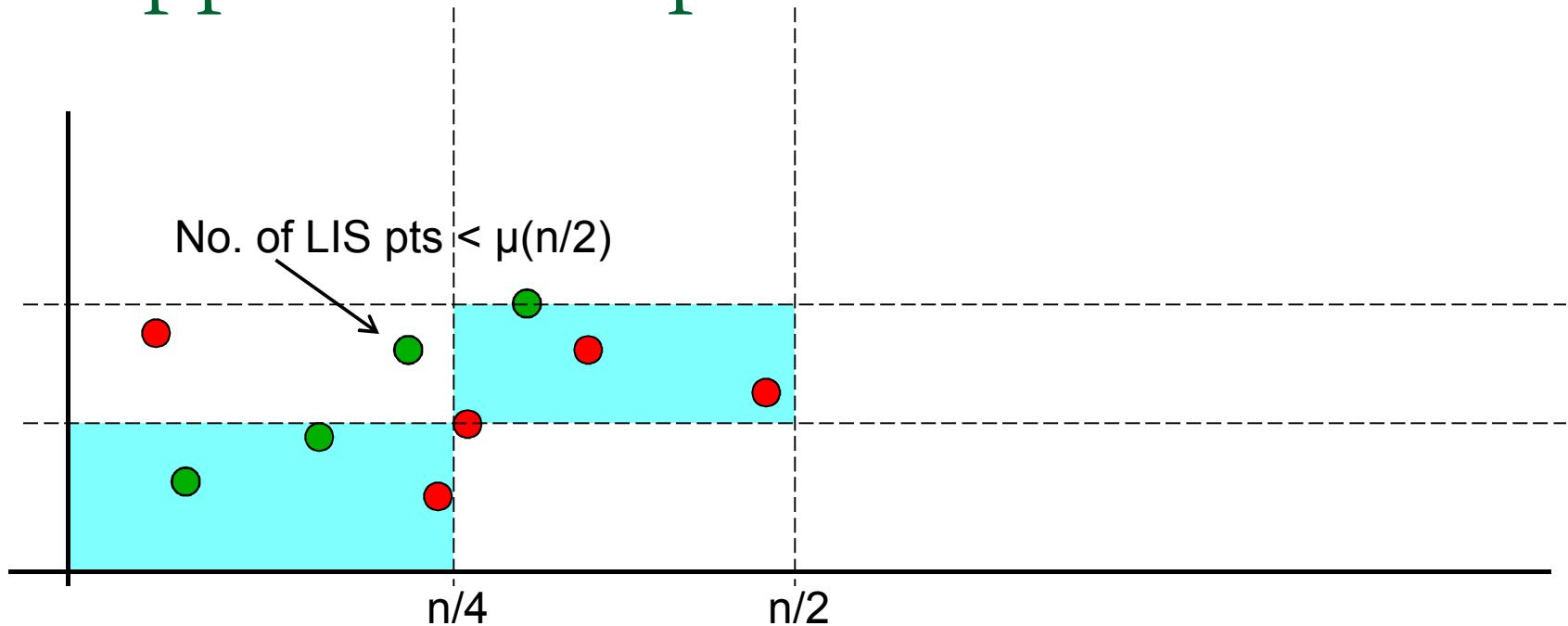


- No. of LIS points lost $< \mu n$ (violations with splitter)

An approximate splitter

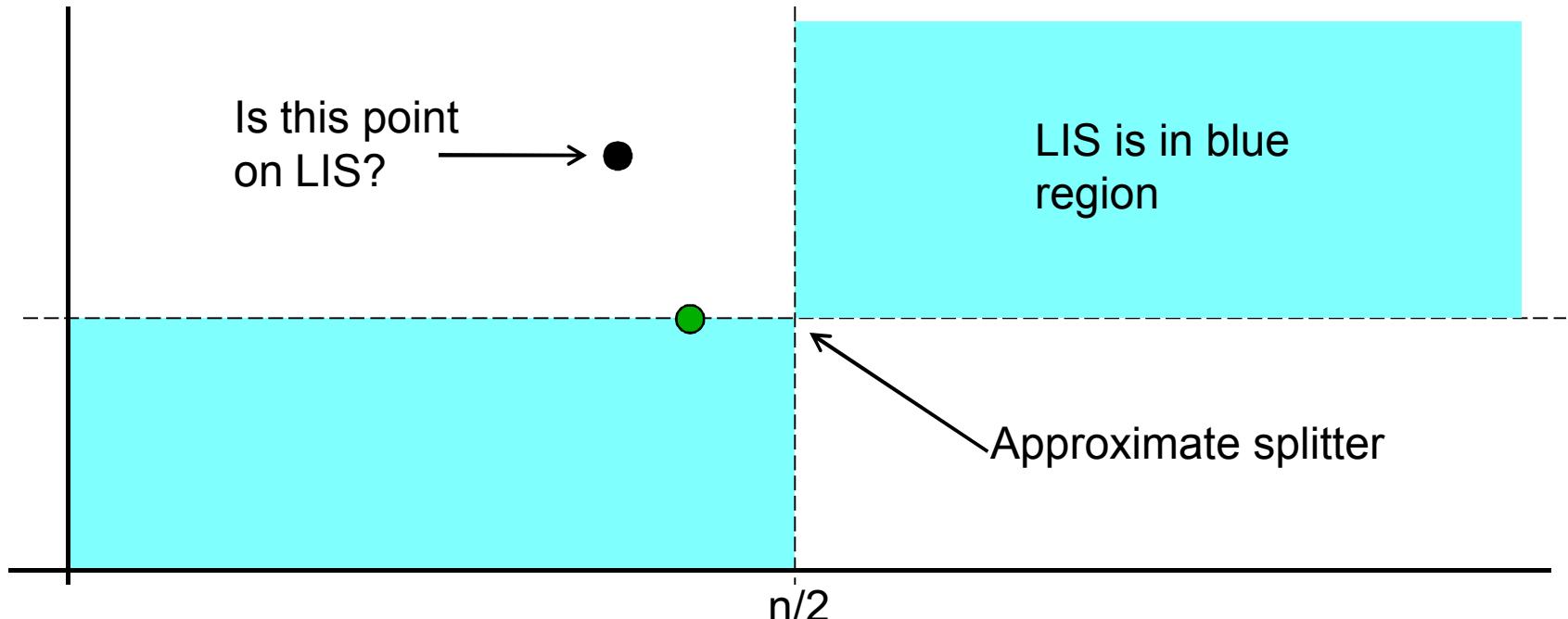


An approximate splitter



- In interval of size k , we lose μk LIS points
- Total loss = $\mu n \log n$
 - Set $\mu = 1/(100 \log n)$, then total loss is $n/100$ (1% of points)

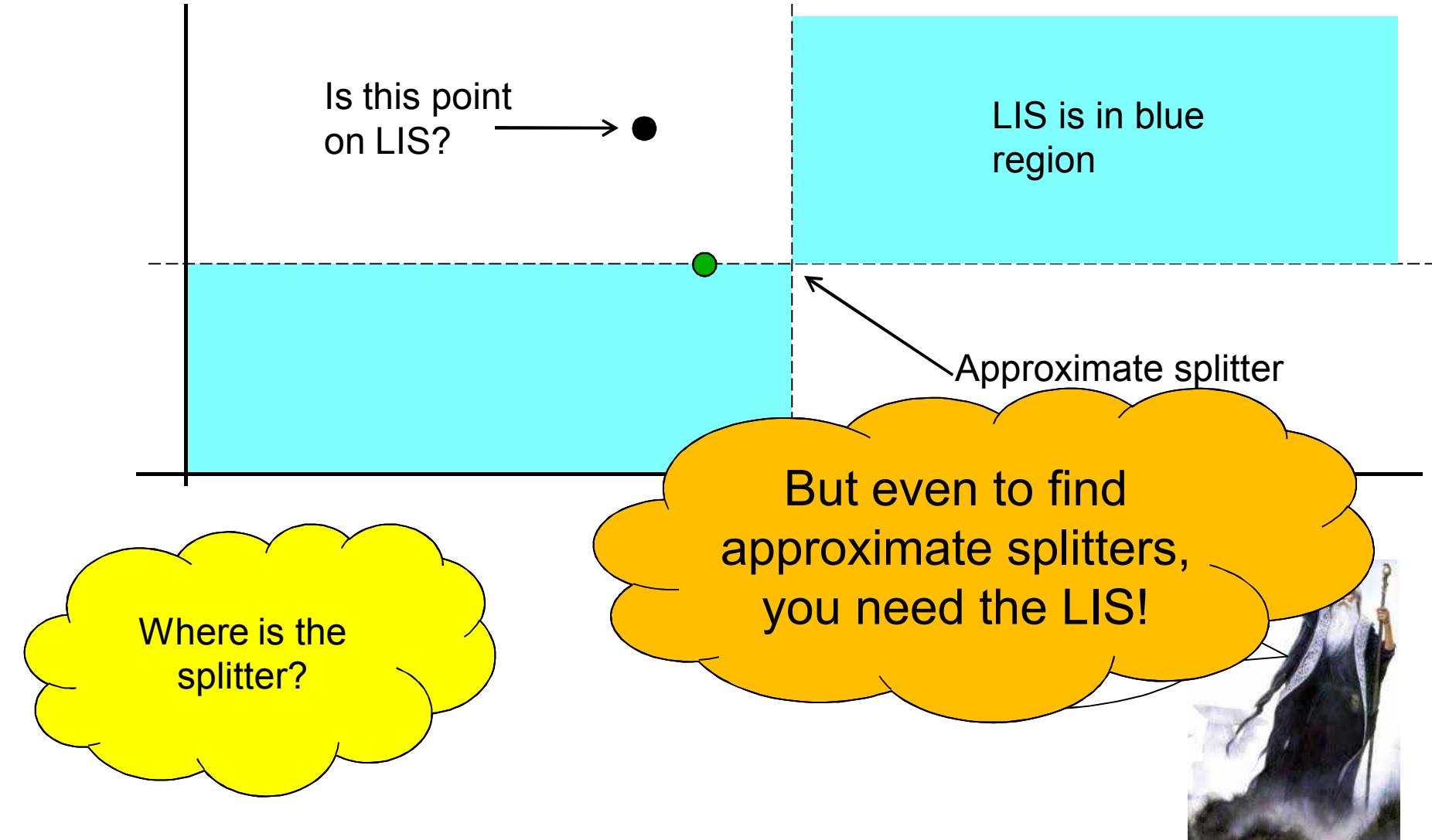
The interactive protocol



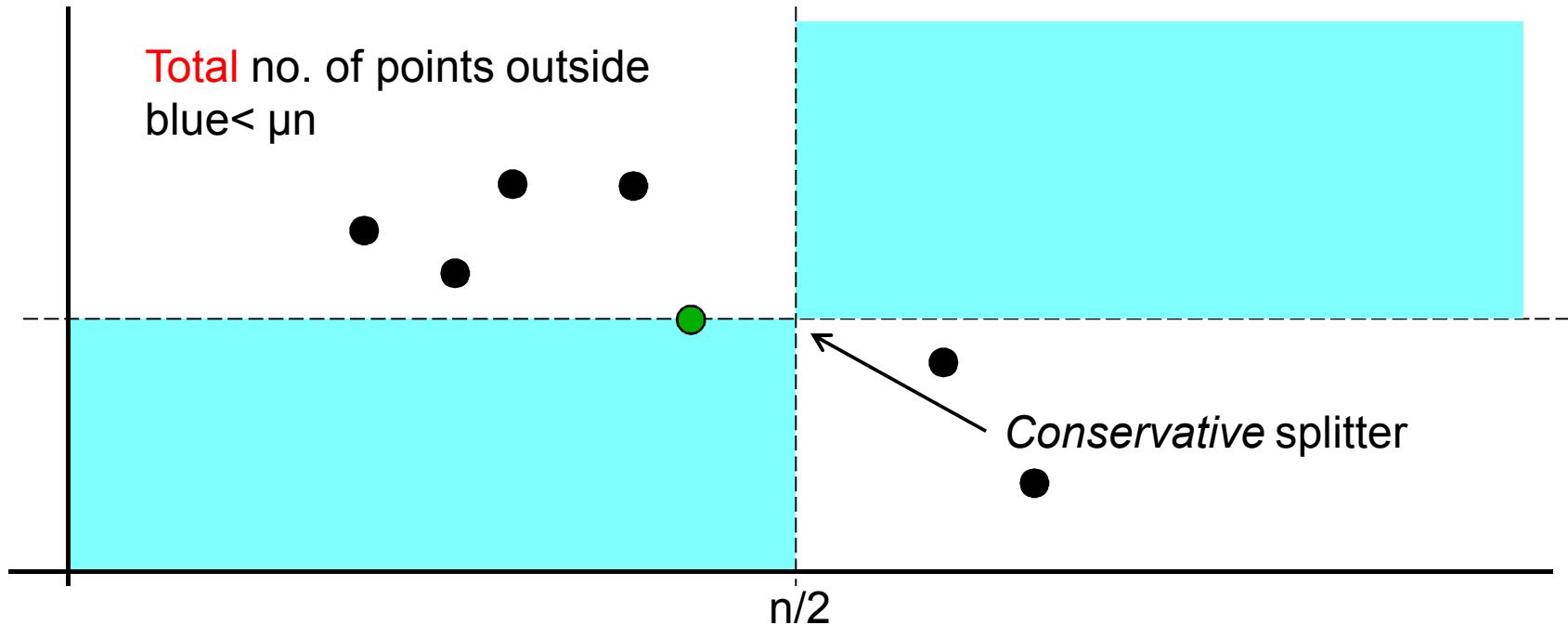
Where is the splitter?

Here is an approximate splitter

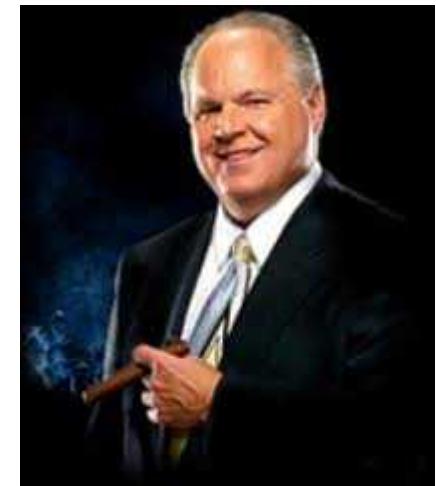
The interactive protocol



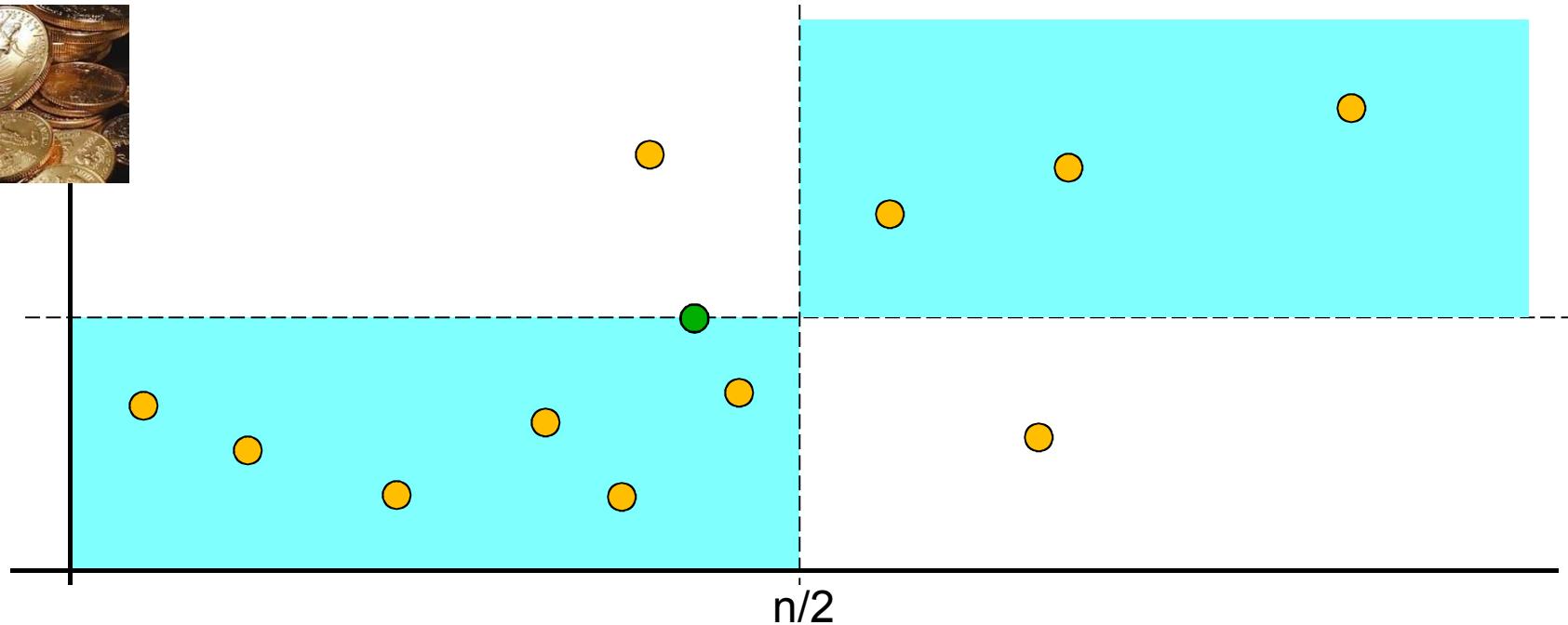
Be conservative!



- Conservative splitter is definitely approximate splitter
- How to check whether point gives conservative splitter?

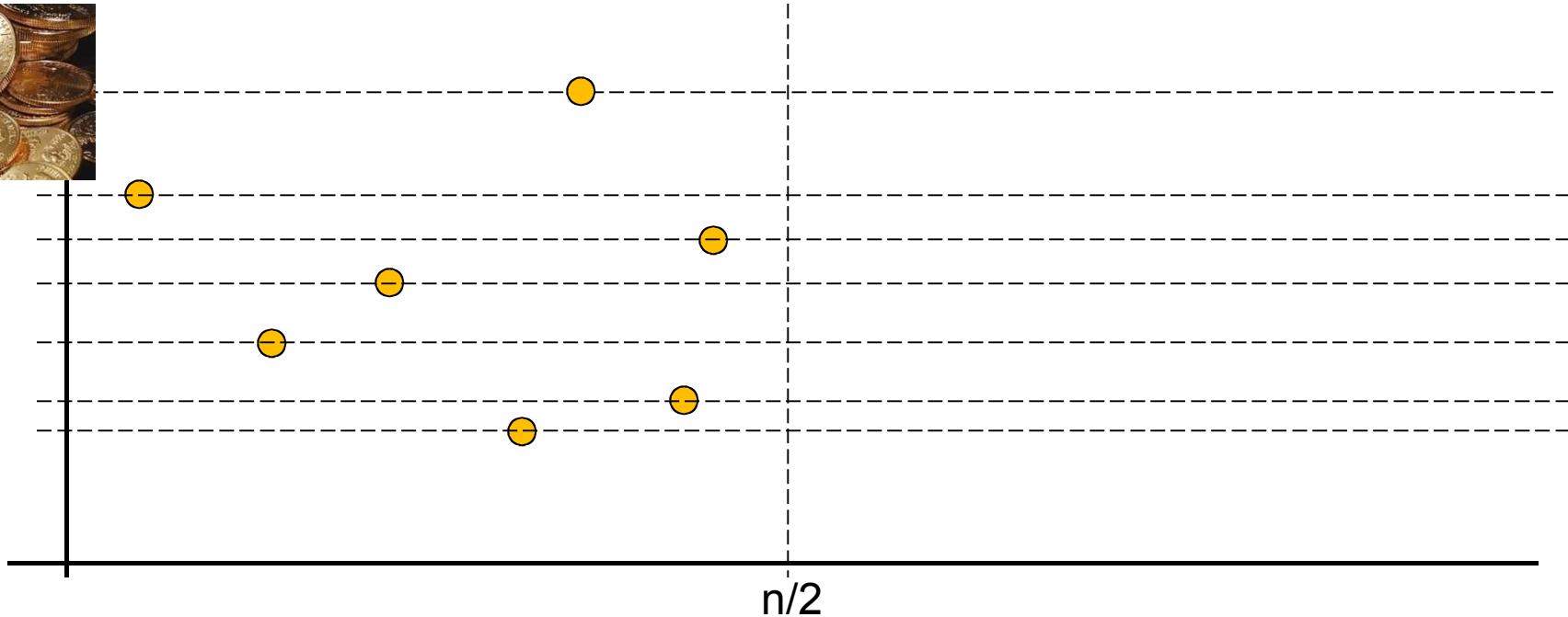


Be conservative!



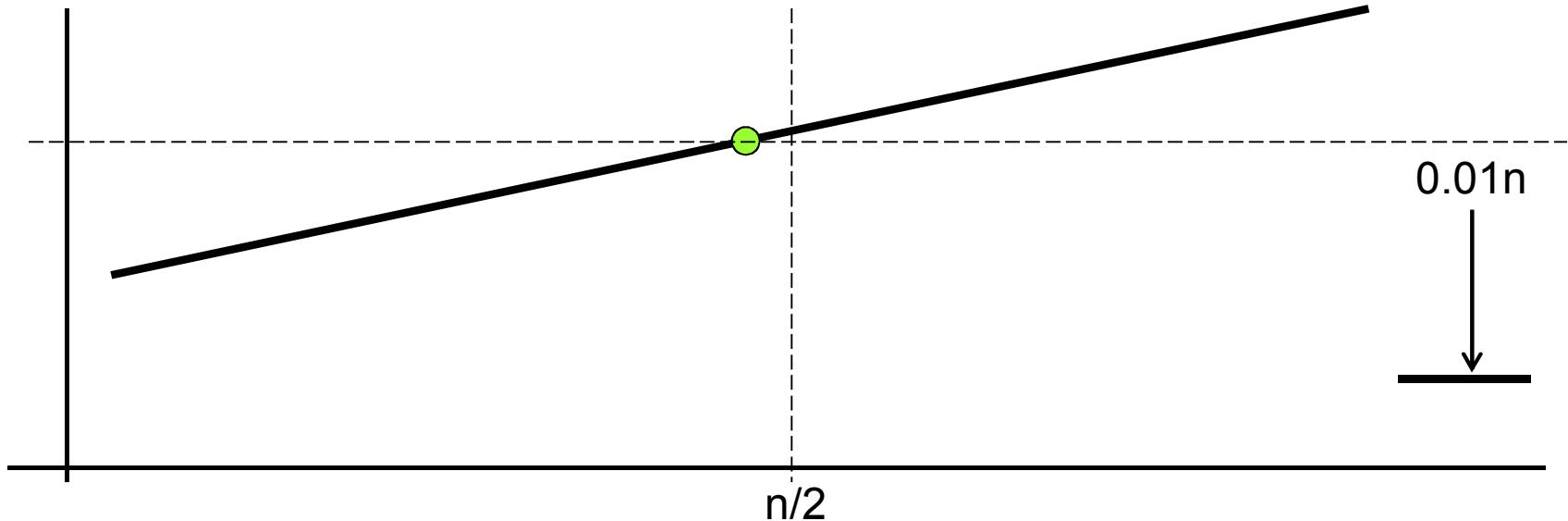
- Count fraction of sample outside blue
- Because $\mu = 1/(100 \log n)$, poly($\log n$) samples checks this accurately
- With this, we can run interactive protocol

Getting a conservative splitter



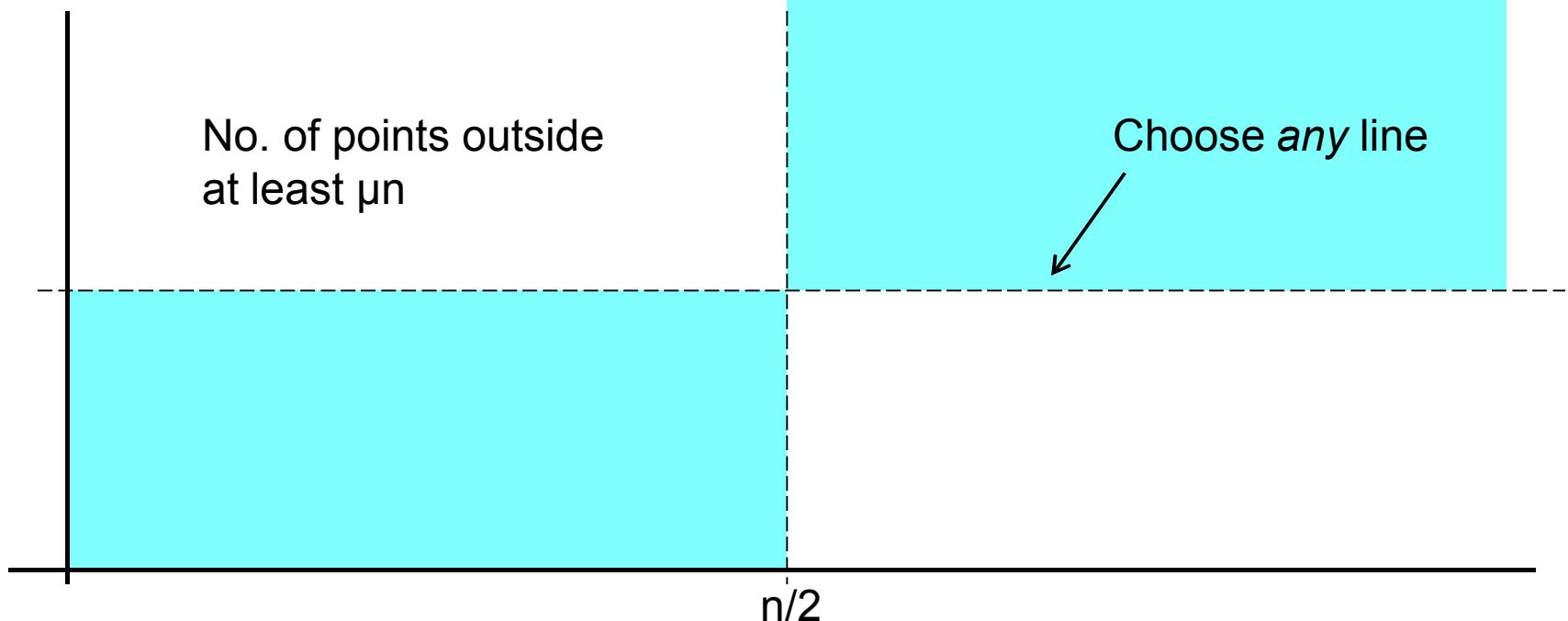
- We can sample $(\log n)$ different candidates and check all of them
- ~~You might miss a conservative splitter...~~
- **What if no conservative splitter exists?**

No splitters



- Every point is violation with at least $n/100$ points
 - No conservative splitter

A liberal paradise

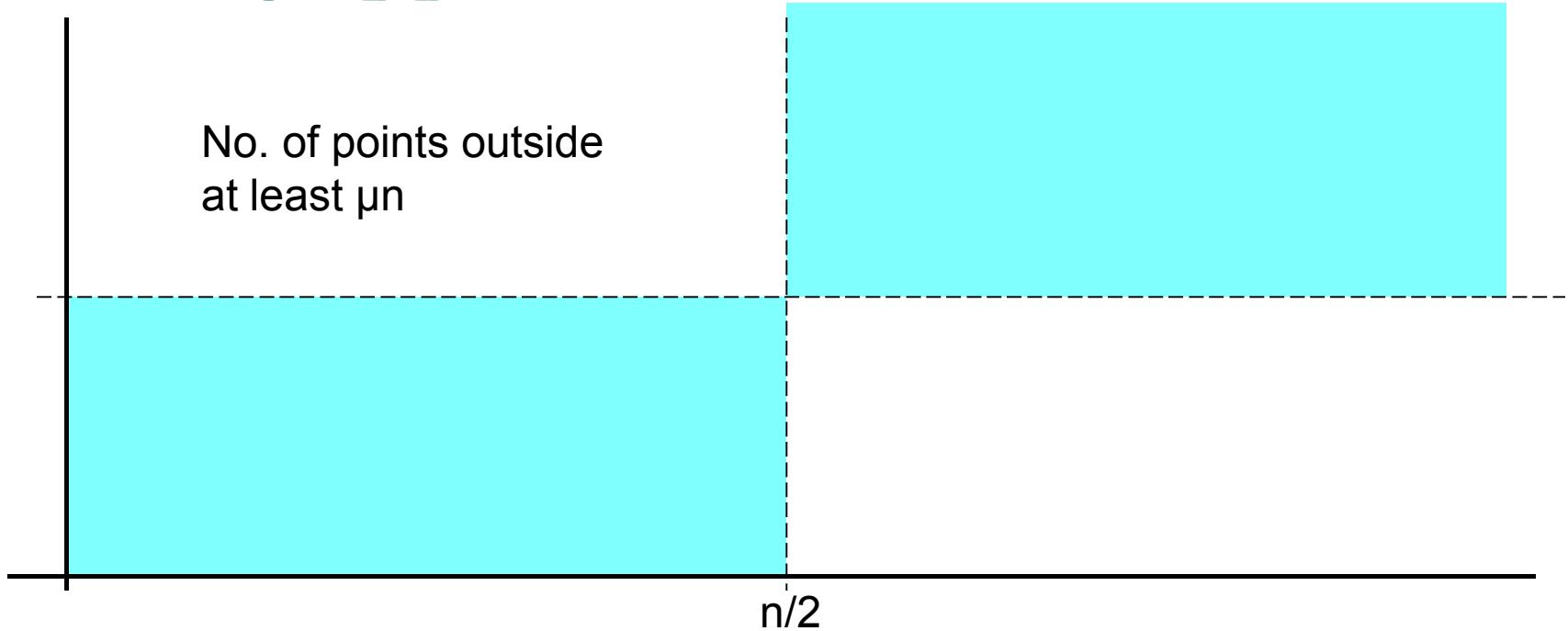


- So we know that $|\text{LIS}| < (1-\mu) n$
- Leads to the next idea. Boosting approximations!

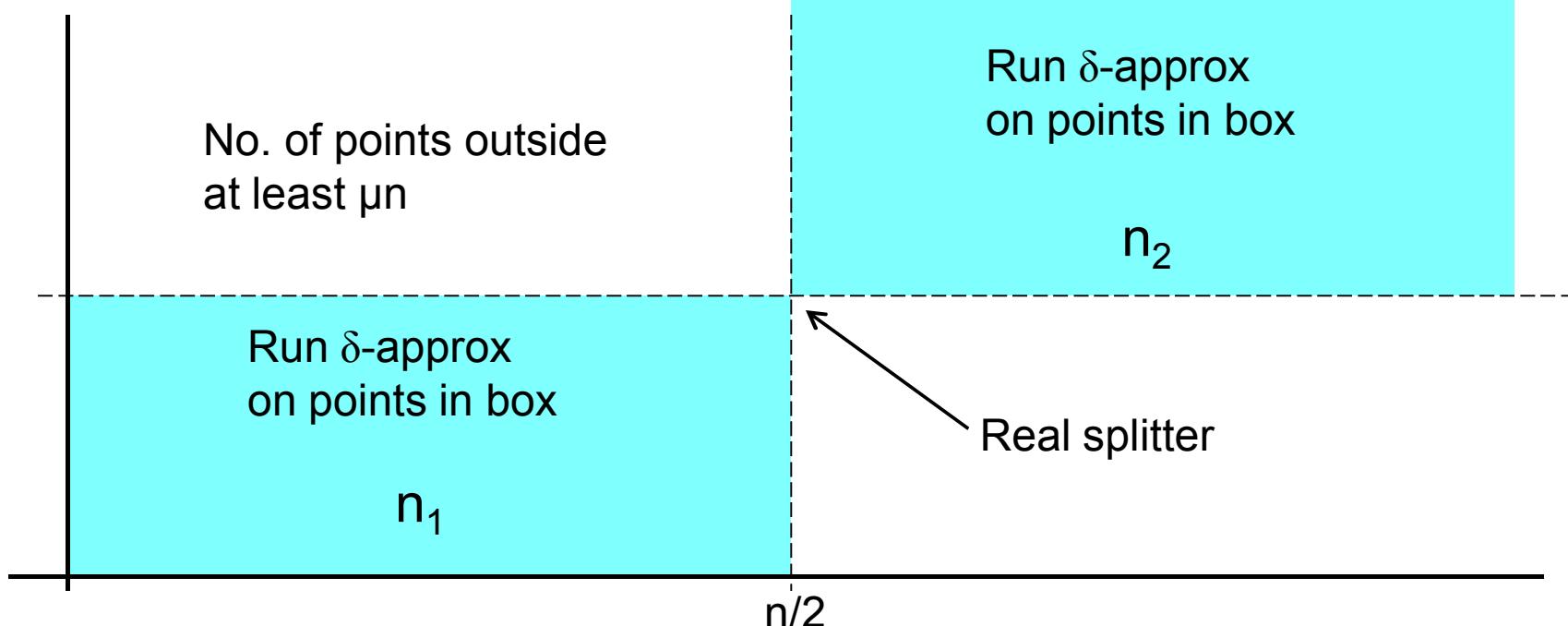
Can we beat the $n/2$ -approx??

- We have an $n/2$ -approx for $|\text{LIS}|$
- Can we get *anything* better than that?
- Maybe we can somehow convert a δn -approx to $\delta \square n$ -approx ($\delta > \delta \square$)
 - Call this a δ -approx algorithm

Boosting approximations

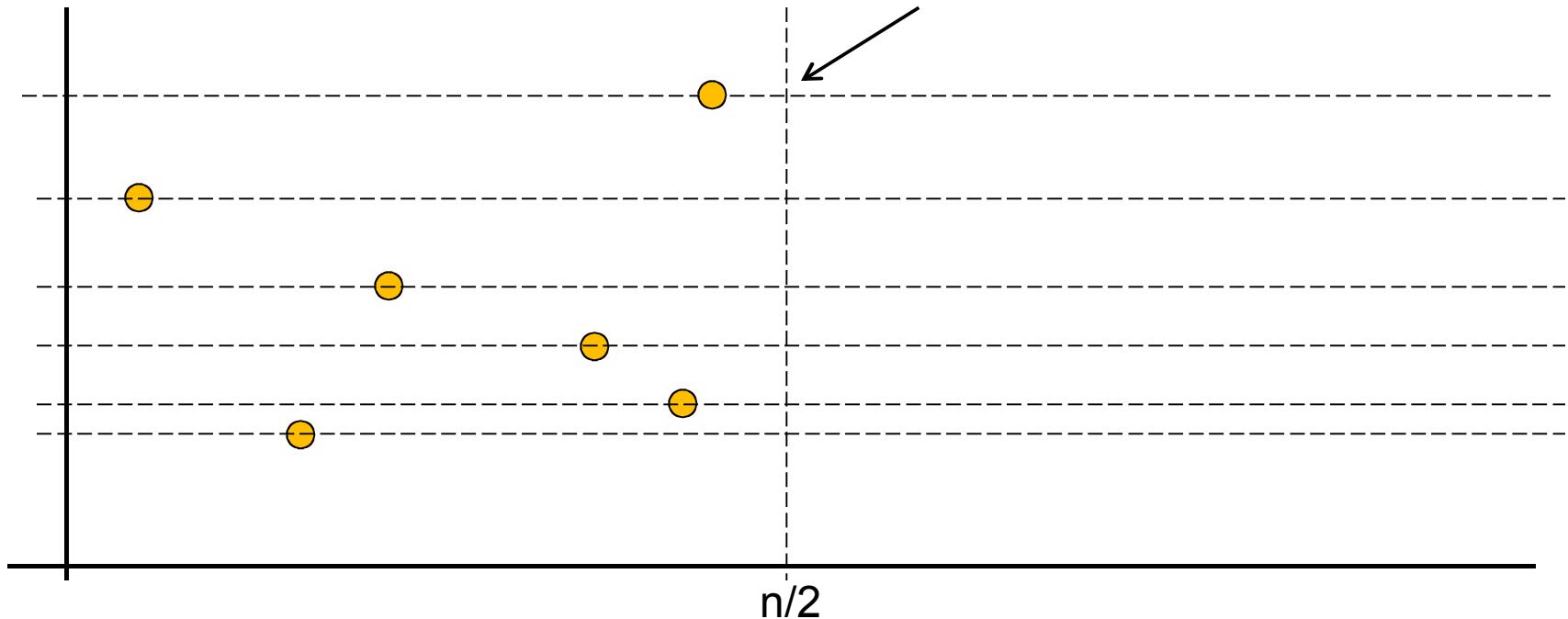


Boosting approximations



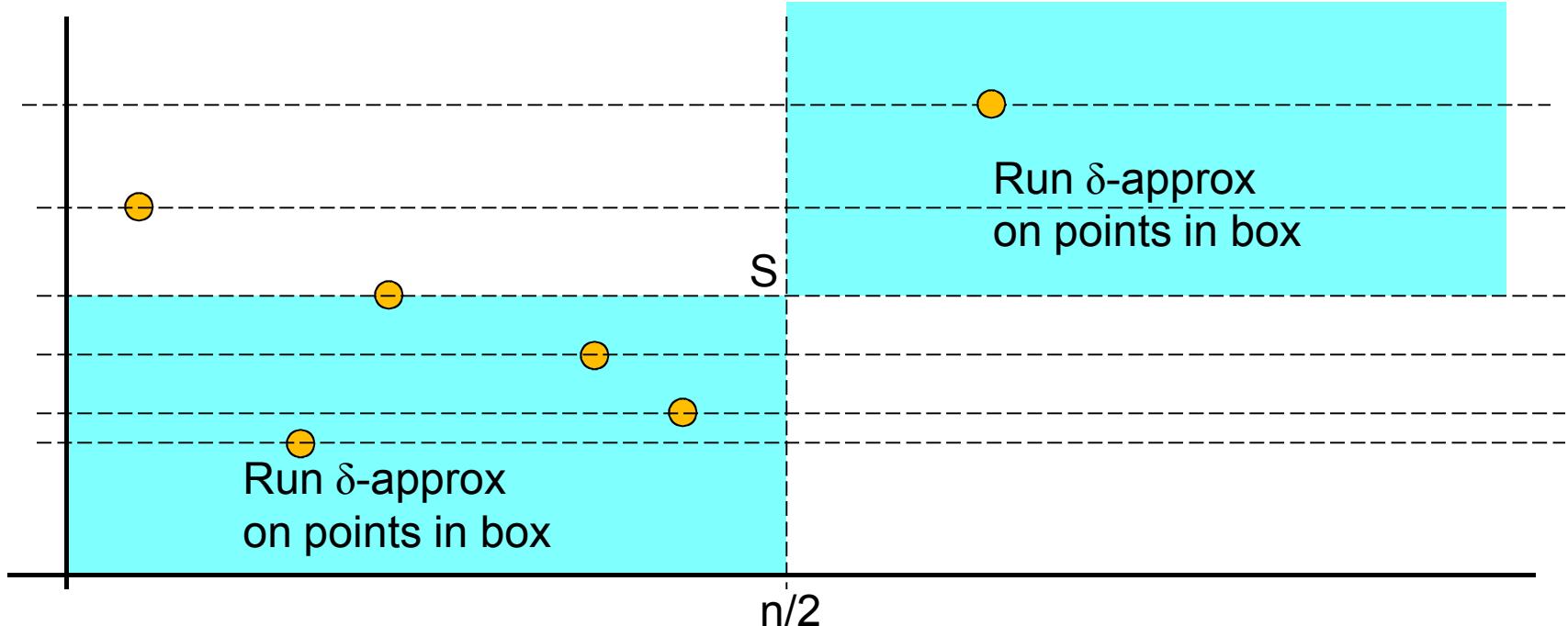
- Take sum of outputs as total LIS estimate
- $|LIS| = |LIS_1| + |LIS_2|, \quad Est = Est_1 + Est_2$
- $|Est_1 - LIS_1| < \delta n_1 \quad |Est_2 - LIS_2| < \delta n_2$
- So $|Est - LIS| < \delta(n_1 + n_2)$
- $n_1 + n_2 < (1-\mu)n$, so $|Est - LIS| < \delta(1-\mu)n$!

Putting it together



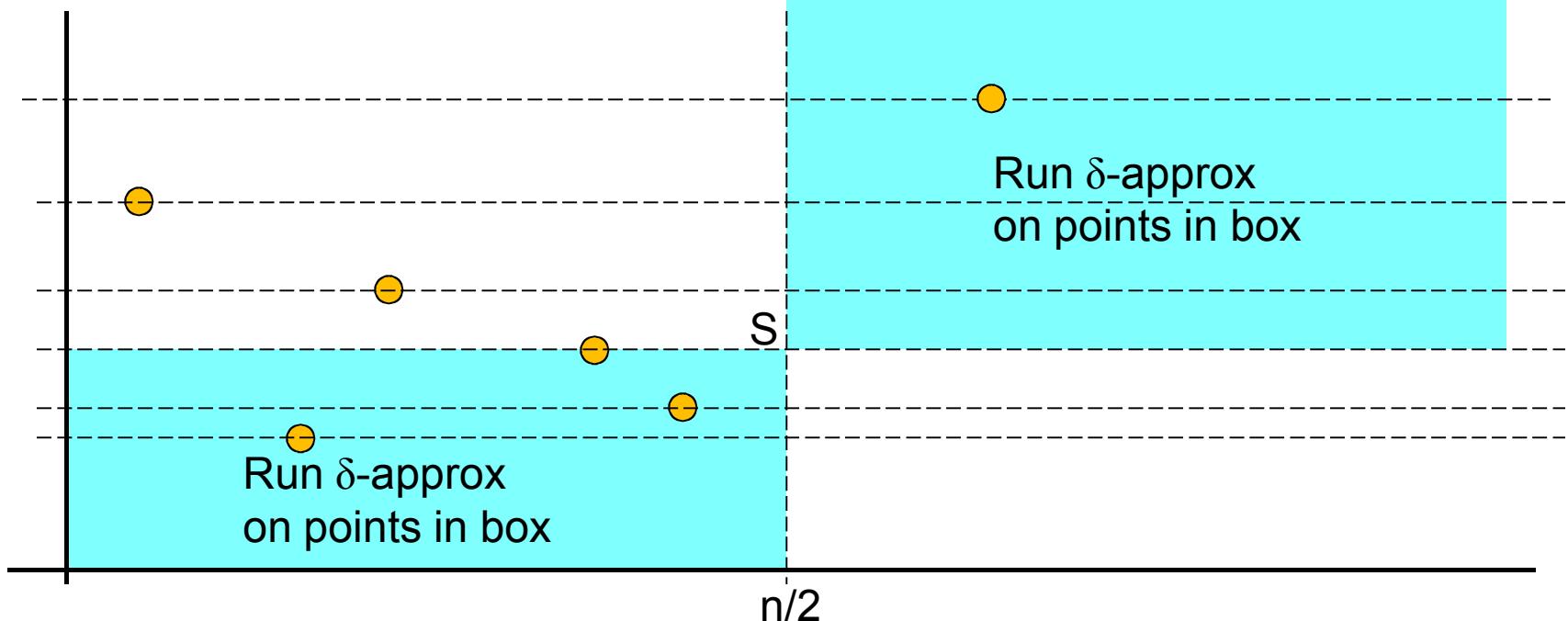
- Check if each is conservative splitter
 - If it is, we're all set to run IP
- Otherwise...

Putting it together



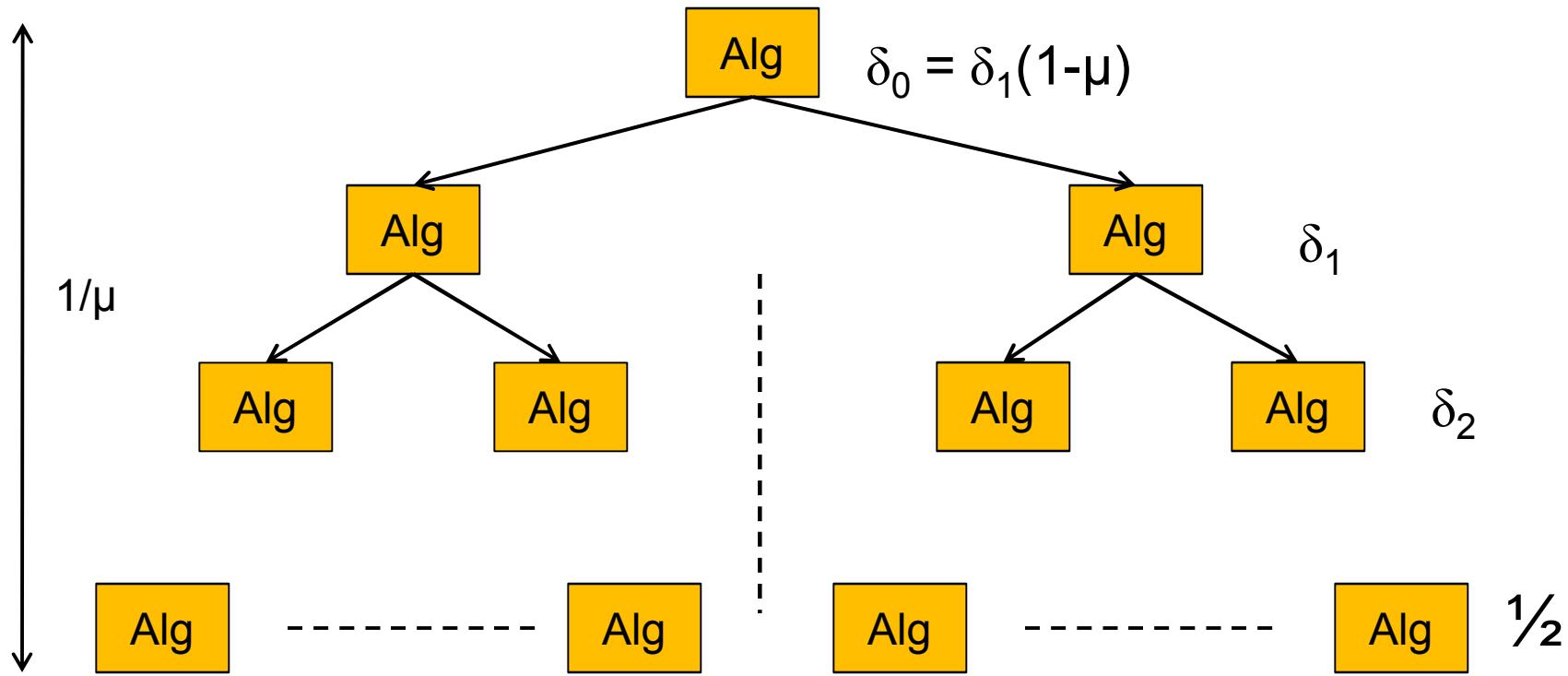
- One of these is “close enough” to real splitter
- $\text{Est}(S) = \text{Left-Est}(S) + \text{Right-Est}(S)$

Putting it together



- One of these is “close enough” to real splitter
- $\text{Est}(S) = \text{Left-Est}(S) + \text{Right-Est}(S)$
- Final Estimate = $\max_S \text{Est}(S)$
- Looks like a great idea!
 - We go from δ to $\delta(1- \mu)$. Recurse to keep improving approximation

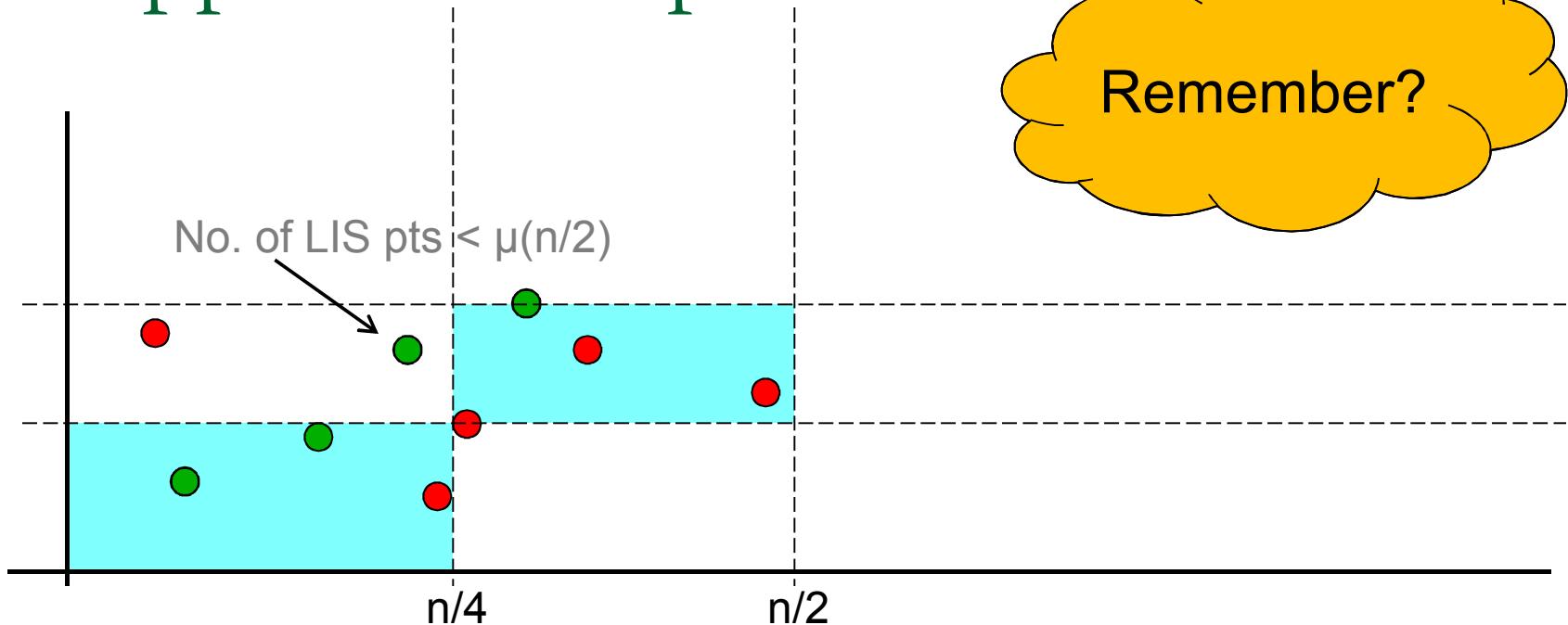
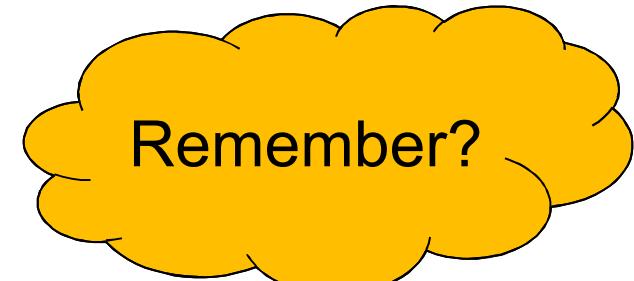
It fails, miserably



- As we go up each level, approx gets better by $(1-\mu)$.
- So to get $\delta_0 = \frac{1}{4}$, how many levels needed?
 - $\frac{1}{4} = \frac{1}{2} (1-\mu)^t$ So $t = 1/\mu$
- We have running time at least $2^{1/\mu}$.

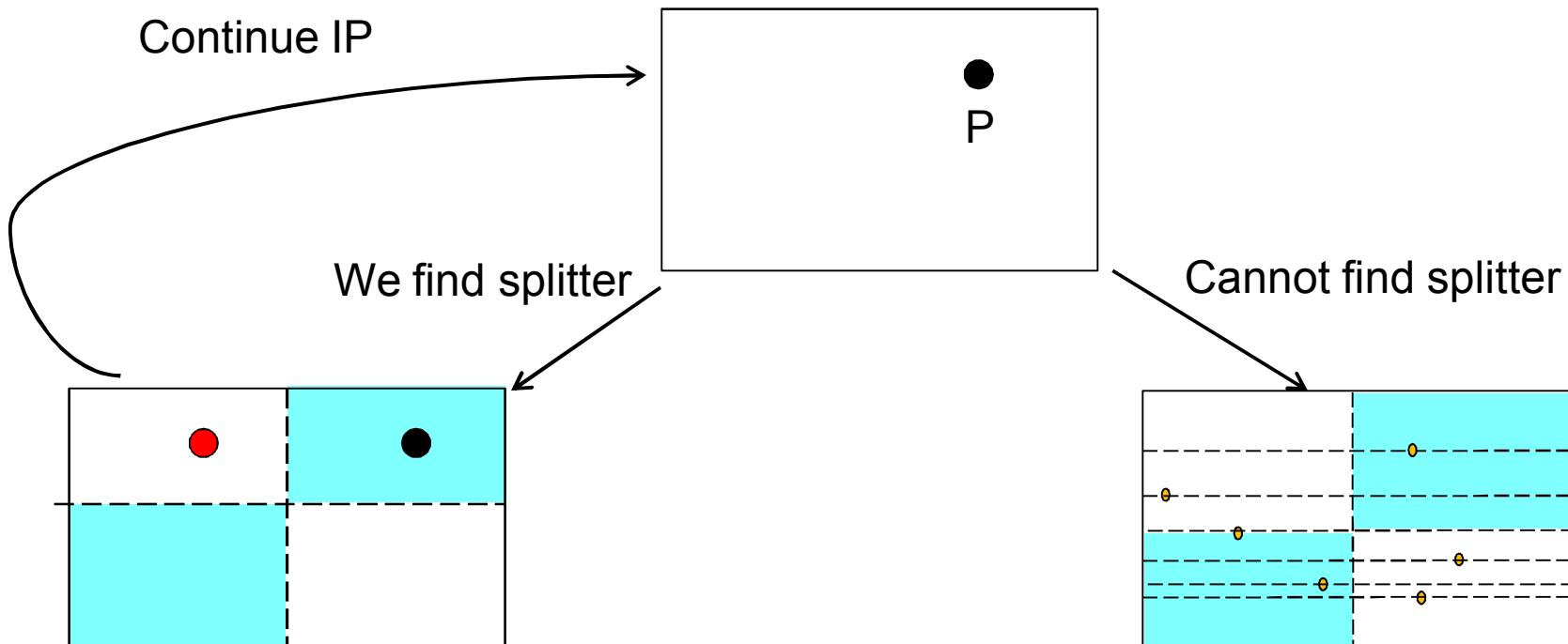
So, μ needs to be $> 1/\log \log n$.

An approximate splitter



- No. of LIS points lost $< \mu n$ (violations with splitter)
- In interval of size k , we lose μk LIS points
- Total loss = $\mu n \log n$
 - **Set $\mu = 1/(100 \log n)$** , then total loss is $n/100$ (1% of points)

The basic dichotomy

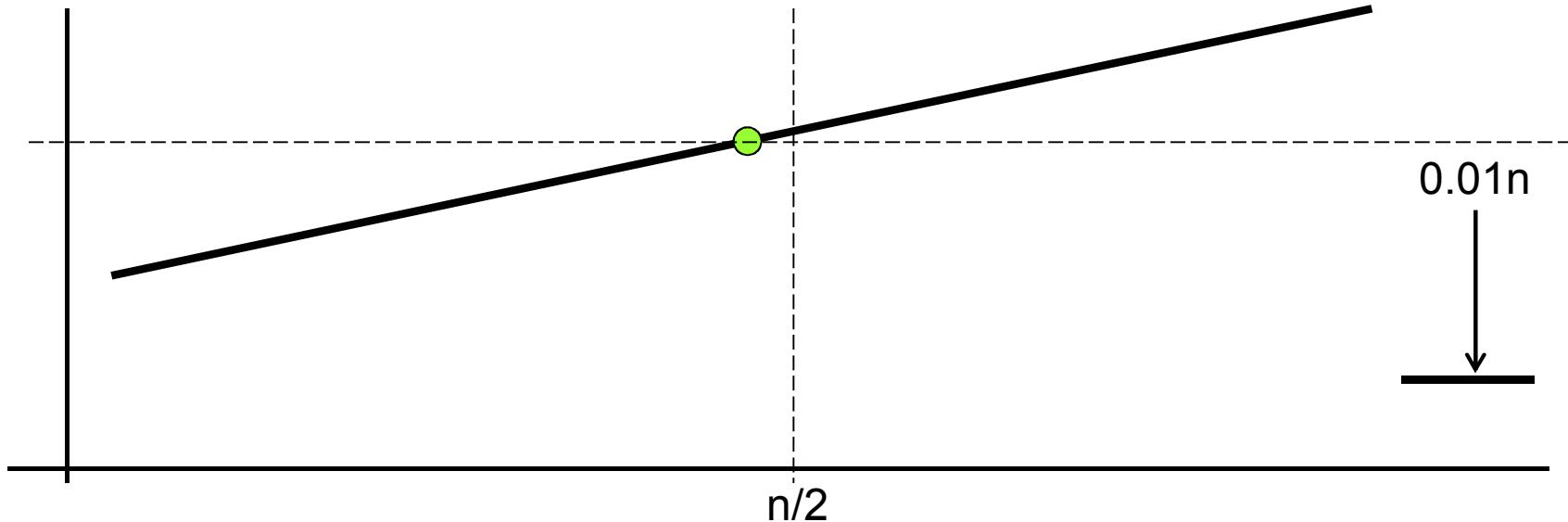


The “Interactive Protocol” phase

- For IP, we need $\mu < 1/\log n$
 - μn is error in each “level” of IP
- For DP, we need $\mu > 1/\log \log n$
 - $(1-\mu)$ is decrease in error

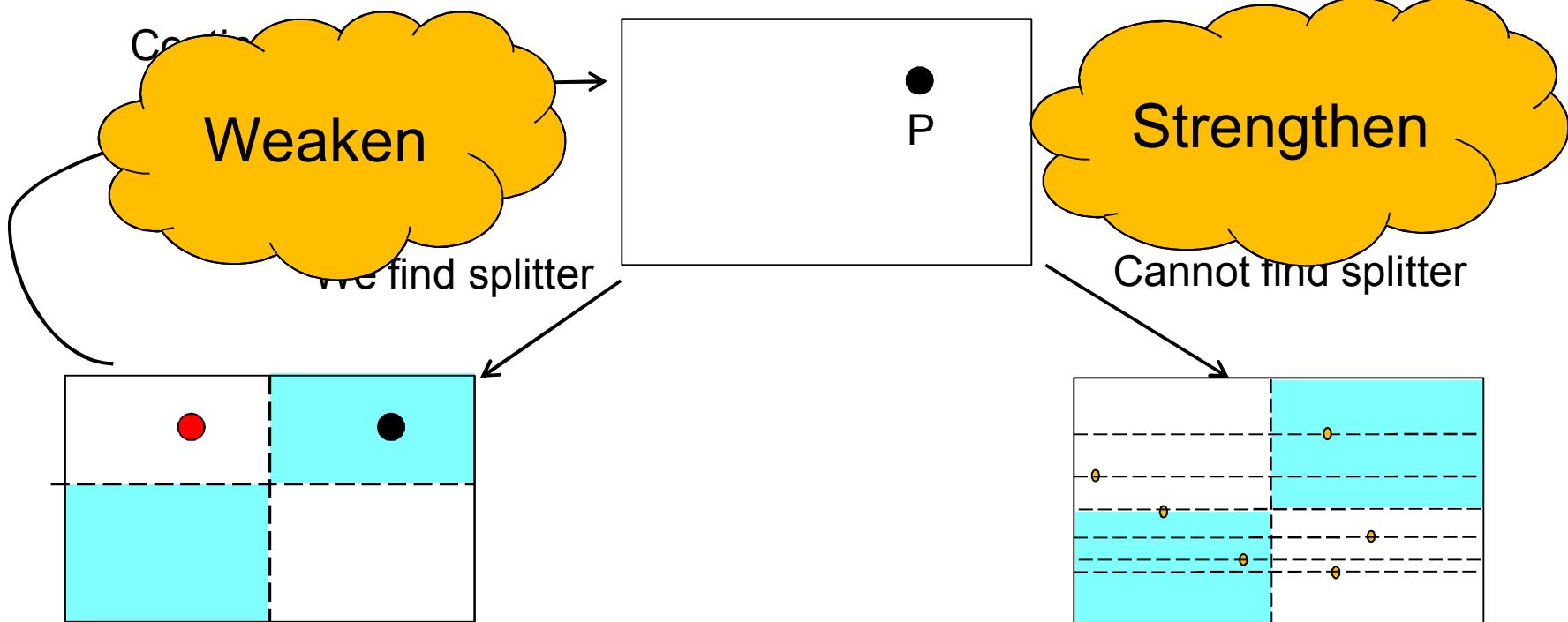
The “Dynamic Programming” phase

A weaker splitter



- Every point is violation with at least $n/100$ points
 - No conservative splitter
- But surely, splitters are easy to find
 - We're being too conservative

The basic dichotomy

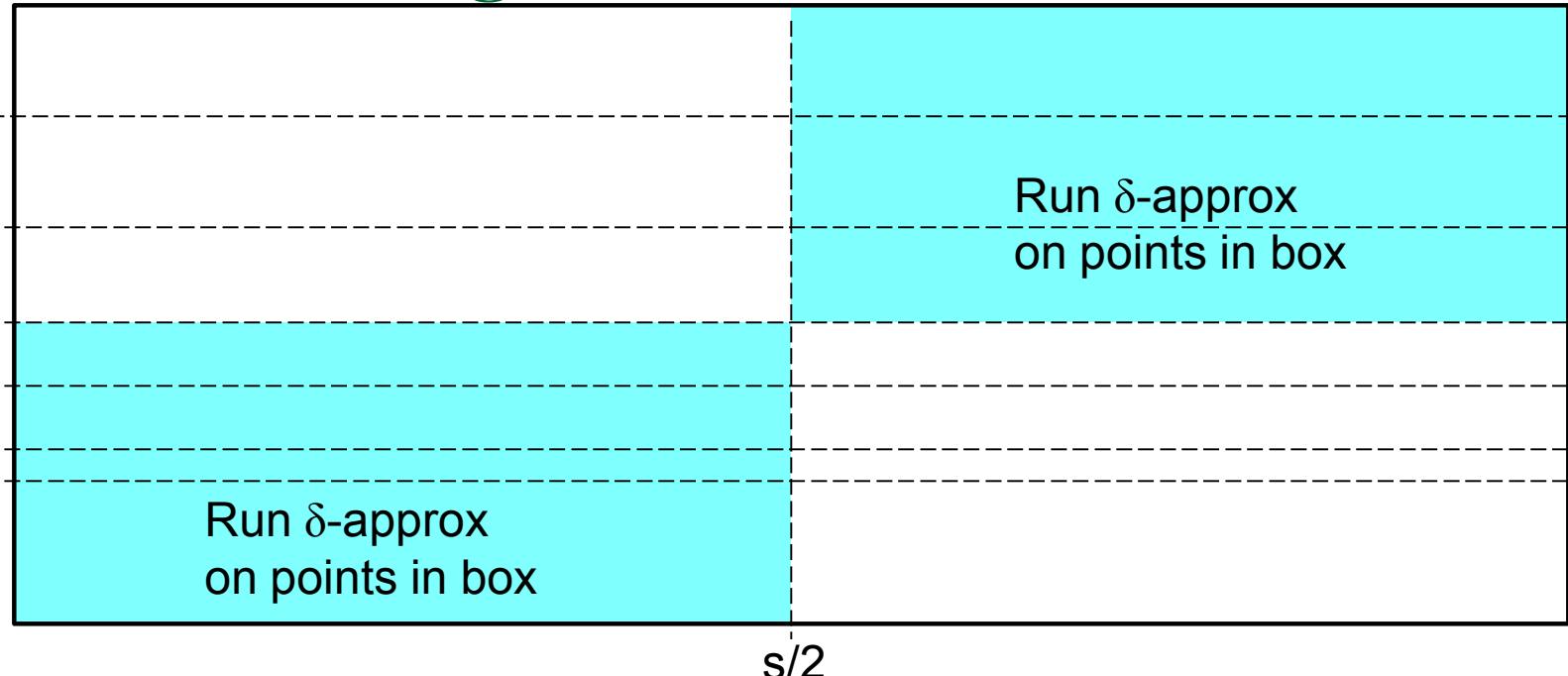


The “Interactive Protocol” phase

- For IP, we need $\mu < 1/\log n$
 - μn is error in each “level” of IP
- For boosting, we need $\mu > 1/\log \log n$
 - $(1-\mu)$ is decrease in error

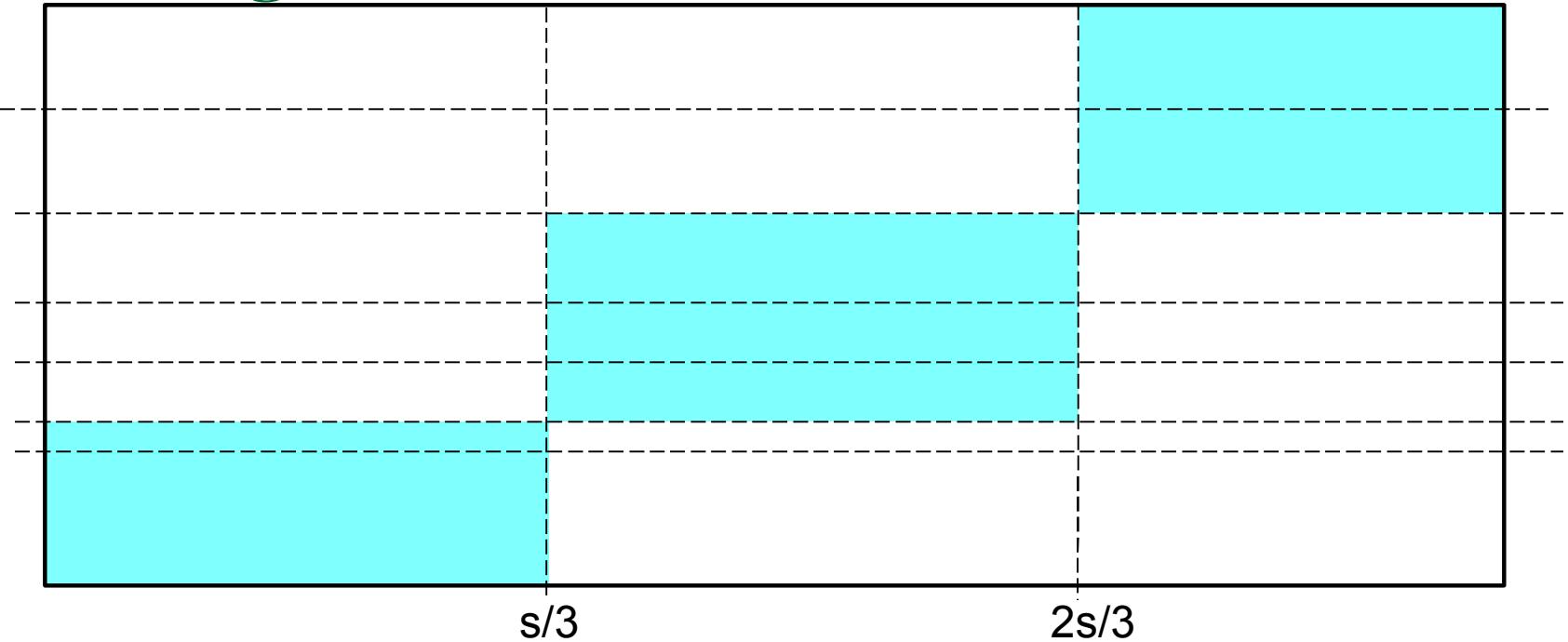
The “Dynamic Programming” phase

Have a look again...



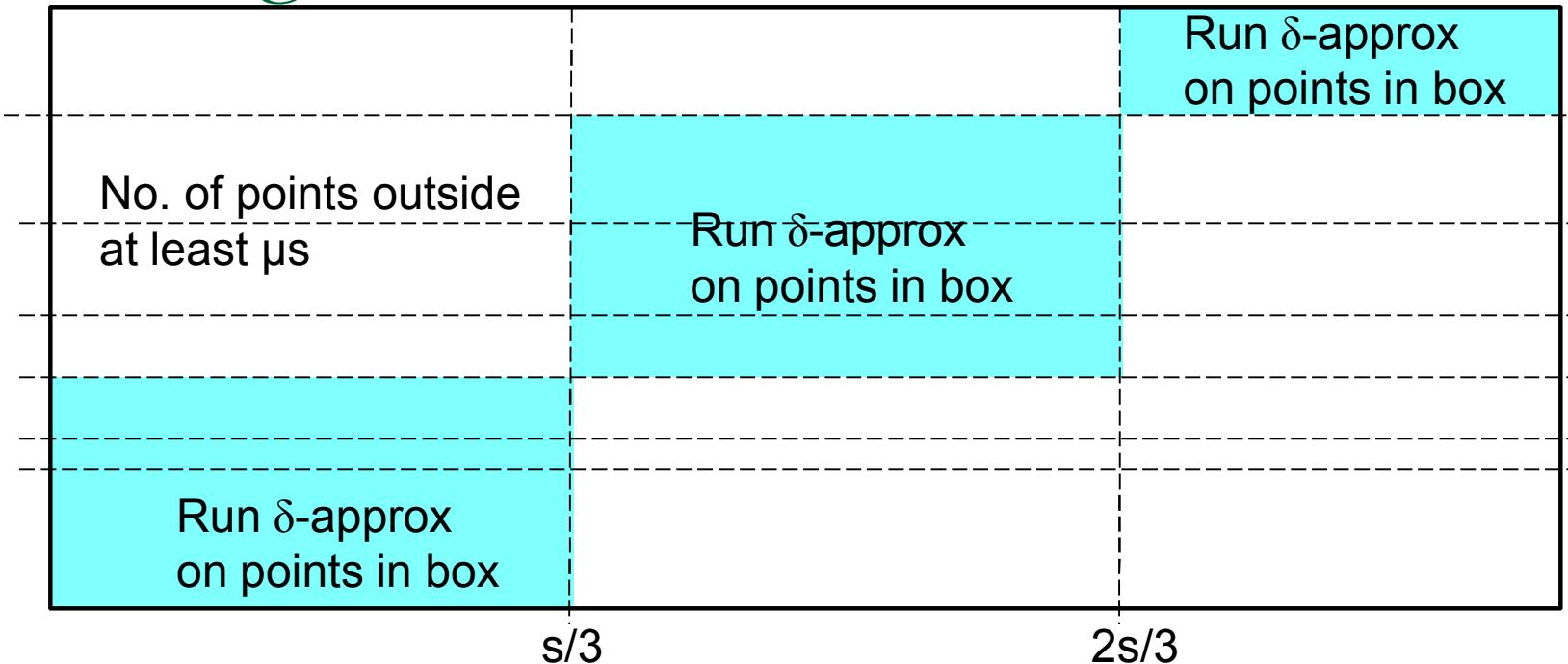
- If no splitter, then **only $(1-\mu)s$ points in any division**
- We take max of all possible sums
 - We get $\delta(1-\mu)$ -approx

A small generalization



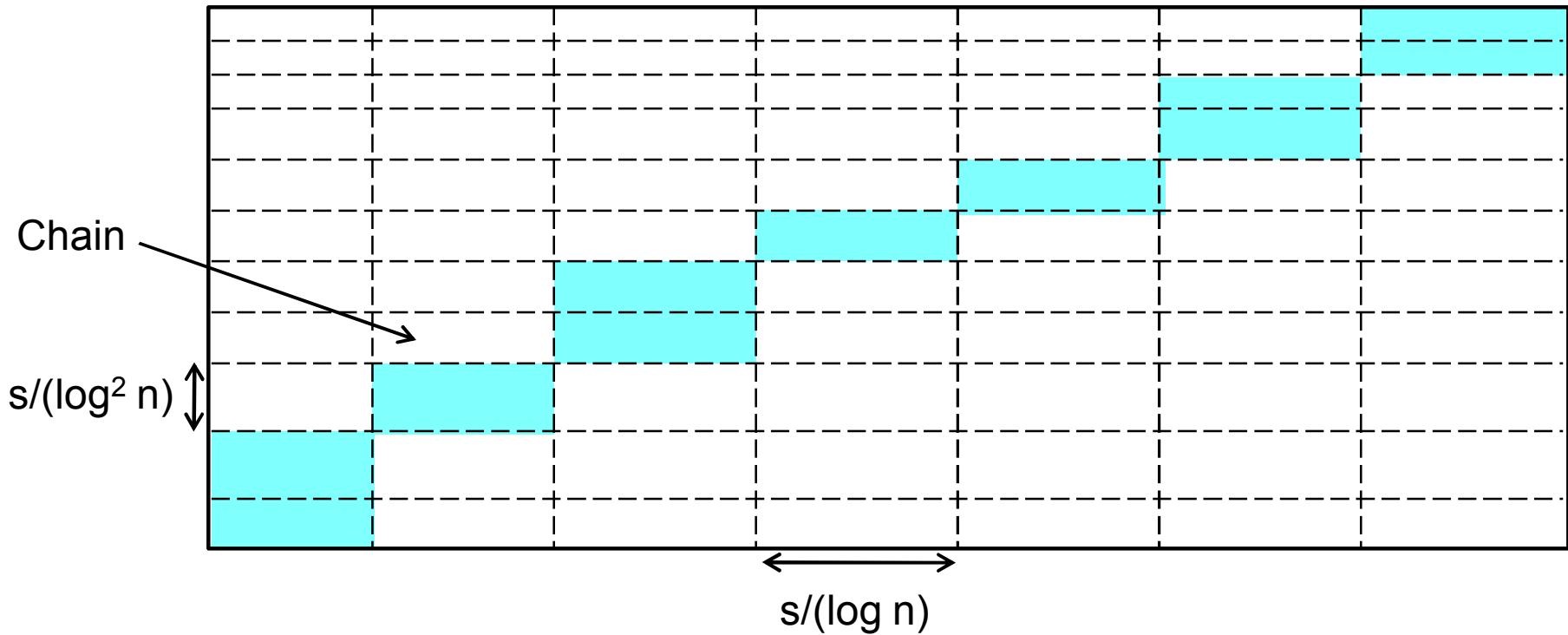
- Suppose **every** “3-way” division has at most $(1-\mu)s$ points

A small generalization



- Suppose **every** “3-way” division has at most $(1-\mu)s$ points
- Do this for all 3-way splits (only $\text{poly}(\log n)$ many)
- Take max over all sums – we get $\delta(1-\mu)$ -approx

A big generalization



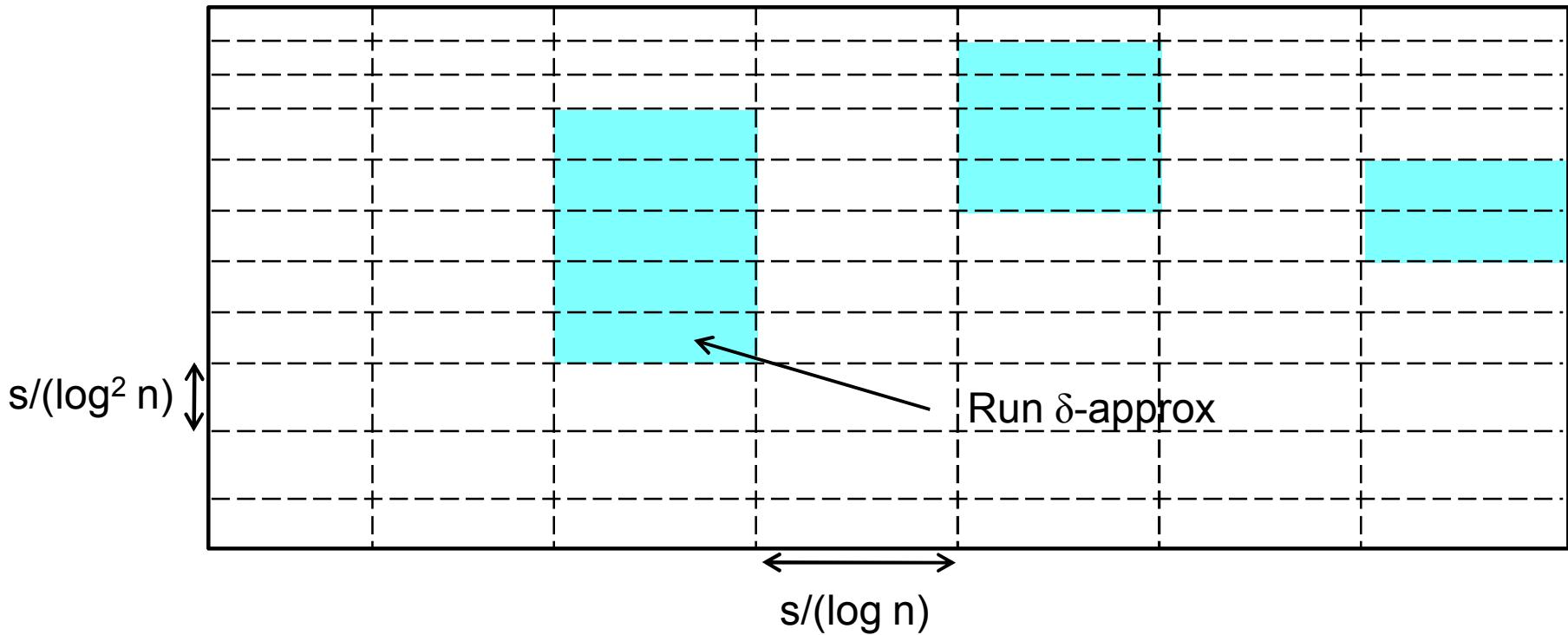
- Suppose **every** “chain” has at most $(1-\mu)s$ points

A big generalization



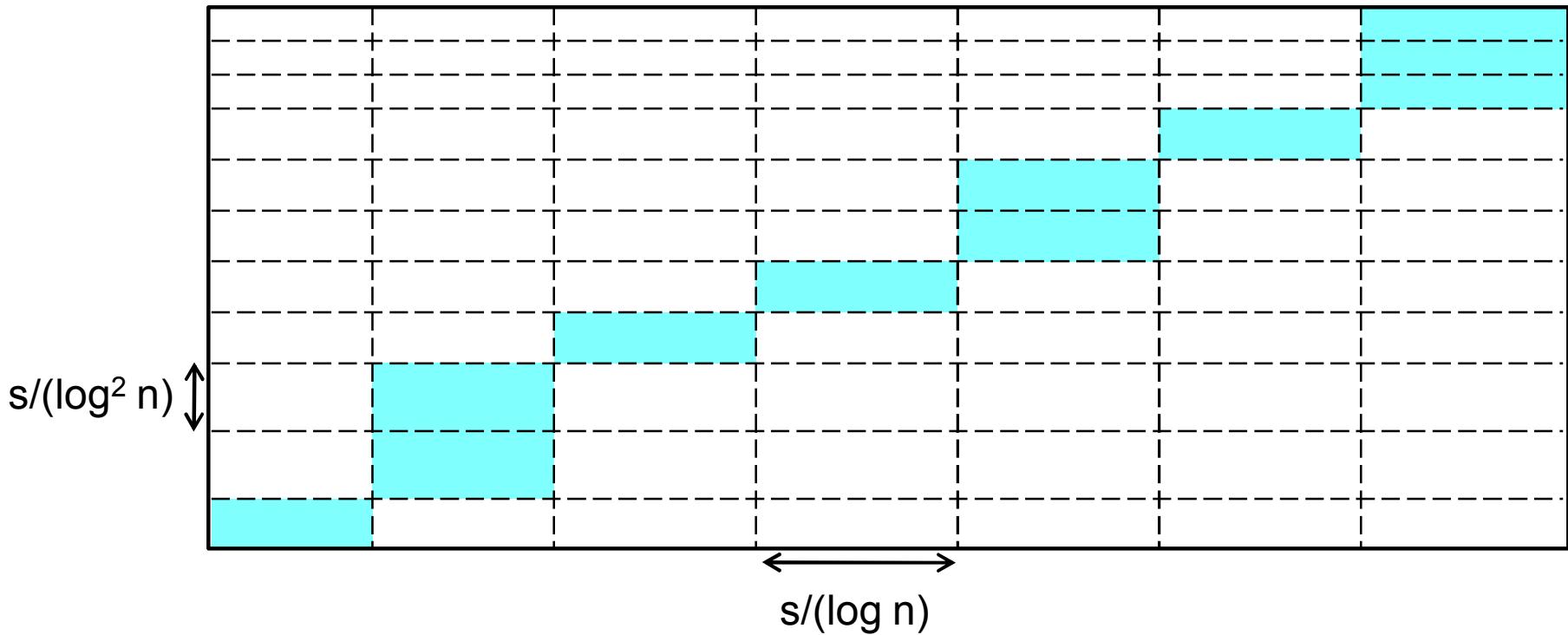
- Suppose **every** “chain” has at most $(1-\mu)s$ points
- Find chain with largest sum of estimates
- We get $\delta(1-\mu)$ -approx
- But there are more than $\text{poly}(n)$ chains!
 - (Not a problem. Why?)

It's...a DP!



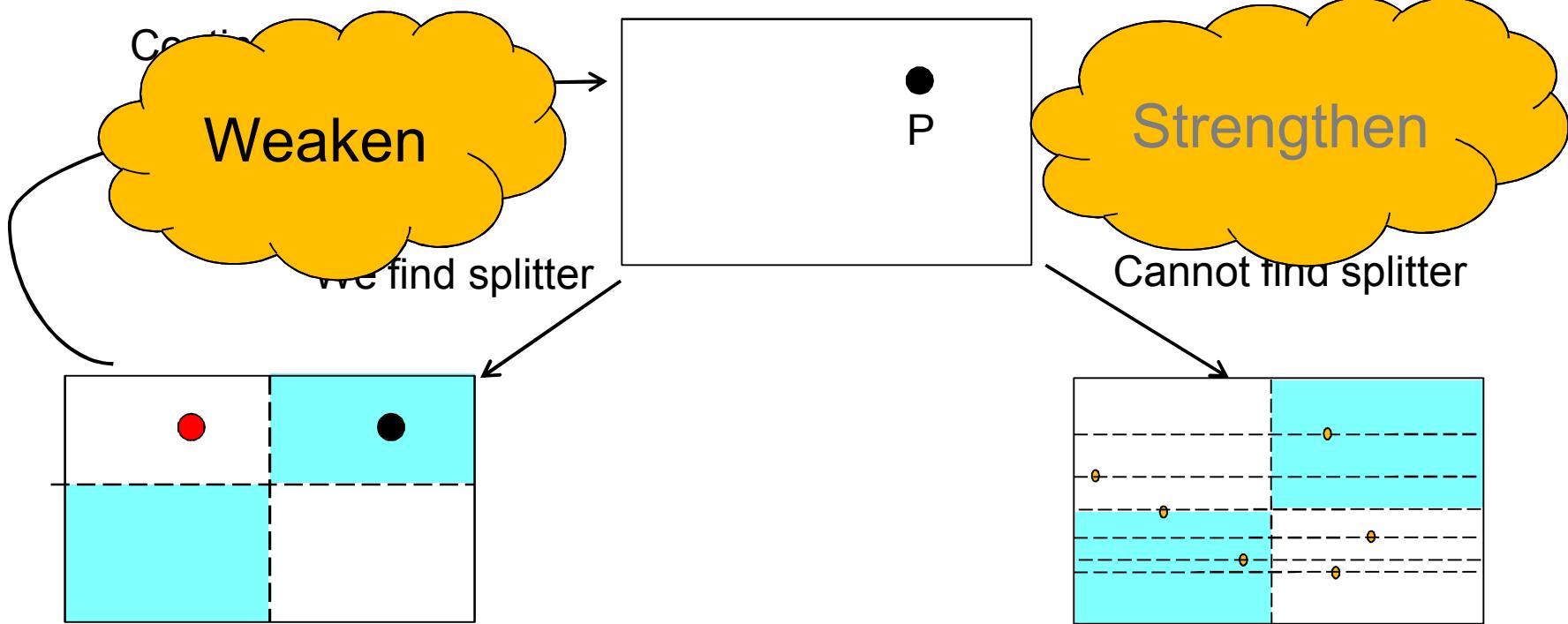
- Run δ -approx on all $\text{poly}(\log n)$ such boxes
- Use Dynamic Program to find chain with largest sum of estimates
 - Longest path in DAG
 - Can solve in $\text{poly}(\log n)$ time

A big generalization



- Suppose **every** “chain” has at most $(1-\mu)s$ points
- In $\text{poly}(\log n)$ time, with $\text{poly}(\log n)$ calls to δ -approx, we get $\delta(1-\mu)$ -approx

The basic dichotomy

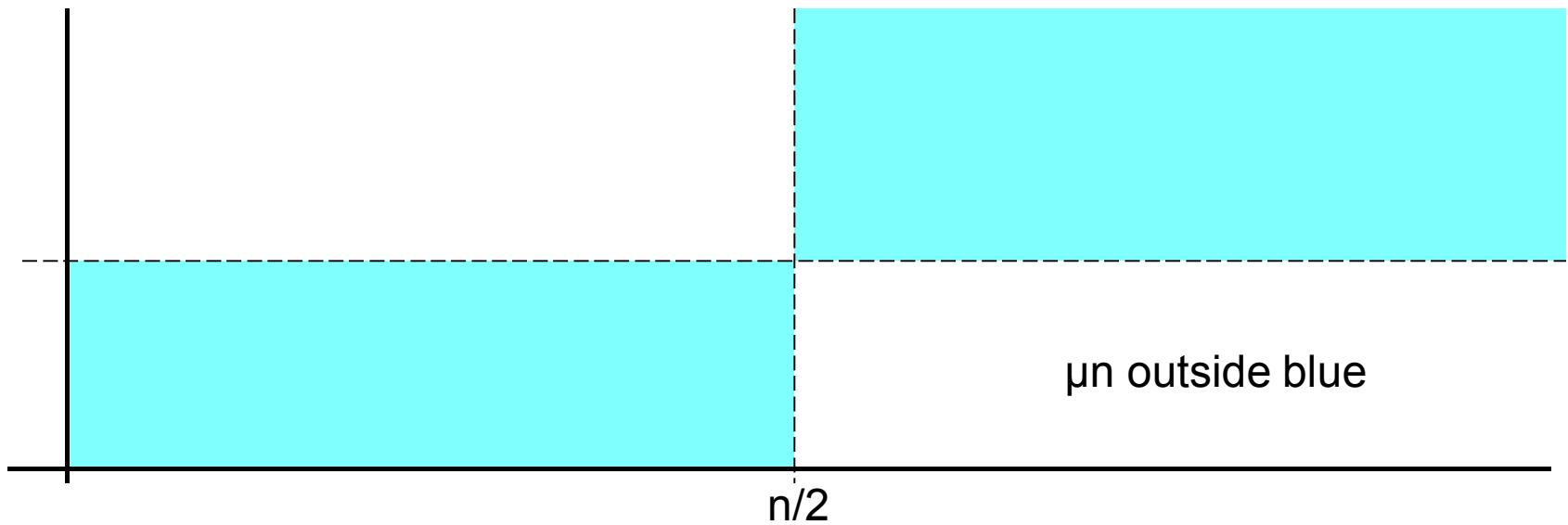


The “Interactive Protocol” phase

- For IP, we need $\mu < 1/\log n$
 - μn is error in each “level” of IP
- For boosting, we need $\mu > 1/\log \log n$
 - $(1-\mu)$ is decrease in error

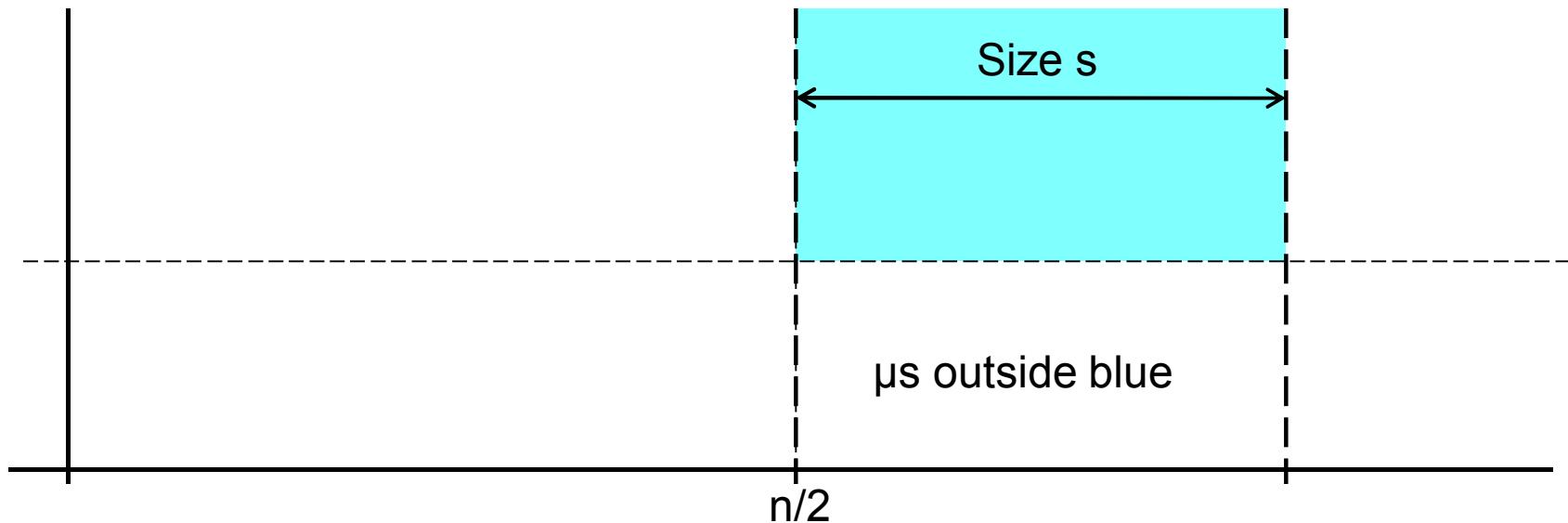
The “Dynamic Programming” phase

The new and improved...



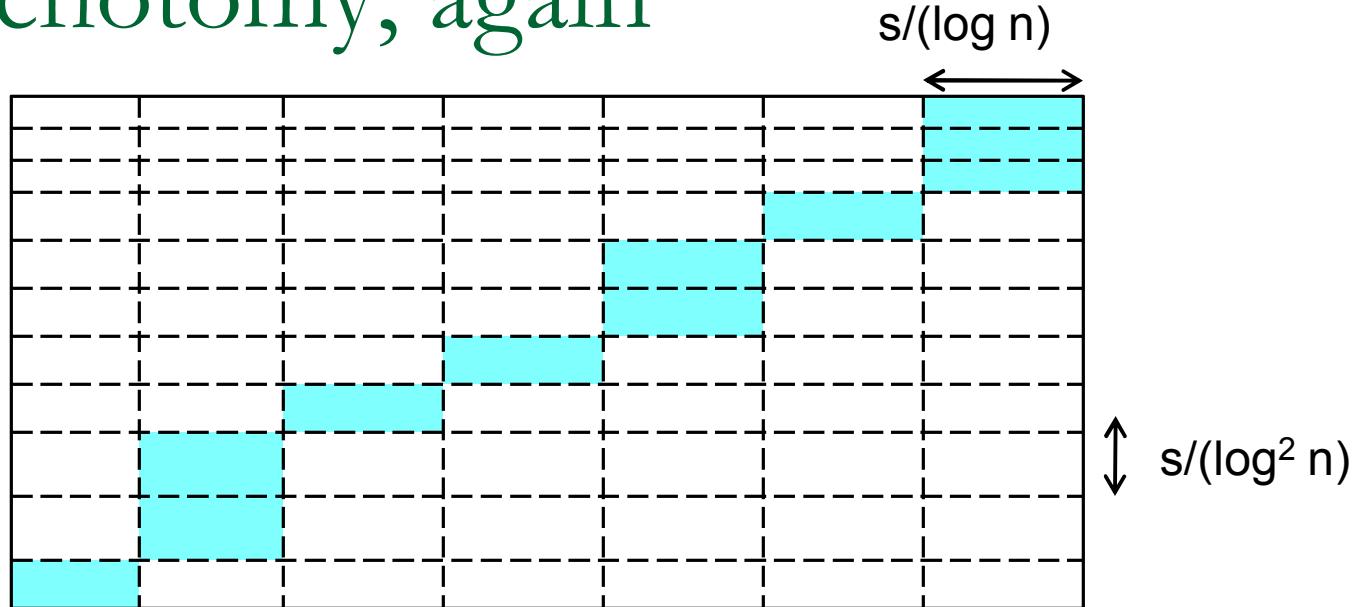
- We set μ to be constant (say $\mu = 1/50$)

The new and improved...



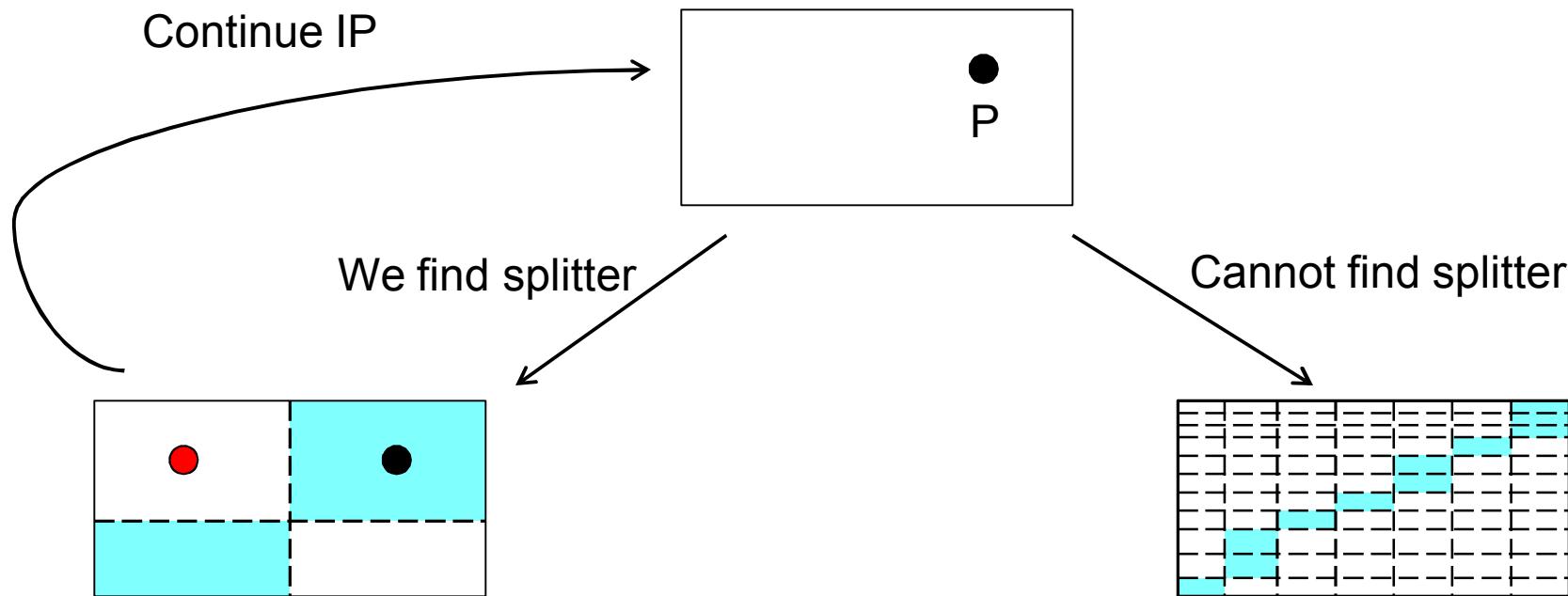
- We set μ to be constant (say $\mu = 1/50$)
- But we now ask for $< \mu$ -fraction of violations in **every interval**
 - As long as interval size $s > n/(100\log n)$
- This is “improved splitter”

The dichotomy, again



- We are unable to find **improved** splitter in this box
- Build grid in the box
- **Lemma:** Since we cannot find splitter, no chain has more than $(1-\mu)s$ points
 - We can find $\delta(1-\mu)$ -approx for LIS in box

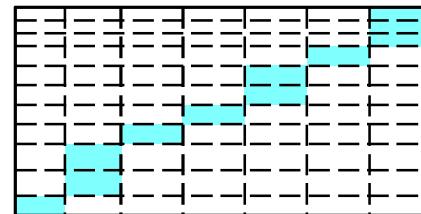
The algorithm, in one slide



- We get $\delta(1-\mu)$ -approx
- Overall running time becomes $(\log n)^{1/\delta}$
 - *%^#\$% miracle that the math works out

Make $\text{poly}(\log n)$ calls to δ -approx. Solve DP of $\text{poly}(\log n)$ size.

The even better version



- Don't exactly solve this dynamic program!
- Use our sublinear algo to approximately solve in $(\log \log n)$ time. Then do it recursively...
 - I know, my head is spinning too
- Greek list: $\alpha \beta \gamma \delta \varepsilon \zeta \lambda \mu \xi \rho \theta \tau \psi$
 - We had ν , but got rid of it

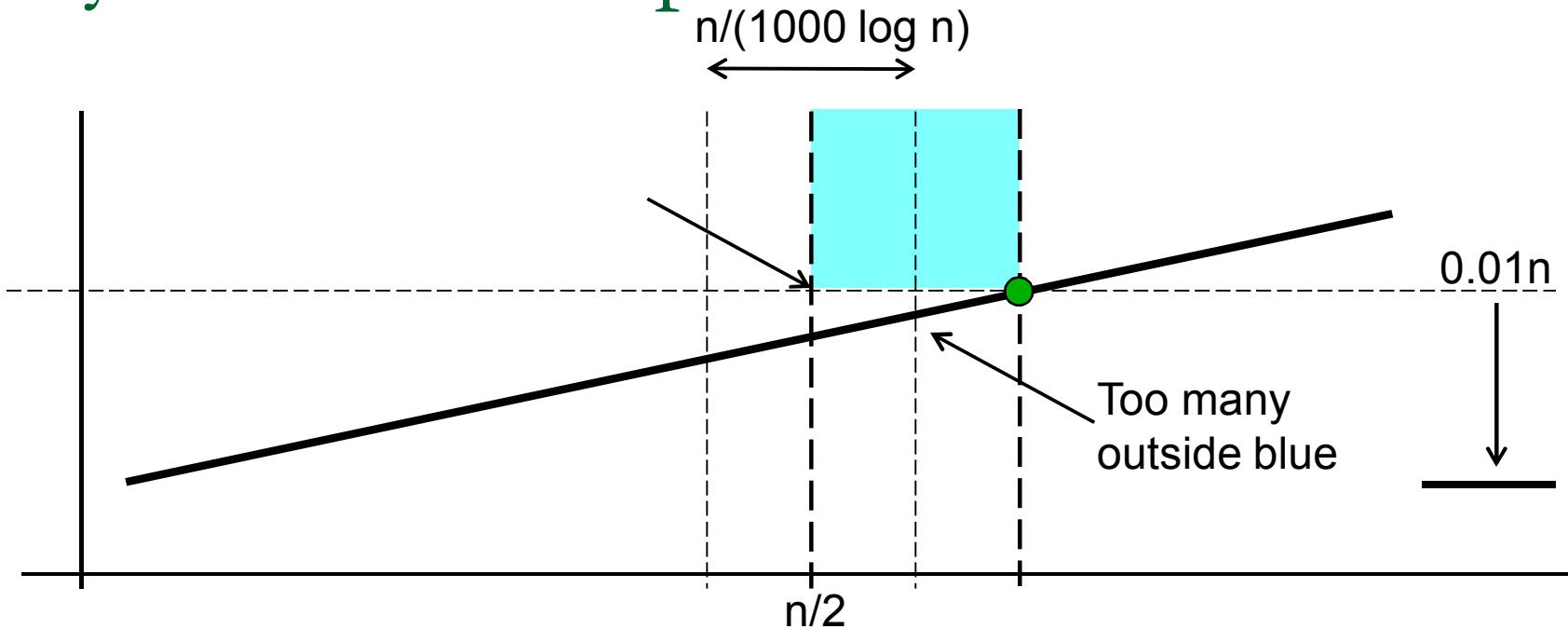
What next?

- We get $2^{1/\delta} (\log n)^c$ time. Can we get $(\log n)/\delta$ time?
 - Would be extremely cool. Completely optimal
- There's a lot going on here. We don't completely get it.
- Applications for other dynamic programs?
 - Longest common subsequence
 - Approximating edit distance
 - ...?

Questions?

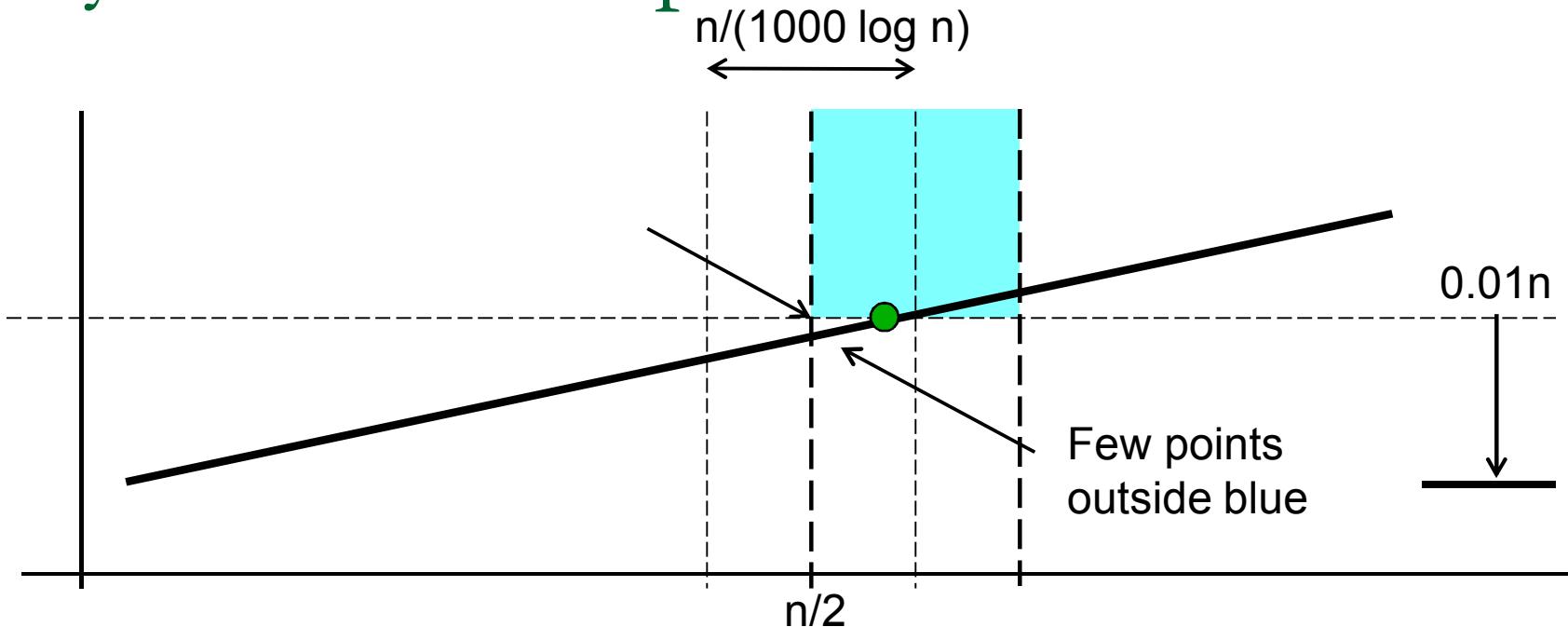
Surely, the talk was not *that* clear.
Or that confusing...

Why does this help?



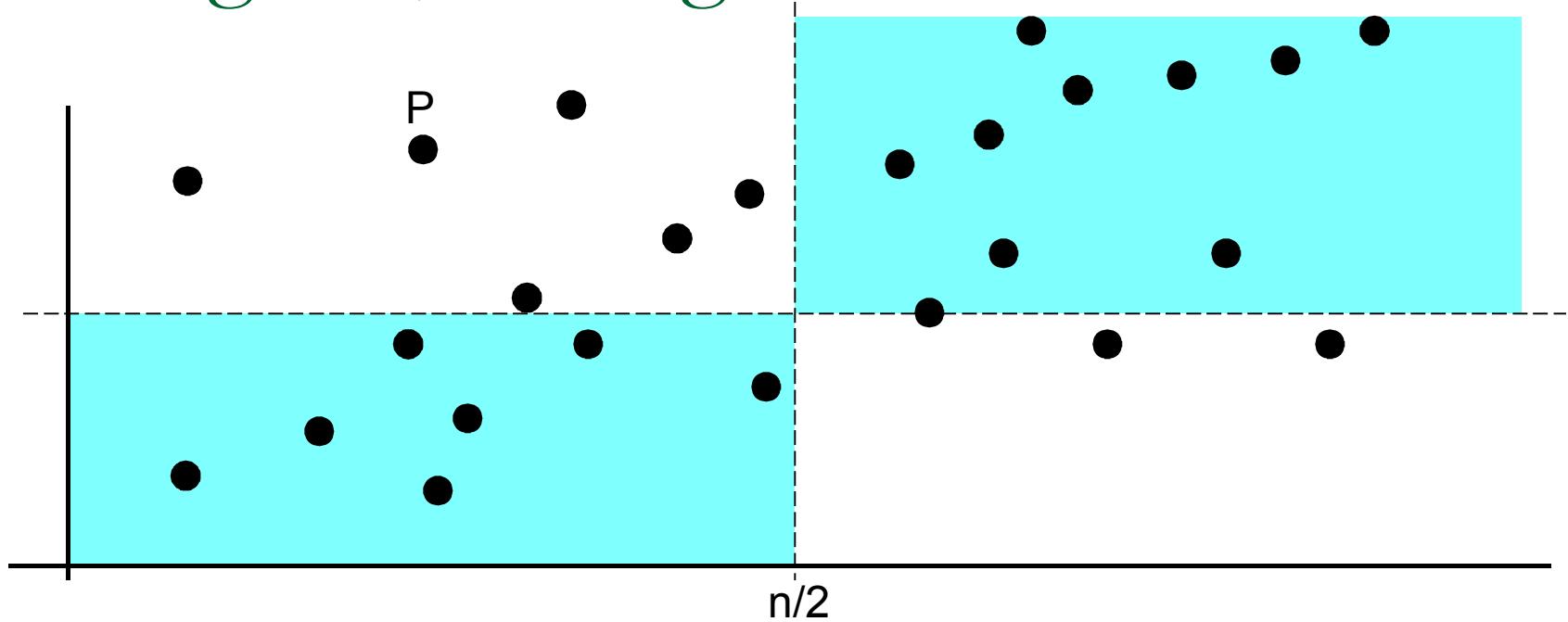
- $\mu = 1/50$, so the small set of violations doesn't hurt
- Point "too far" from real splitter not allowed

Why does this help?



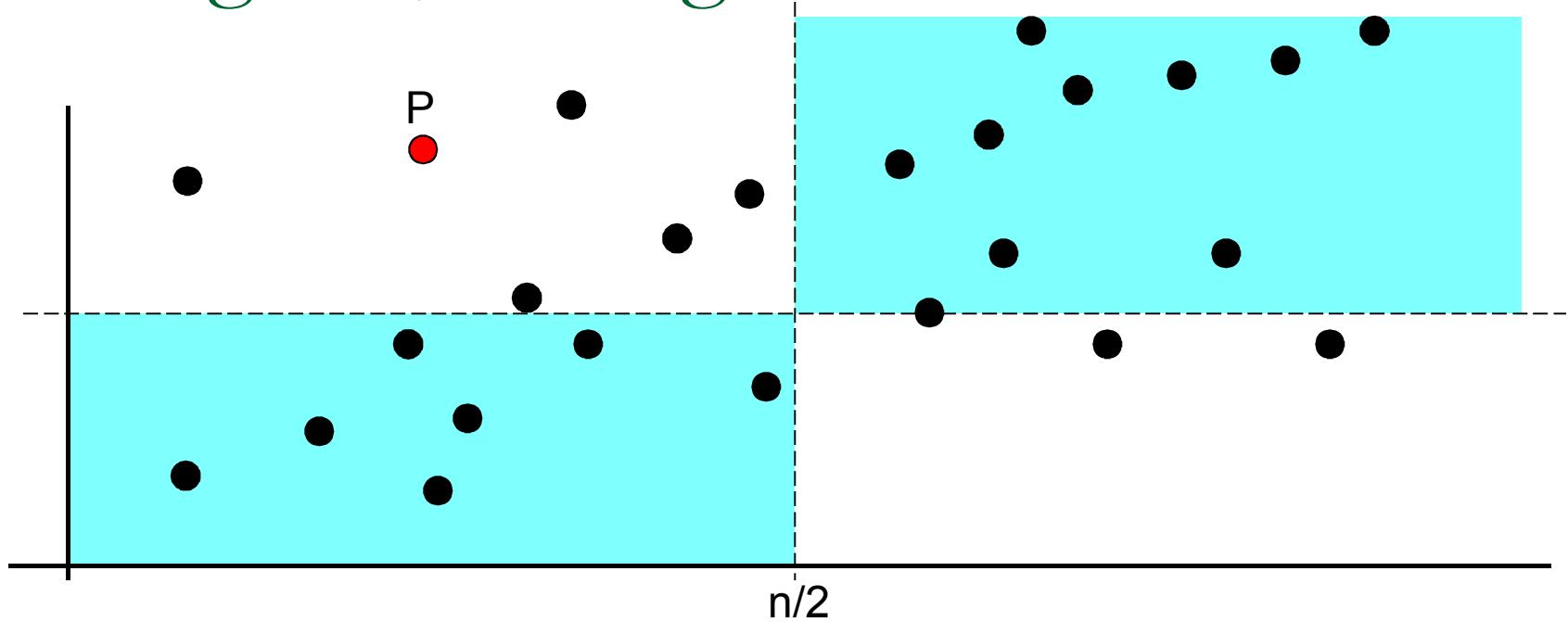
- $\mu = 1/50$, so the small set of violations doesn't hurt
- Point "too far" from real splitter not allowed
- At least $n/(100\log n)$ points are improved splitters
 - So we can find one by sampling

At long last, the algorithm



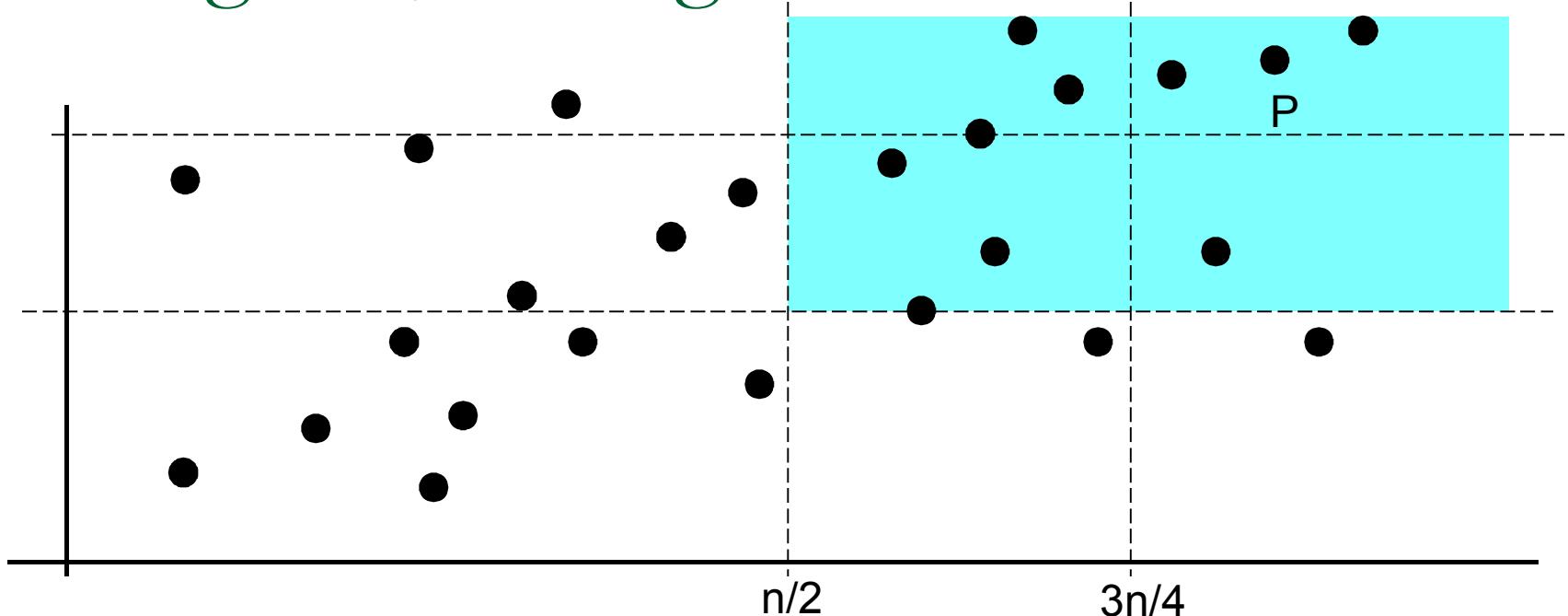
- Is P good or bad?
- Find improved splitter

At long last, the algorithm



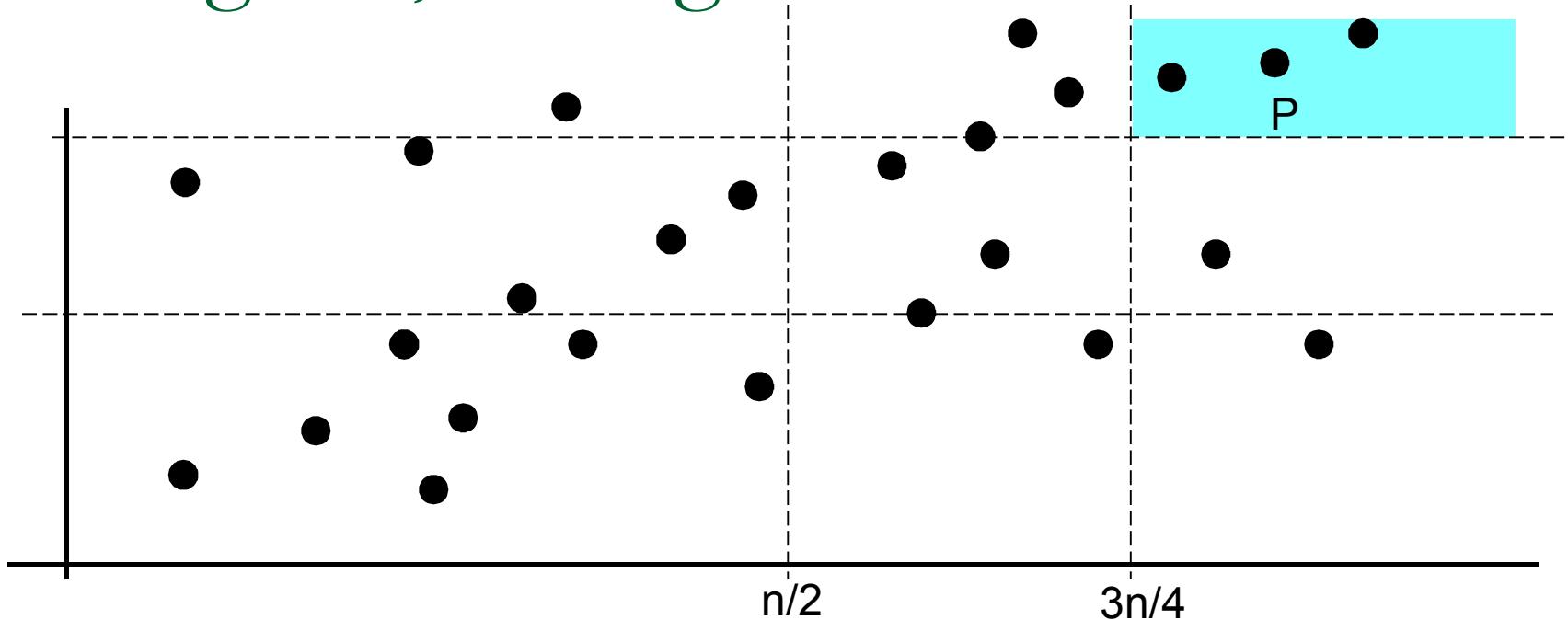
- Is P good or bad?
- Find improved splitter
- So P is bad. We're done

At long last, the algorithm



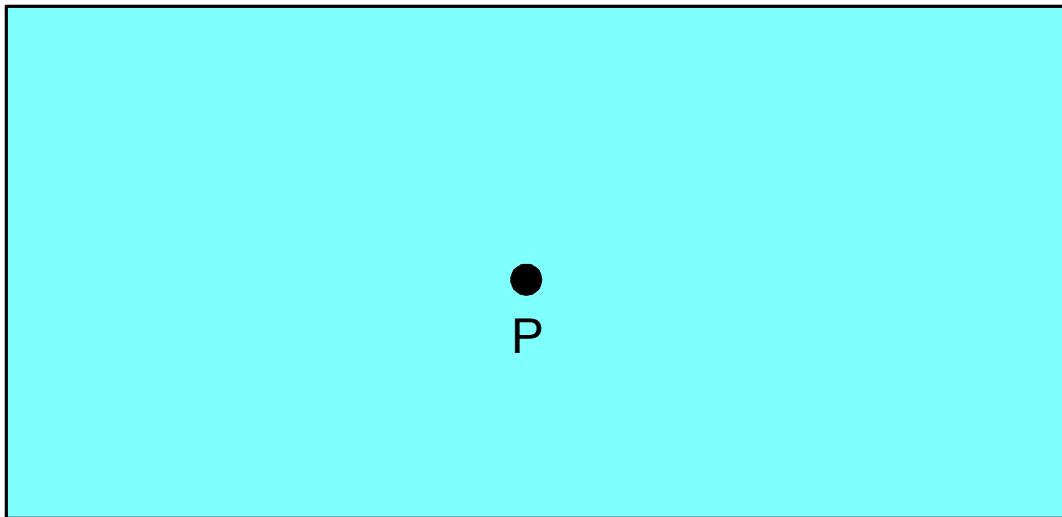
- Is P good or bad?
- Find improved splitter
- Continue with the IP
 - Find next improved splitter, etc, etc,

At long last, the algorithm



- Is P good or bad?
- Find improved splitter
- Continue with the IP
 - Find next improved splitter, etc, etc,

What if...?



- We are unable to find splitter in this box

A lib

Remember?

No. of points

It's going to get
more complicated.

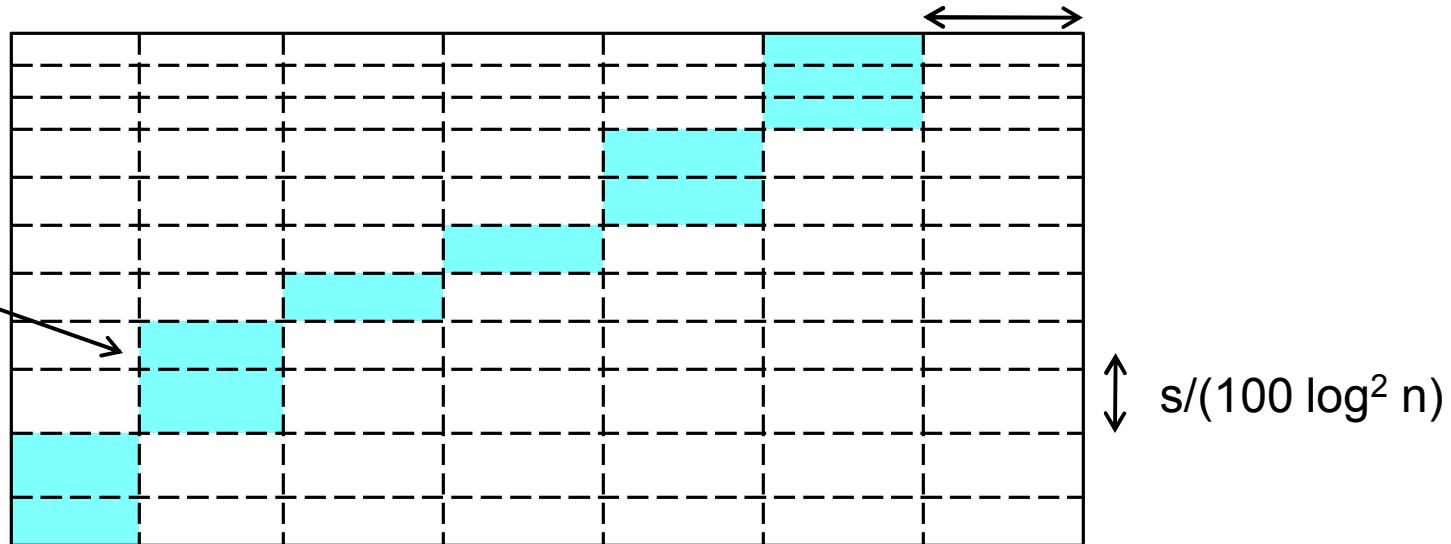
$n/2$

Choose any line

- So we know that $|\text{LIS}| < (1-\mu) n$
- Leads to the next idea. Boosting approximations!

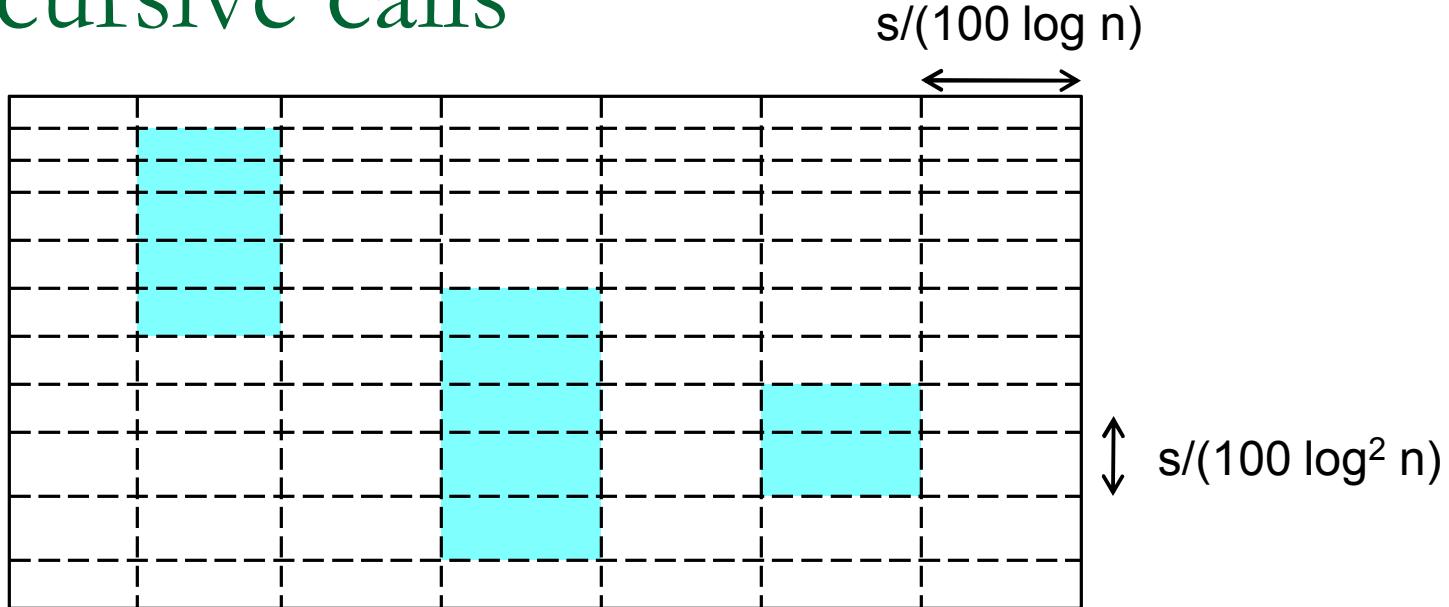
Grid building

Chain of grid boxes



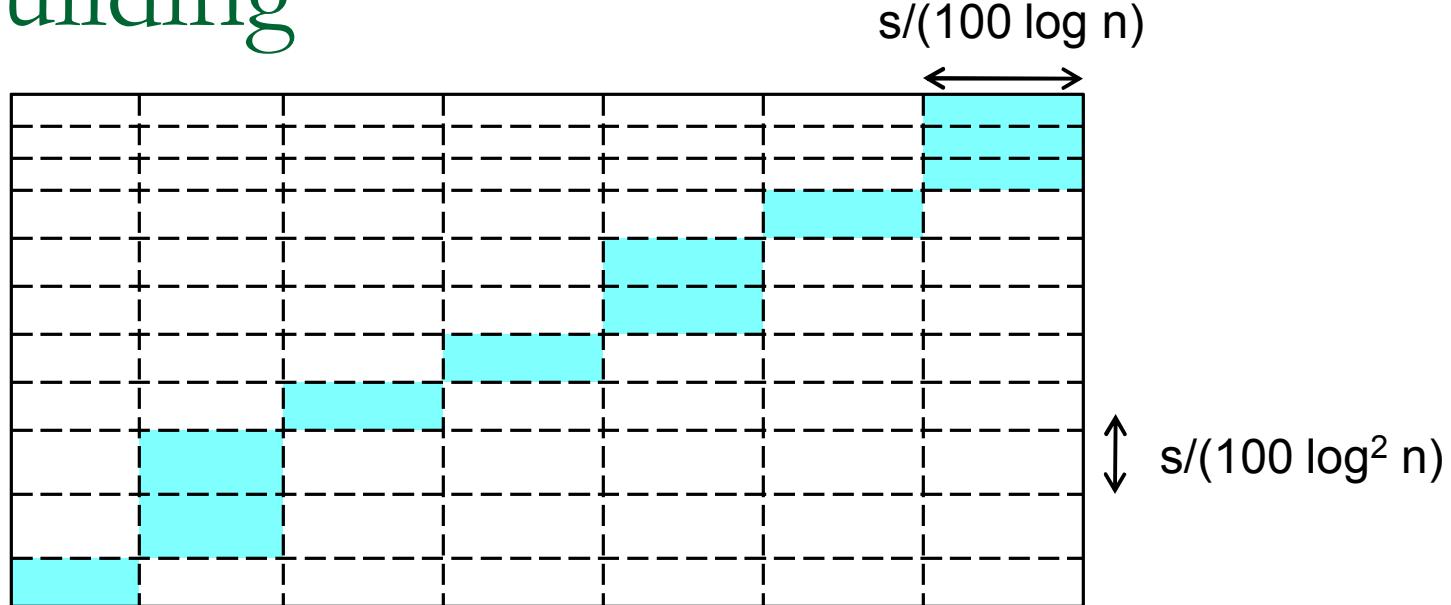
- We are unable to find splitter in this box
- Build grid in the box

The recursive calls



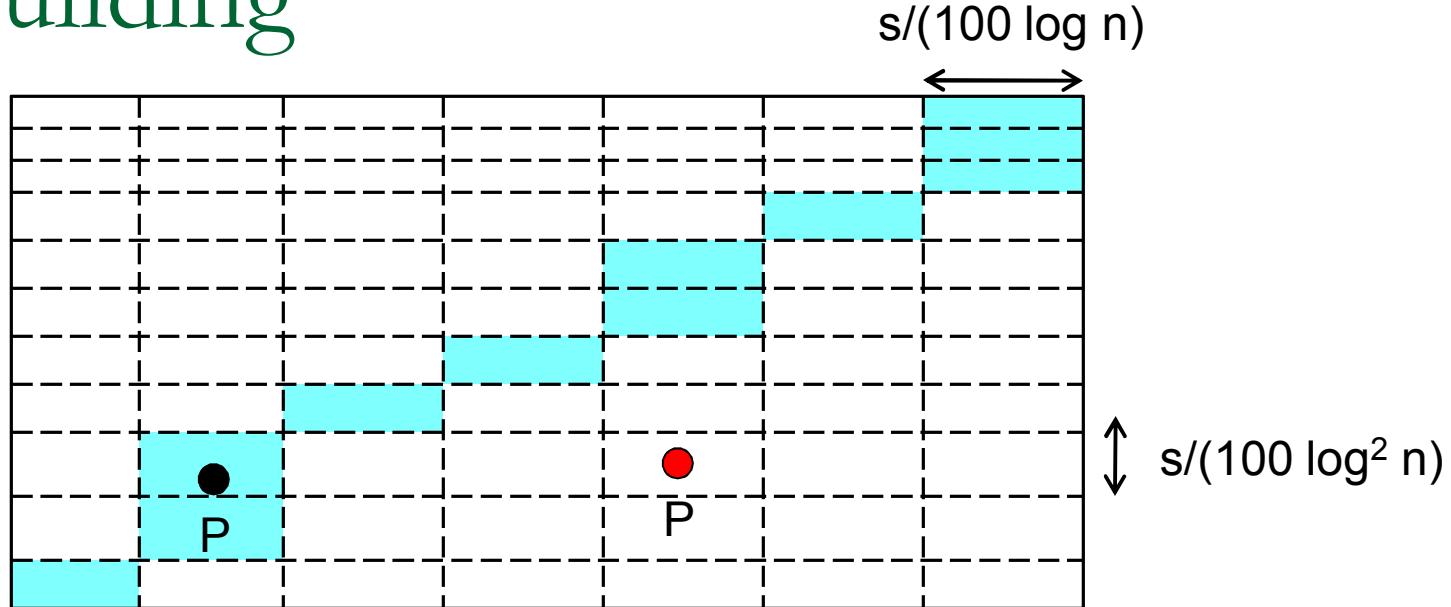
- For grid box B, $\text{length}(B) = \delta\text{-approx LIS estimate in } B$
- Only $\text{poly}(\log n)$ calls to $\delta\text{-approx algorithm}$

Grid building



- Length of chain is just sum of length of boxes
 - This is sort of estimate of LIS inside chain
- The longest chain is our estimate of where is LIS of box
 - Longest path in DAG of size $(\log n)^c$: Solve by dynamic program

Grid building



- The longest chain is our estimate of where is LIS of box
 - Longest path in DAG of size $(\log n)^c$: Solve by dynamic program
- If P in longest chain: in box B, use δ -approx to check if P is good.