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1 Introduction

As part of the Center for Programming Models for Scalable Parallel Computing, Rice University
collaborated with project partners in the design, development and deployment of language, com-
piler, and runtime support for parallel programming models to support application development
for the “leadership-class” computer systems at DOE national laboratories.

A principal goal of work at Rice University was refining the Coarray Fortran (CAF) program-
ming language, compiler and runtime so that it is expressive (natural for expressing a broad spec-
trum of algorithms, constructing efficient parallel data structures, and supporting both static and
dynamic strategies for decomposing work); productive (programs are as easy to write as possible);
high performance (across the spectrum of computing platforms ranging from commodity clusters
to leadership-class systems); scalable to leadership-class computer systems with tens to hundreds of
thousands of processors; portable; and interoperable with other programming models and program
development tools. A secondary goal of this effort was to develop new compiler technology that
support higher-level “global view” parallel programming models.

Over the term of the award, the work at Rice University proposed to focus on the follow-
ing themes: refine language-based parallel programming models for emerging platforms; refine
language-based programming models for higher performance and better expressiveness; investigate
compiler technology for global view parallel programs; explore interoperability of parallel program-
ming models; and investigate integration with programming environments and tools. Rice was to
design, develop, and deploy open-source software that embodies the results of this research.

2 Summary Description of the Research Performed

Work over the course of this project has focused on the design, implementation, and evaluation of
a second-generation version of Coarray Fortran. Research and development efforts of the project
have focused on the CAF 2.0 language, compiler, runtime system, and supporting infrastructure.
This work has involved working with the teams that provide infrastructure for CAF that we rely
on, implementing new language and runtime features, producing an open source compiler that
enabled us to evaluate our ideas, and evaluating our design and implementation through the use of
benchmarks.

To provide context and motivation for our work, in Section 2.1, we describe the state of Coarray
Fortran as this project began. Section 2.2 describes the emergence of a problematic effort to add
coarrays to the Fortran Standard. Section 2.3 describes our new Coarray Fortran 2.0 language
extensions; Section 2.4 describes our CAF 2.0 compiler. Section 2.6 explores the expressiveness
of CAF 2.0 by using it to implement the HPC Challenge benchmarks. Section 2.7 describes the
award-winning productivity we achieved with CAF 2.0 versions of the HPC Challenge benchmarks.

2.1 Deep Background: Coarray Fortran’s Original Design

In 1998, Numrich and Reid proposed a small set of extensions to Fortran 95 to support parallel
programming that they dubbed Coarray Fortran (CAF) [20]. They envisioned CAF as a model for
SPMD parallel programming based on a static collection of asynchronous process images (known as
images for short) and a partitioned global address space. Their principal extension to Fortran was
support for shared data in the form of coarrays. Coarrays extend Fortran’s syntax for type decla-
rations and variable references with a bracketed tuple that is used to declare shared data or access
data associated with other images. For example, the declaration integer :: a(m,m)[*] de-
clares a shared coarray with n x m integers local to each image. Dimensions in the bracketed tuple
are called codimensions. Coarrays may be declared for primitive or user-defined types. The data
for a coarray associated with an image may be a singleton instance of a type rather than an array
of type instances. Instead of explicitly coding message exchanges to obtain data belonging to other



images, a CAF program can directly access a coarray associated with another image by appending
a bracketed tuple to a reference to a coarray variable. For instance, any image can read the first
column of data in coarray a from image p by evaluating a(:,1) [p].

Numrich and Reid’s design for CAF included several synchronization primitives. The most im-
portant of these are the synchronous barrier sync_all; sync_team, which is used for synchronization
among dynamically-specified teams of two or more processes; and start_critical/end _critical,
which control access to a global critical section.

2.2 Motivation: Flawed Coarray Extensions in the Emerging Fortran Standard

In 2005, the Fortran Standards committee began exploring the addition of coarray constructs to the
emerging Fortran 2008 standard. Their design closely follows Numrich and Reid’s original vision.
Coarrays are shared data allocated collectively across all images. A coarray can have multiple
codimensions enabling one to conveniently index a coarray distributed over a grid of process images
that is logically multidimensional. Our earlier criticisms about Numrich and Reid’s teams in CAF
supporting only all-pairs communication rather than efficient collective operations led the Fortran
Standards Committee to consider support for pre-arranged image teams. Unfortunately, support
for image teams has been tabled for Fortran 2008, although it may be considered for inclusion
in the future. Our detailed critique [17] of the coarray extensions proposed for Fortran 2008 and
identified several shortcomings in emerging coarray extensions that limit their expressiveness:

e There is no support for processor subsets; for instance, coarrays must be allocated over all
images.

e The coarray extensions lack any notion of global pointers, which are essential for creating and
manipulating any kind of linked data structure.

e Reliance on named critical sections for mutual exclusion hinders scalable parallelism by asso-
ciating mutual exclusion with code regions rather than data objects.

e Fortran 2008’s sync images statement (a reworked version of Numrich and Reid’s sync_team)
enables one to synchronize directly with one or more images; however, this construct doesn’t
provide a safe synchronization space. As a result, synchronization operations in user’s code
that are pending when a library call is made can interfere with synchronization in the library
call.

e There are no mechanisms to avoid or tolerate latency when manipulating data on remote
images.

e There is no support for collective communication.
e There is no support for hiding communication latency.

2.3 Coarray Fortran 2.0

The aforementioned shortcomings caused us to rethink the CAF model. Our aim was to develop
an expressive set of parallel extensions for Fortran that map well onto parallel systems of all sizes,
ranging from multicore nodes to petascale platforms. The product of our efforts was a set of
language extensions to Fortran that we call Coarray Fortran 2.0 (CAF 2.0).

Our redesign of coarray extensions for Fortran has been largely driven by practical experiences
gained while developing applications with it and analyzing their performance. Early application
development focused on the HPC Challenge (HPCC) benchmark suite,! a well-recognized litmus

"http://www.hpcchallenge.org/



test for parallel programming models and languages in the HPC space. Subsequent effort has
targeted DOE mission-critical codes including LANL’s Parallel Ocean Program component of the
Community Earth System Model, Sandia’s S3D combustion code, and Heat — a model for LANL’s
SAGE code, which performs cell-by-cell adaptive mesh refinement.

Our design of new coarray extensions for Fortran focused on three core tenets: orthogonal-
ity, expressiveness, and simplicity. In a nutshell, CAF 2.0 provides full support for processor
subsets, logical topologies that are more expressive than multiple codimensions, dynamic alloca-
tion of coarrays, scalable mutual exclusion, safe synchronization spaces, collective communication,
asynchronous operations for latency hiding, function shipping for latency avoidance, copointers to
remote memory, and a memory model that enables one to trade ease of use for performance. We
explore key features of our new CAF 2.0 extensions in the subsections that follow. Most of these
ideas are inspired by features in MPI [26] and Unified Parallel C [10]. Here, we describe their
realization as a cohesive whole to support parallelism in Fortran.

Process Subsets (Teams) Processor subsets is a useful abstraction for decomposing work in a
parallel application. Processor subsets can be used in coupled applications (e.g., ocean and atmo-
sphere subsets in a climate application) as well as within dense matrix numerical computation such
as matrix decomposition and solver for linear equations (e.g., finding pivot element and exchange
rows within column subsets and broadcast factored panel across row subsets). Earlier drafts of For-
tran 2008 included support for image teams; however, these teams were designed solely to support
collective communication. Here we describe a broader vision for teams.

In Coarray Fortran 2.0, a team is a first-class entity that consists of an ordered sequence of
process images. Teams need not be disjoint and a process image may be a member of multiple
teams. A team serves three purposes. First, it represents a set of process images. This set
of images can serve as a domain onto which coarrays may be allocated. Second, it provides a
namespace within which process images and coarray instances can be indexed by an image’s rank
r in a team t, where r € {0..team_size(t) - 1}, rather than an absolute image ID. As identified
by Skjellum [25], relative indexing by rank is particularly useful for supporting the development of
libraries, where code needs to be reusable across sets of processor images. Third, a team provides
a domain for collective communication.

When a CAF program is launched, all process images are initially part of a pre-defined team
known as team world. New teams may be constructed from existing teams by using the collec-
tiveteam_split(existing team, color, key, new_team). The split operation was inspired by the
functionality of MPI’s MPI_Comm_split [18]. As with MPI_Comm _split, each process image invoking
team_split on an existing team provides a positive integer color (or color_undefined) and a key.
Images that supply the same positive value for color will be assigned to the same new subteam. If
an image provides the value color_undefined, it will not be assigned a new subteam. Members of
a subteam result are ordered by the supplied key; if two members of the existing team supply the
same color and key, their rank in the new team will be ordered by their rank in existing team.

As is well understood, through judicious choice of color and key, one can use team_split to
create a new team in which the participating process images are simply a permutation of the images
in the existing team, or to create one or more subset teams. One might create a new team that is
a permutation of an existing team to order process images within the new team so that adjacent
images are closer in the physical topology of the target platform on which the program is executing.

A team constructed with team_split can be dismissed with a call to team_free (similar to
MPI’s MPI_Comm_free) after it is no longer needed. When a team is freed, its allocated resources
are released and the team no longer exists.



Data allocation Both Numrich and Reid’s original CAF and Fortran 2008 require that coar-
rays be allocated across all process images. For applications where processor subsets need to work
independently, it is unreasonable to ask that all processors be involved if a subset needs to dy-
namically allocate some shared data. Second, if one writes a parallel library that might be used
concurrently by different processor subsets, it is unreasonable to require that all shared data allo-
cated by the library (a) be known to the library’s callers or (b) be associated with global variables
within the library package. These observations led to our design, which supports dynamic allocation
of coarrays on processor subsets, and dynamic allocation of coarrays into local variables. Unlike
prior proposals, we only allow one to specify a single codimension for a coarray in its declaration.
Rather than supporting multidimensional coarrays, we support more general structured indexing
of process images through topologies associated with teams, which we describe in the next section.

Although coarrays are associated with process images, each coarray allocation or indexing op-
eration is explicitly or implicitly associated with a team. When one allocates or indexes a coarray,
one may specify an explicit team. If no team is specified explicitly, the default team, known as
team_default, is used. When a CAF program is launched, team_default is set to team_world. A
with team statement (inspired by the with statement in PASCAL) is a block structured construct
for setting the default team, team_default within its scope. Unlike PASCAL’s with, CAF 2.0’s
with team has dynamic scope, meaning that its binding for the default team applies not only to the
code lexically enclosed in the with team block, but also to any code called from within the block.
We use LIFO semantics for dynamically nested with team statements. When one or more coarrays
are allocated on images associated with a given team, a barrier synchronization is performed on
the team to ensure that all coarrays have been allocated and are ready for use. Indexing with a
codimension is done with a relative rank with respect to an explicit or default team.

Topologies Fortran 2008 and earlier flavors of CAF only provide multidimensional coarrays as a
form of structured namespace for interprocessor communication. Any other structured organization
for indexing process images must be implemented in user code using arithmetic on image IDs or
using index arrays. In CAF 2.0, we associate a logical topology with a team to provide a structured
namespace for intra-team communication that is relative to members’ ranks in the team, not to
their absolute image ID. Like MPI, CAF 2.0 supports two types of topologies: Cartesian and graph.

For CAF 2.0 we have settled upon a one to one association between teams and topologies.
Although it may seem desirable to change the topology for a team, we note that calling team_split
with a constant for the color parameter allows one to create a clone of the team that has not yet
been associated with any topology; a different topology can be used in conjunction with a team’s
clone.

Topology API To associate a topology with a team, one invokes topology_bind, which has
parameters for the team and the topology to be associated, and returns an error if a topology
has already been associated with the team. The programmer may either specify an ordered set of
processor images to map onto the topology, or use an overloaded version of the function that asks
the CAF runtime to bind the topology with a good mapping to the underlying processor fabric.
Finally, topology_get extracts the topology associated with a team, or returns an error if there is
none.

Graph topology Any topology can be expressed as a graph G=(V,E). To create a graph
topology in CAF 2.0, one simply calls topology graph(n, c), where n is the number of nodes
in the graph, and c is the number of edge classes. For an undirected graph, one might use a
single edge class: neighbors. For a directed graph, one could use two edge classes: successors
and predecessors. Additional flavors of edge classes could be used to distinguish edges within



or between processor nodes. Our general interface leaves it to the imagination of the user. To
populate edge classes in graph g, one may call graph neighbor_add(g, e, n, nv) to add one or
more image neighbors (nv can be a scalar or a vector value) to edge class e for image n. The
operation graph neighbor_delete(g, e, n, nv) can be used in the course of updating g’s edges.
Note that not every image needs to specify every edge connection; it is sufficient to declare the
edges attached to the image’s node and have the CAF runtime construct the full topology from
this distributed information.

To index a scalar coarray f using a graph topology g associated with a team t, one uses the
syntax f[(e,i,k)@t]. The tuple (e, i, k) references the k' neighbor of image i in edge class
e in the topology bound to t. If the team t is implicit (e.g., inherited from a with statement or
team_world), the parentheses of the tuple may be omitted for convenience, simplifying the syntax
to £[e,i,k]. One can use the intrinsic graph neighbors(g, e, n) to determine the number of
image n’s neighbors in edge class e in graph g.

Cartesian topology In a sense, Cartesian topologies are just a subset of general graph
topologies; however, they are common enough to merit explicit treatment and custom support. To
define a Cartesian topology, one calls topology_cartesian, which takes as parameters the extent
of each dimension. As toroidal topologies are common for periodic boundary conditions, a negative
extent for a dimension indicates that the topology of the dimension is circular.

Accessing a node in a Cartesian topology can be done by specifying a comma-separated tuple of
indices (di,ds,ds, ..., dy) Where one would otherwise specify an image rank, e.g. my_data(3) [(x+1,
y+1)0@team grid]. As with graph topologies, if the team is implicit, one may omit the tuple’s
parentheses; in this way, we support syntax as simple as multidimensional coarrays, although our
indexing support is more general in that any dimension of the Cartesian topology may be circular
for periodic boundary conditions.

It is also highly desirable to support relative indexing within a topology. We do this by placing
the offsets in parentheses and prepending a + sign: foo[+(3,-4)] specifies an offset of (+3, -4)
from the current image’s position in a 2D Cartesian topology. Similarly, foo[+(-1),0] is the first
column of the previous row in a 2D Cartesian topology; note that in this example, the first subscript
is relative and the second is absolute.

Copointers CAF 2.0 adds global pointers to the Fortran language in support of irregular data
decompositions, distributed linked data structures, and parallel model coupling. The definition
and use of these new ”copointers” is as similar as possible to ordinary Fortran pointers: they are
declared with new attributes analogous to ’pointer’ and ’target’, manipulated with the existing =>
pointer assignment statement, and inspected with the existing pointer intrinsics. Accessing data
via copointers is as similar as possible to existing coarray accesses, with implicit access to the local
image and explicit access to remote images using a square-bracket notation. CAF 2.0’s copointers
may point to values of any type, including coarrays; we believe that copointers to coarrays will
be especially valuable for parallel model coupling in systems like the Community Earth System
Model. Copointers can be implemented easily and efficiently in existing CAF compilers; as of this
writing, copointers are not yet fully implemented in our CAF 2.0 prototype. A detailed note about
our design for copointers was submitted to the Fortran Standards Committee for consideration and
is publicly available as ftp://ftp.nag.co.uk/sc22wg5/N1851-N1900/N1856.txt from Working Group
5’s web server.

Mutual exclusion Based in part on our feedback [17], locks were added to Fortran 2008 to support
mutual exclusion. In CAF 2.0, we further support deadlock-free multi-lock synchronization by
allowing the programmer to transparently acquire a set of locks as a single logical operation.



Statement Description

eventset_init Initialize a freshly allocated eventset

eventset_add Add a single event to an eventset

eventset_addarray | Add an array of events to an eventset

eventset_remove Remove a single event from an eventset

eventset_destroy | Remove all events from an eventset and reclaim resources associated with it

Table 1: Eventset API for manipulating events in the set.

Statement Description

eventset_waitany Wait until one event has triggered, checking in priority order
eventset_waitany fair | Wait until an events with the least number of recorded triggers has triggered
eventset_waitall Wait until all events have triggered

eventset_notifyall Notify all events

Table 2: Eventset API for manipulating events.

CAF 2.0 provides three language constructs for mutual exclusion.

1. Lock. This is the standard mutual exclusion state variable; lock_acquire and lock_release
statements acquire and release it, respectively.

2. Lockset. Locksets foster safety in multi-lock operation by performing acquires of component
locks in a globally-defined canonical order.

3. Critical section. Critical sections in CAF 2.0 are simply a block-structured construct for
acquiring and releasing a lock or lockset, either of which may be dynamically allocated.

Creating a lock or lockset is not a collective operation; neither is acquiring a lock, lockset, or
critical section.

Events Because costly group communication is not always necessary to support the coordina-
tion needs of applications, we envision point-to-point synchronization via events. At the most
basic level, an event is a shared counter object that supports two operations: an atomic incre-
ment (a notify operation), and spinning until an available increment occurs (a wait operation).
Our event implementation is thus essentially a user-mode local-spin implementation of a counting
semaphore. Images may allocate coarrays of events as their needs demand. Remote update via
event notify and local spin operations using event_wait are all that is needed to effect safe one-
way synchronization between pairs of images. Unlike Fortran 2008’s sync images, events offer a
safe synchronization space: libraries can allocate their own events that are distinct from events
used in a user’s code.

Eventsets Because we expect to use events as the basis of our asynchronous point-to-point
and collective communication operations, it is important that they be sufficiently flexible and
expressive. In particular, we need to support multi-event manipulation functionality akin to the
capabilities of the Berkeley sockets select statement [27] and the MPI WAITANY and WAITSOME
functions [26] that await completion of asynchronous send or receive operations.

Logically, an eventset is a set of ordered tuples (event, count), where count is the number of
times that event has been observed to trigger within an eventset API call, and is used for fairness
purposes as detailed below. Table 1 details the API for initializing and destroying, and adding
and removing elements from an event set. The parameter supplied to eventset_init receives a



handle to the newly initialized eventset; this handle is then used as an input for the rest of the
eventset API statements. It is an error to use an eventset handle after calling eventset_destroy:
The eventset is no longer initialized.

Table 2 presents the portion of the eventset API that deals with notifying or waiting on sets
of events. The statements eventset_waitall and eventset_notifyall wait for and signal, re-
spectively, every event associated with the set. The eventset_waitany statement checks each
event associated with the list to see if that event has triggered. When it finds one, it increments
the trigger count associated with the event and resorts the list of tuples so as to avoid starva-
tion even in the case where a single node is triggered with high frequency. Returning the ID of
the triggered event allows the caller to know which event was triggered and react appropriately.
eventset_waitany_fair behaves similarly to eventset_waitany; however, only those events with
the fewest trigger counts are considered. This is useful in cases where at each stage of an algorithm,
it is necessary to process each of several asynchronous events exactly once. Without this, the same
effect could be obtained by maintaining a pair of eventsets, current and next, and explicitly mi-
grating events from current to next as they come in and are processed. Once current is empty,
swap the sets. Here, a small addition to the API dramatically increases programmer convenience
and productivity for this case.

Collective Communication Collective subroutines are not new in Coarray Fortran; they were
part of the 2007 draft of Fortran 2008, which also includes collective team reduction and some
pre-defined collective subroutines such as co_sum, co_max and co_product. However, the emerging
Fortran 2008 standard does not include these features even though collective operations are widely
used in parallel applications. It is widely known that built-in collective operations are likely to
provide better performance and portability if they are implemented as part of a language runtime
rather than having users roll their own.

We propose some collective statements for Coarray Fortran 2.0 as shown in Table 3. These
statements are mainly inspired by MPT’s collectives based on two-sided synchronous communication.
In the next section, we discuss asynchronous versions of these collectives.

Most collective statements require a local data variable source (var_src), a target variable
(var_dest) and optionally a team where all image members will participate. If the team is not
explicitly specified, then the current default team specified in an enclosing with statement or
team_default will be used. Unlike the proposed collective statements by Reid and Numrich [22],
all collectives in Coarray Fortran 2.0 do not require coarrays as its input/output data. As shown
in Table 3, both var_src and var_dest variable can be local variables. For team broadcast, the
first argument (var) is a local variable that acts as the source variable for the root image, and as
the target variable for other images.

When designing Coarray Fortran 2.0, we recognized that there are two types of collective re-
duction operations: those that are replication oblivious, where a value can be processed more than
once by a reduction without changing the result, and those that are not. Some examples of repli-
cation oblivious operators include min, maz, and, and or. We believe that it is worth identifying
replication oblivious operators because reductions using them can be implemented efficiently by
using a special communication pattern. The final optional ro boolean argument to a reduction
operation indicates whether the reduction operator is replication oblivious.

In addition to the predefined collective operators shown in Table 3, Coarray Fortran 2.0 also
supports user-defined operators for reductions. Instead of supplying a predefined operator to a
reduce, a user can specify a subroutine that takes three arguments: two read-only inputs and the
output. For Coarray Fortran 2.0, we introduce team sort to sort arrays (whether they are coarrays
or not) within a team. This operation requires a user-defined comparison function.



Statement

Description

Syntax

team_broadcast
team_gather
team_allgather
team_reduce
team_allreduce
team_alltoall

team_scan

broadcasts a data from an image to
all images in a team

collects individual data from each
image in a team at one image
gathers data from all images and dis-
tribute it to all images

reduces data, the result is stored to
an image of the team

reduces data, the result is stored to
all images of the team

personalized all-to-all communica-
tion

performs partial reduction (scan),

team_broadcast(var, root_rank [, team |)

team gather(var_src, var_dest, root_rank |,
team |)
team_allgather(var_src, var_dest [, team))

team reduce(var_src, var_dest, root_rank,
operator [, team| [, ro])
team_allreduce(var_src,
operator [, team] [, ro])
team_alltoall(var_src, var_dest, elt_size,
num_elts

team scan(var_src, var_dest [, team])

var_dest,

each image store the result of reduc-
tion from its neighbor

distributes individual data from an
image to each image in a team

team_scatter tea.m,scatter(var,src, var_dest, root_rank

[, team])

team shift moves data from another image at an | team_shift(var_src, var_dest,
offset within a team image offset [, team])
team_sort sorts arrays of the same size and type | team_sort(var_src, var_dest,

within a team comparison_function [, team|)

For most statements:
typedef::var_src
typedef: :var_dest [*]
integer: :root_rank
team: :team

local source variable

target Coarray Fortran variable

the rank of the root image

process subset (default team if not specified)

Table 3: Collective statements supported in Coarray Fortran 2.0

Asynchrony For the CAF 2.0 language, we have added support for asynchronous operations in
order to overlap computation and communication. We support two models of synchrony. In the
erplicit model, we post an event to signal that an operation has completed. This unifies the
design and eliminates the need for handles which other approaches require. Further, it allows an
expert user to write an event-driven processing loop that can receive and react to any event that is
notified from among a set of expected notifications, making use of the Coarray Fortran 2.0 eventset
primitives described previously.

Alternatively, one can use the implicit model. Here, rather than signaling an event when
the operation is complete, we provide synchronization to programmers via a dynamically scoped,
nestable finish block. All asynchronous operations within a finish scope are guaranteed to be
finished before exiting the finish block. We note that this concept of finish blocks is from the
X10 programming language [24]. Each finish block is associated with a specific team, which
may be omitted to have the runtime supply TEAM_DEFAULT. Note that only implicit operations are
guaranteed to be complete at the close of a finish block; explicit operations are allowed to escape.

Predicated asynchronous copy On large-scale parallel systems, hiding communication latency
is essential if a program is to achieve high performance. In studies with the HPC Challenge
RandomAccess and FFT benchmarks, we quickly recognized the need for asynchronous data copies
to overlap communication with computation. In the benchmark codes, we initially identified the



copy-async(var_dest, var_src [, ev_dw] [, ev_rdy] [, ev_sr])

var_dest = a coarray reference target

var_src = a coarray reference source

ev_dw =  an optional event indicating that the write to var_dest is complete
ev_rdy =  an optional event indicating that the copy can proceed

ev_sr =  an optional event indicating that the read of var_src is complete

Figure 1: Asynchronous copy statement in CAF 2.0.

need to overlap computation with streaming writes of remote data. In particular, we wanted to
issue a non-blocking PUT to remote data and notify the consumer awaiting the data when the PUT
is complete; while this communication and synchronization are in flight, we want to continue with
local computational work. Later, we identified a similar need to overlap a GET communication with
computation and determine when the GET completes. We realized that under many circumstances
a compiler might not be able to determine that it is safe to transform a GET or PUT into a non-
blocking form and overlap it with computation. In particular, it can be very difficult to determine
that a GET or PUT could be overlapped with a procedure call without changing a program’s
semantics in the case when code is being separately compiled. We realized that programmers know
what communication can and should be overlapped with computation, and what CAF needs is a
suitable language construct to make it possible to express such asynchronous communication.

As Coarray Fortran was originally conceived by Numrich and Reid, there were no language con-
structs that enable users to hide communication latency. In addition, their design included implicit
memory fences at subroutine boundaries to avoid having a GET or PUT operation, in flight at a
procedure call, cause data races with accesses by a callee to the target coarray [20]. A challenge was
to create a design for adding asynchronous copies to CAF that enables application programmers to:
(1) express that reading or writing of remote coarray data may be overlapped with computation;
(2) make it possible to determine when such asynchronous operations are complete; (3) have the
language constructs be sufficiently general to allow an application to await completion of pending
asynchronous operations in any order; (4) make the completion of asynchronous operations orthog-
onal to program scopes, i.e. an application need not await completion of asynchronous operations
within the same routine in which they are issued; completion may be requested at any point in the
future by any routine whatsoever; and (5) provide a syntactic construct that is easy to use.

To satisfy these criteria, we designed the asynchronous copy primitive shown in Figure 1. In
our design, copy_async is a statement rather than a subroutine in CAF 2.0. Both the source
and destination of the copy must be coarray references. The source and destination may be scalar
values, whole arrays, or array sections. Either may refer to local or remote coarray data. The events
ev_dw, ev_rdy, and ev_sr respectively indicate that the write to destination is complete, that the
source data is ready, and that the source data has been read (and may be safely updated concurrent
with the copy_async operation). In the implicit asynchrony model, ev_dw is not specified and a
subsequent end finish statement blocks until the write is complete.

The copy_async primitive is quite expressive. It can be used for local-to-local, remote-to-local,
local-to-remote, or remote-to-remote copies. A local-to-local copy_async could be used to hide the
latency of a local copy operation by having it executed asynchronously by another core or a DMA
engine. A typical use of a remote-to-local copy would be for an asynchronous prefetch. If one
specifies the optional ev_rdy event, the copy will not execute until ev_rdy is notified; this enables
an application developer to specify a predicated prefetch that will not begin execution until the
source data is available. A typical use of a local-to-remote copy_async is to export to a remote node



Statement Description

team barrier_async([event]| [, team|) barrier synchronization between image
processes

team broadcast_async(var, root|, event| |, team]) broadcasts data from an image to all im-
ages in a team

team_gather_async(var_src, var_dest, root[, event] [, | collects individual data from each image

team|) in a team at one image

team_allgather_async(var_src, var_dest[, event] [, team]) | gathers data from all images and dis-
tributes it to all images
team _reduce_async(var_src, var.dest, root, operator|, | reduces data; the result is stored to an

event] [, team]) image of the team

team allreduce async (var_src, var._dest, operator|, | reduces data; the result is stored to all

event] [, team]) images of the team

team_scatter_async(var_src, var_dest, root|, event] [, | distributes individual data from an image

team|) to each image in a team

team_alltoall _async(var_src, var_dest[, event| [, team]) | sends distinct data from each image to ev-
ery image in a team

team _sort_async(var_src, var_dest, comparison_fn[, | sorts arrays of the same size and type

event] [, team]) within a team

Argument descriptions:

typedef: :var_src local source variable team: :team process subset (or default team)
typedef : :var_dest [*] target Coarray Fortran variable event::event event variable (if explicit asynchrony)
integer: :root the rank of the root image

Table 4: Asynchronous collective operations in Coarray Fortran 2.0.

values that have just been computed, such as depositing boundary layer data into a ghost region
on a remote processor. While copy_async supports remote-to-remote copies for completeness, we
don’t have a compelling case for this use at present.

Asynchronous Collective Operations When designing asynchronous collectives for a language
with one-sided communication, one may ask why not to use a one-sided design. A two-sided design
provides us two benefits. First, it enables each processor to have explicit control of how many
collective operations may be pending on that processor at a time. Second, each processor has the
flexibility to control buffer allocation and specify where incoming results should be placed. Table 4
shows the collective operations we are adding to Coarray Fortran 2.0.

Function Shipping Function Shipping is another kind of asynchronous operation we newly inte-
grated into CAF 2.0. It helps users avoid exposed communication latency by co-locating compu-
tation with remote data. One may argue this is redundant with transferring data to computation
place, however, in practice moving data towards computation is difficult in certain circumstances.
A simple example in this case is inserting an entry into a remote queue. Without function ship-
ping, one needs to remotely acquire a lock, fetch the pointer location back, send the entry over to
update the pointer, then release the acquired lock. This approach suffers from the overhead of four
round-trips of communication, which makes it very undesirable.

Function Shipping makes this can be expressed fluently in CAF 2.0, by enabling programs to
send computation along with necessary arguments to remote process for execution. As shown in
Figure 2, replacing the Fortran keyword call with spawn causes the function to be executed on
remote process image specified within the ending square bracket pair. Function shipping is made a
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event :: ev

SpaWIl(GV) foo(table(i, J) [P] , ) [P] 1: copy_async (inbuf (ele) [succ], outbuf(ele))
call event_wait(ev) .
- . v cofence does not allow the above
2: cofence () E, ,‘x or below copy_async 1o cross
finish (a_team) 3: copy_async (inbuf (ele+1), outbuf(ele+l) [succl)
spawn foo(table(i,j)[p]l, n) [p]

e :::.\.
4 cofence(DOWNWARD=GET) \1 cofence allows the above
o copy_async to cross

O ~NO O WN -

end finish

Figure 2: Explicit and implicit model examples Figure 3: Cofence and copy-async
of CAF 2.0 function shipping

asynchronous call by default in CAF 2.0. Like other asynchronous operations, its completion can
be controlled explicitly by event variable provided after the spawn keyword, or managed implicitly
by finish or cofence constructs when event variable is omitted.

Arguments passed into a shipped function are treated differently from normal function argu-
ments. For coarray arguments, they are handled accordingly based on the dummy argument dec-
laration within that function. Arguments that declared as non-coarray in dummy arguments are
dereferenced on the call site, and copied to remote process, hence they act like implicitly marked
with VALUE attributes - modifications on them will not be reflected back to the calling process.
Coarray dummy argument give the function ability to access that array on any process image. If
arguments are declared as copointers, image information from caller will be preserved as default
image for that copointer, thus references followed by empty square brackets can access the array
located on default image.

Shipped functions are usually executed on a different process than its origin. Thus, the context
that shipped functions live is the one on the target process it is spawned to, so that they can
access global data local to that process, even if the global data is not shared across images. We
believe the change of execution context is necessary in making function shipping fully expressive.
Manipulating many distributed data structures such as distributed hash tables, lists and graphs
require shipped functions to have ability to operate on global data on target process.

Cofence Cofence construct allows programmers to control the local completion of put, get, and
implicitly synchronized asynchronous operations. Cofence takes two optional arguments: first
argument specifies which category of implicit asynchronous operations (i.e. put/get) to allow
downwards, and second argument specifies which category of implicit asynchronous operations to
allow upwards. Depending upon the argument value passed, the cofence allows puts, gets, or both
to pass across the cofence in the specified direction.

Managing asynchrony with Cofence An asynchronous copy operation performing a put
operation is locally complete at a process p after p initiates the put operation, and the buffer
containing the data being copied to another process, is free to be modified by p. An asynchronous
copy operation performing a get operation is locally complete at a process p after the buffer into
which the data is brought into from another process, is ready to be consumed by process p. Figure
3 shows an example of using cofence, and copy_async constructs together. The asynchronous
copy operation in line 1 shown in Figure 3 copies an element present in the coarray outbuf namely
outbuf (ele) on the calling processor to the coarray inbuf on the succ processor. The operation is
locally complete at the calling processor after it returns from initiating a one-sided communication
call to put the element (outbuf(ele)) on the succ processor. The point to note is that this
completion does not include whether the put is complete on the succ processor i.e. inbuf (ele) is
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available for consumption by succ processor. The cofence (at line 2) takes the default argument
(which stands for not allowing any put/get operation across) and hence does not allow the put
operation to cross downwards (maybe it would have been advantages for the compiler /runtime from
a performance perspective to move the copy operation downwards to a later point). The cofence
(at line 4), however, allows the copy_async operation (a get at line 3) to pass downwards.

2.4 CAF 2.0 Compiler

When we began the project, we had an existing prototype compiler for Coarray Fortran that we had
previously built using the Open64 compiler infrastructure. Our original intent was to explore some
modest feature enhancements and harden this compiler to support experimentation and broader
use. As the project unfolded, it became clear to us that the original design for Coarray Fortran
needed significantly more refinement than we initially anticipated. As a result, we needed to change
the compiler infrastructure we used for this work. The Open64 compiler infrastructure we were
using was not readily modifiable to accommodate the significant changes to the language that we
determined were necessary.

To support our redesign of the Coarray Fortran language extensions, we re-focused our imple-
mentation efforts to use LLNL’s ROSE compiler infrastructure. ROSE was much more malleable
and would make it easier to add new language features and syntax. Using ROSE, we constructed
an open-source, source-to-source compiler for CAF 2.0. This compiler accepts Fortran with CAF
2.0 extensions and generates Fortran code in which the CAF 2.0 features have been lowered to
Fortran. The translated programs make calls to a CAF 2.0 runtime library and support code that
is generated based on the input program.

The CAF 2.0 compiler parses Fortran programs decorated with CAF 2.0 extensions. The CAF
2.0 program is translated into the ROSE intermediate form. CAF 2.0 constructs are then lowered
by the CAF 2.0 compiler. In the course of lowering coarray variable declarations and uses, the CAF
2.0 compiler generates auxiliary modules that correspond to the coarray type x the dimensionality
of the coarray. These helper modules are necessary to support Fortran’s name equivalence model for
types. Local coarray accesses are translated into conventional Fortran variable references; remote
coarray accesses are translated into calls to the CAF 2.0 runtime system, which will interact with
one or more remote nodes as necessary.

Most of the project’s effort on the CAF 2.0 compiler was spent on enhancing ROSE support
for Fortran instead of analysis and optimization. We describe the work on ROSE in more detail in
Section 5.2.2.

2.5 CAF 2.0 Runtime System Innovations

We designed and implemented a novel algorithm for forming processor subsets and a novel represen-
tation for processor subsets as well [16]. Our algorithm for assembling teams has better asymptotic
time and space complexity than all prior algorithms used for constructing communicators in MPI
and outperforms them as well on large numbers of processors [19].

2.5.1 Scalable Teams

Representation As part of the CAF 2.0 runtime, we developed a scalable representation of teams
that based on the concept of pointer jumping (Figure 4). Each image in a team of size S has [lg 5|
levels of pointers to a successor and a predecessor. For image i, pointers on level k link ¢ to the
representations of team members at ranks (i + .S — 2¥) mod S and (i + 2¥) mod S.

With this representation, each image has enough information to locate an image at any rank.
To reach rank j in a team from rank 7 in a team of size S, one can obviously do this in at most lg .S
steps by following a chain of pointer-jumping links at distances corresponding to the bits in ¢ @ j.
Less obvious is that for rank 7 to locate j, one can often follow far fewer links than the number of
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Figure 4: Members of a team of size S are linked in [lgS] doubly-linked circular lists. In list
i, 0 < i < [lgS], a team member at rank j is linked to team members (j + S — 2Y) mod S and
(j +2%) mod S, an organization inspired by pointer jumping.

one bits i@ j by exploiting the circularity of our doubly-linked list based representation, and making
use of both forward and backward links (e.g., instead of using three forward power-of-2 hops to
accomplish a route of distance +7, one can use a forward route of distance 8 and backward route
of distance 1). For a team of size S, where S is not a power of two, one can also exploit the fact
that (i —j) mod S # (j —¢) mod S. For performance, we have images cache information about how
to directly communicate with a fixed modest number of frequent communication partners within
one’s team.

Formation To assemble teams using the aforementioned representation, we developed an innova-
tive scalable implementation of team_split that takes O(lg? P) time on P processors. We perform
a team split by sorting (color, key, rank) tuples using parallel bitonic sort; performing left and
right shift operations to determine team boundaries; using segmented scans to compute one’s rank
within a team and disseminate the identity of the first and last members of the team and the team
size. Subteams are assembled once each image knows its left and right neighbors at distance one
in the circular order of its subteam, the size of the subteam, and its rank in the subteam. Our
approach enables us to form a team without using more than O(lg2 P) space on any image; we use
this much space as a scratch buffer for parallel bitonic sort.

This algorithm yields lower asymptotic time and space complexity than an algorithm by Sack
and Gropp in a 2010 paper entitled “A Scalable MPT_Comm_split Algorithm for Exascale Comput-
ing” [23]. A 2011 evaluation of scalable algorithms for MPI_Comm split by Moody, Ahn, and de
Supinski showed that our algorithm and an alternative hash-based approach they introduce offer
the best scalability and performance [19].

Collective operations Our team representation makes for a natural expression of collective com-
munication. All of the pairwise communications for common collective communication patterns
such as binomial trees for broadcast and reduction, the dissemination pattern for barriers, power-of
two circular shifts, and algorithms based on recursive doubling embed naturally in this structure.

Point-to-point communication As described in the paragraph about our team representation,
one can map the from the rank of a communication partner in a point-to-point communication to
the destination process using at most [lg S| steps.

2.5.2 Pervasive Support for Asynchrony

The CAF 2.0 runtime system contains pervasive support for asynchrony. The CAF 2.0 language
design includes asynchronous copies, function shipping, and asynchronous collective communica-
tion. All asynchronous activities are managed in the CAF 2.0 runtime by an asynchronous progress
engine. The progress engine provides generalized support for one-sided and two-sided collective and
communication operations by maintaining a queue of in-flight operations that need to be tracked
and managed. The progress engine is invoked implicitly at each communication operation. It can
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also be invoked explicitly directly from a CAF 2.0 program. Each time the progress engine is in-
voked, any activities that are no longer blocked waiting for an enabling event to occur are advanced

until they complete or block again.

2.6 HPC Challenge benchmarks in CAF 2.0

The HPC Challenge suite consists of seven benchmarks organized into four categories characterized
by memory access pattern that span high and low spatial and temporal locality. To evaluate
the expressiveness and performance of the CAF 2.0 languages, compiler and runtime system, we
implemented four of seven HPC Challenge benchmarks in CAF 2.0:

e Fast Fourier transform (FFT) measures the floating-point rate of execution of double precision
complex for 1D discrete Fourier transform (DFT) on a vector of pseudo-random values.

e High performance Linpack (HPL) computes the floating point rate of execution for solving a
system of linear equations, and potentially has high temporal and spatial locality.

e STREAM measures the sustainable memory bandwidth for a simple vector kernel.

e RandomAccess computes pseudo-random updates to a large distributed table of 64-bit integer
values. It measures interconnect bandwidth in a system with low temporal and spatial locality.

We focused on these four bench-
marks because they are the ones mea-
sured for the HPC Challenge Class
IT Awards Competition, which is a
competition to evaluate the produc-
tivity of parallel programming mod-
els. Our implementation and evalua-
tion of these HPC Challenge bench-
marks in CAF 2.0 helped us identify
shortcomings in both the program-
ming model’s expressiveness and eval-
uate the effectiveness of our strate-
gies for transforming CAF 2.0 into ef-
ficient and scalable executables for su-
percomputers. Below, we begin with
a description of these benchmarks and
our experiences implementing them
in CAF 2.0. In Section 2.7.1, we
evaluate the productivity and perfor-
mance of these benchmarks on up to
4K nodes of a Cray XT.

2.6.1 HPL

The HPL benchmark measures the
ability of a system to deliver fast
floating point execution while solving
a system of linear equations. Perfor-
mance of the HPL benchmark is mea-
sured in GFLOP/s, with the calcu-

lated performance defined as 2 o

0 ~NO U WN -

©

integer ,target ,allocatable :: panelinfo (:,2) [*]
double precision,target,allocatable :: panel(:,2) [*]
event ,allocatable ,dimension (:) : delivered [*]
allocate(delivered (1: NUMPANELS) [])
event_init (delivered, NUMPANELS)
do j = pp, PROBLEMSIZE - 1, BLKSIZE
cp = j / BLKSIZE + 1
cp = mod(cp - 1, 2) + 1
event_wait (delivered (3-cp))
if (mycol == cproc) then
ncol = localsize(min(BLKSIZE ,PROBLEMSIZE-j), &
j, BLKSIZE, NPCOL, mycol)
if (ncol > 0) then
if (NPCOL==1) call update(m,n,BLKSIZE,ncol,3-cp)
if (NPCOL/=1) call update(m, n, 0, ncol, 3 - cp)
end if
call fact(m, n, cp)
col = col + ncol
end if
if (mycol == pproc) col = col + BLKSIZE
ub = (panelinfo(5,cp)+BLKSIZE+1)*BLKSIZE
call team_broadcast_async(panel(l:ub,cp), &
panelinfo(8,cp), &
delivered(cp),rteam)
if (nn-ncol>0) call update(m,n,col,nn-ncol,3-cp)
if (mycol == cproc) nn = nn - BLKSIZE
pproc = cproc
cproc = mod(cproc+1l, NPCOL)
end do

234 392

Figure 5: LU factorization in the HPL benchmark.

109, where n is the order of the system of linear equations,
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and t4 is the time to solution (in seconds). The actual solution is done by first computing an LU
factorization of the matrix corresponding to the n linear equations, using row partial pivoting of
the n by n+ 1 coefficient matrix P[A,b] = [[L, U], y]. Then, the solution is obtained by solving the
upper triangular system Uz = y. The lower triangular matrix L is left unpivoted and the array of
pivots is not returned.

Parallel LU factorization has been studied for many years. As one of the most common imple-
mentations of parallel LU factorization for distributed memory machines, HPL [1] has been used
as a reference code for HPC Challenge competition and for determining the Top 500 list. Different
implementations of HPL using PGAS and other parallel languages have been developed and studied
in the past [5, 6, 9]. In this section, we highlight features of our implementation in CAF 2.0.

Creating teams for block-cyclic distribution Our CAF 2.0 implementation of HPL imple-
ments a sophisticated tiling of the computation, capable of varying both the arrangement of pro-
cessor cores for the overall computation as well as the width of each panel of data that each core
blocks data into. The entire matrix is distributed in block-cyclic fashion to a processor grid in one
or two dimensions. The block size of the data distribution is determined by the width of the panel.
Our team representation for process subsets provides a general and efficient method of synchroniza-
tion and communication between processes. To support row- and column-wise communication in
HPL, we created both row and column teams. Subteams are further created when it is necessary.

Hiding latency with asynchronous broadcast To improve the performance of HPL, we used a
dual panel structure for factorization. This not only increases parallelism in factorization but also
overlaps communication latency with computation when we use asynchronous split-phase panel
broadcast. An asynchronous broadcast of a panel is first initiated after the panel is factored.
Processors in the next column team can start their updates and factor the next panel as soon as
they receive the previous panel. The broadcast of the second panel is overlapped with the update
of the trailing matrix from the previous factored panel and with the computation of the next panel
factorization. An event_wait is performed before the data communicated is used. Figure 5 shows
a code snippet for the LU factorization.

2.6.2 STREAM
The HPC Challenge STREAM bench-

mark evaluates the extent to which a
parallel system can deliver and sus-
tain peak memory bandwidth by per-
forming a simple vector operation
that scales and adds two vectors: a «— do 5 < 1, vep
b+ ac. Performance of the STREAM call t;—iad(a,b,c,n,scalar)
benchmark is measured in GByte/s, | @  end do
. 10 call team_barrier ()
with the calculated performance de- |{;
fined as 24%10*9, where m is the |12 ...
size of the vectors, required to be at |12 Subroutime triad(a, b, c, n ,scalar)

» Teq 14 double precision a(mn), b(n), c(n), scalar

least a quarter of system memory; (15 a = b + scalar * c
16 end subroutine triad

double precision, allocatable :: a(:)[*]

double precision, allocatable :: b(:)[*], c(:)[*]
! allocate with the default team

allocate (a(ndim)[1, b(ndim)[]1, c(ndim)I[])

do round = 1, rounds

0 ~N O O WwN -

end do

and t,,;, 18 the minimum execution
time over at least 10 repetitions of
the benchmark kernel. The STREAM  Figure 6: Implementation of the STREAM benchmark.
benchmark is embarrassingly parallel:

the work performed on any one node is independent of that performed on others.
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Since the STREAM benchmark does not require communication between processes, we have
implemented the Coarray Fortran version exactly like the sequential one with the exception that
all arrays are allocated with our Coarray Fortran 2.0 allocator as shown in Figure 6.

2.6.3 RandomAccess

The HPC Challenge RandomAccess
benchmark evaluates the rate at

1 event,allocatable :: delivered(:)[*],received (:) [*]
which a paraﬂe] system can ap[ﬂy' 2 integer(8),allocatable :: fwd(:,:,:)[*]
. . 3
updates to randomly indexed entries 4 do i = world_logsize-1, 0, -1
in a distributed table. Performance | s
of the RandomAccess benchmark is 6 call split(ret(:,last), retsizes(last), &

K K 7 ret (:,current), retsizes(current), &
measured in Chga Ideates Per sec- | s fwd(1:,out,i),fwd(0,out,i),bufsize,dist)
ond (GUP/s). GUP/s is calculated | °

. ip . 10 if (i < world_logsize=-1) then
by ldentlfylng the number of table en- 11 event_wait (delivered (i+1))
tries that can be randonﬂy updaxed 12 call split(fwd(l:,in,i+1), fwd(0,in,i+1), &
13 ret (:,current), retsizes(current), &

in one second, divided by 1 billion

fwd(1:,out,i),fwd(0,out,i),bufsize,dist)

(10%). The term “randomly” means |15
that there is little relationship be- |°
tween one table index to be upda$ed 18 copy_async (fwd (0: outgoing_size,in,i) [partner], &
and the next. An update is a read- |1° fwd (0:outgoing_size,out,i), &

. . . . 20 delivered (i) [partner], received(i))
modify-write operation on a 64-bit |4 v PP rreent

event_notify(received(i+1) [from])
endif

end do

word in the table. A table index is |22
ted, the value at that index is |
generated, € value a at IMAeX 1S o4 | eqen process timage applies its local updates
read from memory, modified by anin- {25 ......
teger operation (xor) that combines
th_e curlTent value of the table enjcry Figure 7: Implementation of a routing algorithm in
with a literal value, and the resulting RandomA ccess.

value is written back to the table en-
try.

On distributed-memory parallel systems that lack hardware support for shared memory, fine-
grain operations on remote data are expensive. To develop a high performance implementation of
RandomAccess in CAF 2.0, we exploit the “1024 element look ahead and storage” allowed by the
problem specification [12]. A sketch of the implementation is shown in Figure 7. First, each process
image generates a batch of 1024 indices of table locations to be updated. Next, the code uses a
hypercube-based pattern of bulk communication to route updates to the process image co-located
with the table index being updated. Finally, each process image applies updates locally.

Similar software routing strategies have been used before, though never with CAF. Researchers
at Sandia studied a different but related strategy for RandomAccess using all-to-all communication
based on a hypercube communication pattern [21]. IBM also explored a software routing strategy
for this benchmark on Blue Gene systems [11].

2.64 FFT

The HPC Challenge FFT (Fast Fourier Transform) benchmark measures the ability of a system to
overlap computation and communication while calculating a very large Discrete Fourier Transform
of size m with input vector z and output vector Z:

m
.9k
Zy, — sze_zmjﬁ;l <k<m
J
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Pe.rformance Of the FFT ben(_jh_ 1 complex, allocatable :: c(:,2)[*]
mark is measured in GFLOP/S, with | 2 event, allocatable :: ready(:)[*], copied(:)[*]
calculated performance defined as | 3 event, allocatable :: prefetch(:)[x]

1 _ . . 4
58 Othm 1079, where m is the size of | 5 ... ...
the DFT and t is the execution time | 6 do 1 = lcomm, levels
. d Th b £ T oo
(ln secon S)' € number oI pro- | g event_notify(ready(l-lcomm) [partner])
cessors for this benchmark may be | 9  event_wait(ready(l-lcomm))
. . e . 10
1mpl§m?ntatlon—spec1ﬁc, mn partlcu— 11 I prefetch blocks
lar, it is allowed to be an integral |12  do outer = 0, (n_local_size/2)-1, blksize
power of 2. Parallel FFT algorithms 13 copy_async (buf (lo:hi) ,c(loshl ,last? [partner] ,&

L. 14 prefetch(outer/blksize),copied(l1-1-1lcomm))

have been well studied in the past [28, |15 end do
4, 15]. The reference FFT implemen- 1?{ o ¢ oy -1

. do outer = s n_local_size -1, blksize
tation of the HPC Chauenge bench- 18 event_wait (prefetch(outer/blksize))
marks uses a 1D algorithm based |19 ! perform computation
on [28} 20 L.

: . 21 ! send result to who next needs it

Our CAF 2.0 FFT 1mplementa— 22 copy_async(c(lo:hi,curr) [partner], &
tion uses a radix 2 binary exchange ;Z d e buf (lo:hi), copied(l-lcomm) [partner])
formulation that consists of three |25 enddo

parts: permutation of data to move
each source element to the position
that is its binary bit reversal; lo-
cal (in-core) FFT computation for as
many layers of the DFT calculation
as all fit in the memory of a single processor; and remote DF'T computation for the layers that span
multiple processor images. Figure 8 shows the main loop body of the remote FFT computation
using asynchronous copy.

2.7 Evaluation of CAF 2.0 Using HPC Challenge Benchmarks

Our CAF 2.0 design and implementation has been carefully crafted to deliver scalable high per-
formance on parallel systems with thousands processor cores. In this section, we evaluate both
productivity and performance.

2.7.1 Winner: HPC Challenge Class II Most Productive Language

In November 2010, at the SC10 conference in New Orleans, CAF 2.0 was awarded the HPC Chal-
lenge Class IT Award for Most Productive Language.

One of the key criteria used in the annual HPC Challenge awards competition [13] is the number
of source lines in the implementation of each benchmark. Table 2.7.1 shows the count of source
lines in each of benchmark implementation in CAF 2.0. The table breaks source lines into four
categories: computation, communication and synchronization, declarations, and comments/white
space. As the table shows, communication and synchronization only account for a very small
proportion of the entire implementation.

Table 2.7.1 also compares the total source lines of code between CAF 2.0, the Chapel [8] im-
plementations, and the reference MPI implementations of HPCC [14]. Chapel is a good point of
comparison because it was the winner of the prize for most elegant implementation of HPC Chal-
lenge benchmarks. In our comparison, we exclude comments and spaces. The CAF 2.0 STREAM
code is shorter than the Chapel code. For the other benchmarks, the CAF 2.0 implementations
are a factor of 2 to 3 times larger. In comparison with the reference implementation of HPCC,
CAF 2.0 implementations are significantly shorter. We believe that the best way to measure pro-

Figure 8: Using copy_async for hiding communication la-
tency in FFT.
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y [ STREAM [ RA | FFT | HPL |

Computation 30 170 | 188 | 532
Communication & sync 0 13 15 50
Declaration 15 121 98 109
Total (Benchmark) 45 304 | 301 | 691
Comments & spaces 13 95 138 95
Total (Program) 58 399 | 439 | 786
SLOC(CAF2.0 benchmark)
SLOC’((Chapel benchmark)) 0.38 1.88 | 1.37 | 2.99
SLOC(CAF2.0 benchmark

SLOC(MPT HPOC) 0.10 0.18 | 0.21 | 0.06

Table 5: Source lines of code (SLOC) of HPC Challenge benchmarks in CAF 2.0, and their com-
parison with Chapel [8] and reference MPI implementation of HPCC [14]. A ratio being less than
1 means that the CAF 2.0 implementation is smaller.

ductivity is the performance divided by the number of lines. In our implementations, we favored
performance over brevity. In the next section, we argue that the performance benefits we reap from
more sophisticated implementations outweigh the increase in code size.

2.7.2 Performance

To evaluate the performance of our CAF 2.0 implementations of the RandomAccess, FFT, and HPL
HPC Challenge benchmarks, we ran them on up to 4096 cores of Franklin, a Cray XT4 system
at the National Energy Research Scientific Computing Center, and the Cray XT 4 partition of
Jaguar, a machine at Oak Ridge National Laboratory. Each node in Franklin contains a 2.3 GHz
single socket quad-core AMD Opteron processor (Budapest) (theoretical peak performance of 9.2
GFLOP/s per core) and 2GB of memory per core. The memory speed is 800 MHz. Each node
is connected to a dedicated SeaStar2 router through Hypertransport. The SeaStar2 interconnect
is arranged as a 3D torus. Jaguar contains 7,832 compute nodes in its XT4 partition. Each node
contains a quad-core AMD Opteron 1354 (Budapest) processor running at 2.1 GHz. Some nodes
use 8 GB of DDR2-800 memory; others use DDR2-667 memory. Jaguar nodes are connected with
a SeaStar2 router.

Our runtime library is built on the UC Berkeley’s GASNet communication library version 1.14.2
with its portal conduit implementation for communication. We used Cray’s PrgEnv-pgi/2.248B and
the Portland Group’s PGI 10.0 Fortran compiler for compiling the Fortran 90 codes generated by
our CAF translator with compiler option “-fastsse”.

HPL In our experiments with HPL, we allocate the matrix as a coarray with 12K x 12K double
precision array elements on each core to meet the requirement of the HPC Challenge specification.
We used the Cray Scientific Libraries package, LibSci 10.4.3, for matrix multiply operations in
updating the trailing matrix.

An important parameter for HPL is the block size of the block-cyclic data distribution. We also
used this block size as the panel width for factorization. As demonstrated by a performance study
we conducted (not included in this paper), the choice of block size has significant impact on the
performance of the benchmark. An ideal block size is large enough to achieve high performance in
updating the trailing matrices, but small enough to maintain a good load balance for scalability.
Another factor is the topology of processor cores along the two dimensions. We see great potential
here for a future auto-tuning study of parallel performance.
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Figure 9: Performance of HPL. Figure 10: Performance of STREAM.

An important issue we addressed in the course of implementing HPL is how to improve node
performance by avoiding data copying. Passing array sections or whole arrays in procedure calls
may incur extra data copying if the compiler cannot determine the data to be contiguous. We
carefully combined array pointer assignments and parameter passing of the array locations and
their leading dimensions to avoid unnecessary data copying.

To achieve scalable high performance on a large parallel machine, we also need to reduce com-
munication overhead. We implemented asynchronous broadcast in CAF 2.0 and applied it to the
panel broadcast of our HPL implementation. The overall performance of HPL is shown in Figure 9.
This shows our current implementation of HPL scales very well up to thousands of processor cores.
We achieved 18.3 TFLOP /s on 4096 cores. However, the roughly 10% difference on the 4096 core
run compared with the linearly scaled performance indicates that there is still room to improve.
Our analysis with the Rice HPCToolkit [2] shows that our implementation of asynchronous opera-
tions incurs unnecessary overhead in each advance step. Carefully removing this overhead and fine
tuning the overlapping of broadcast overhead with computation is future work.

STREAM In CAF 2.0, coarray data is represented as a Fortran 90 pointer within the generated
Fortran code. This could cause trouble for the backend Fortran compiler when it tries to generate
prefetch instructions for the STREAM kernel. Although vectors a, b and ¢ in the stream equation
are disjoint, the fact that they are allocated with our CAF allocator makes them opaque to the un-
derlying Fortran compiler. This decreased STREAM’s performance by 50% as shown in Figure 10.
We resolved this performance gap by wrapping the STREAM kernel within a subroutine triad
that declares a, b and c as regular Fortran array, giving the underlying Fortran compiler a chance
for optimization.

Initially, our implementation gave performance 70% of sequential Fortran. While working to
get STREAM node performance up to that of sequential Fortran, we identified an alignment issue
that causes corresponding vector elements to map to the same cache lines, resulting in conflict
misses. The K&R malloc that we used in our implementation of the CAF 2.0 runtime system
aligned the allocation of large memory regions on page boundaries; this caused corresponding
vector elements to be exactly spaced at a multiple of the page size. To address this issue, for larger
memory allocations, we adjusted the CAF 2.0 memory manager to insert a small, variable amount
of padding for large blocks of allocated memory; this caused them to be differently aligned and
closed the remaining performance gap in this benchmark. With allocation padding, single thread
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Figure 11: Performance of RandomAccess. Figure 12: Performance of FFT.

performance of STREAM increased from 4.2 GByte/s to 5.5 GByte/s on a Cray XT4 system. Our
implementation of STREAM achieves 8.73 TByte/s on 4096 cores.

RandomAccess The performance of our CAF 2.0 implementation of RandomAccess running on a
Cray XT4 is shown in Figure 11. The reported results use a 1GB table per core, consistent with the
benchmark specification that the program use half of each node’s memory for the table. The graph
shows two lines: ideal relative scaling starting at 4 processors and actual scaling. The gap between
actual and ideal performance reflects two issues. First, each doubling of the number of processors
adds another stage to our software routing protocol. Second, as the number of processors gets
larger, congestion for links and limited bisection bandwidth begin to come into play. Our largest
run on 4096 cores achieved 2.01 GUP/s, a very respectable result.

FFT When we analyzed our initial implementation of FFT with Rice University’s HPCToolkit
performance tools [2] and found that our loop for the permutation step was consuming 75% of
execution time on a 32-processor core run. The initial loop simply walked through each processor’s
data array, performed a bit reversal on the calculated index, and shipped the datum to the appro-
priate remote location. This gave poor performance and poor scalability because we were flooding
the memory interconnect with many tiny messages, which leads to high overhead.

To resolve this situation, we decomposed the permutation into three stages: packing the data
into a series of blocks, one per processor; transmitting the blocks to the correct destination pro-
cessor with an all-to-all collective operation; and then unpacking the data. On a machine with a
multi-level memory hierarchy, one must take considerable care when packing and unpacking the
communication buffers as part of the bit reversal. We performed a study that showed that perfor-
mance of the packing loop improves by over a factor of 10 by blocking the packing loop to pack a
subset of the data for a subset of the processors before moving on rather than simply performing
a strided gather for each processor’s buffer. Similarly, careful unpacking was faster than naive
unpacking by roughly a factor of eight. For the all-to-all step, we developed a prototype implemen-
tation that uses a hypercube routing protocol to route data to its destination processor in log P
steps; however, this implementation works only for integral powers of two. We plan to implement
Bruck’s algorithm [7] in the near future to support all-to-all collective operations on arbitrarily-sized
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collections of processors. While the original elementwise bitreversal consumed 75% of the original
running time, our optimized bitreversal reduced the cost to about 6% of the reduced running time.

With the permutation problem solved, we then focused our energies on improving the perfor-
mance of the remote DFT step. We arranged to overlap communication and computation by strip
mining the main loop performing the element-wise calculations within each “butterfly” involving
remote data. While one chunk of butterfly is being calculated, the previous chunk is available for
communication. We leverage the CAF 2.0 copy_async to transfer the chunk asynchronously to
our partner for calculating a butterfly. Then, to transfer the data asynchronously from our new
partner to ourselves at the beginning of the next round of calculating butterflies, we use a series of
predicated copy_async operations to prefetch the data conditioned on its availability. As soon as
the first chunk reaches us, we can immediately start processing it instead of waiting for the rest to
arrive.

After optimizing the bit reversal and employing asynchronous copies to overlap communica-
tion with computation, we obtained the scalable performance shown in Figure 12, peaking at 125
GFLOP/s with 4096 processor cores. Although the performance of FFT did not improve much
with the addition of asynchrony, we note that pipelining the DFT computations has us set up for
further improvements. Rather than sending a processed chunk of data back to one’s partner so that
it can be communicated to the partner’s next partner image in the processing of the next butterfly,
we can send it directly to that image and save an entire copy. This should improve the performance
of FFT further. Finally, the absolute performance of FFT could be improved by using a higher
radix DFT computation.

2.7.3 Comparison with other PGAS implementations

Comparison with IBM’s UPC implementation The performance of our CAF 2.0 imple-
mentations of RandomAccess and HPL on quad-core nodes of a Cray XT is comparable to the
performance that IBM achieved using UPC on a 4096 core Blue Gene/P system [13].2 The IBM
UPC implementation relied on their UPC compiler to automatically transform element-wise table
updates to use function shipping. On a 4096-processor rack, IBM’s HPL implementation achieved
8.12 TFLOP/s and their RandomAccess implementation achieved 1.21 GUP/s. Their FFT imple-
mentation used all-to-all collective communication instead of pairwise communication. Based on a
projection from their two rack result, the combination of these factors yielded performance more
than twice what we achieved.

Comparison with Cray’s Chapel implementation Unlike Cray’s HPCC benchmark imple-
mentations in Chapel, our approach to productivity was to focus on achieving high performance
rather than keeping the number of source code lines to a minimum. Our approach to implementing
RandomAccess underscores this point. While our RandomAccess implementation using software
routing of updates was nearly twice the size of Cray’s element-wise updates in Chapel (304 vs. 162
lines of code), our more sophisticated approach is a factor of 32 faster than the implementation
in Chapel on a Cray XT4, which achieved only .0612 GUP/s on 4096 cores (1024 quad-core pro-
cessors, 4 active cores each) [8]. The Cray implementation is in part much slower because it uses
element-wise remote table updates. For HPL, we have a scalable parallel implementation of HPL,
whereas the Chapel implementation of HPL ran on a single locale only. Even our implementation
of the STREAM triad was affected by our performance centric approach. Outlining the triad into
a separate procedure enabled us to communicate the lack of aliases to the backend compiler, which
boosted performance by roughly 50%. As a result, our STREAM triad implementation netted 8.73

2Cray XT and Blue Gene/P systems have some significant differences; hence, our comparison is qualitative rather
than quantitative.
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TByte/s on 4096 cores, whereas the Chapel implementation of EP STREAM triad ran at 6.26
TByte/s on a comparable system configuration (1024 quad-core processors, 4 active cores each).
Finally, even with significant delays due to an interaction between asynchrony and the GASNet
Portals conduit, our CAF 2.0 implementation of FFT outperforms the Chapel implementation by
a factor of over 24,000 on 16 quad-core processors with four active cores each—the largest system
size for which Chapel FFT results are reported.

2.7.4 Comparison with Class 1 award winner implementation

The 2010 HPC Challenge Class 1 award winner implementation from the Oak Ridge National
Laboratory was run on the XT5 partition of Jaguar. The XT5 partition contains 18688 compute
nodes, each contains dual hex-core AMD Opteron 2435 (Istanbul) processors running at 2.6 GHz,
16 GB of DDR2-800 memory and a SeaStar 24 router. The implementation uses a combination of
C, MPI, and multithreading. Their HPL implementation achieved 66% of the peak performance on
224220 cores which is higher than our 49% of the peak on 4096 cores. Their FFT entry achieved 10.7
TFLOP/s on 196608 cores using Cray modified FFTW 3.2 based implementation. However, our
RandomAccess is approximately 20% slower than the Class 1 result, which achieved 37.7 GUP/s
on 223112 cores. (Assuming logarithmic scaling, we project that our approach would achieve 30.9
GUP/s on 223112 cores.) Our STREAM performed more efficiently per node than the Class 1
result, which achieved 398 TByte/s on 223112 cores.

3 Research Objectives Remaining

Over the course of this project, we have shifted our focus from broad application of the Coarray
Fortran language to a more narrow, but much more extensive reimagining of the Coarray For-
tran language that we have designed, prototyped, and evaluated. We thus dove more deeply into
our goals of refining language-based parallel programming models for emerging platforms and for
performance and expressiveness, with a consequent lessening of focus in other areas of the proposal.

The need for a flexible compiler substrate for supporting new language features in the CAF
2.0 programming model led us away from the Open64 compiler and towards the LLNL ROSE
infrastructure. However, the relative immaturity of ROSE required us to spend more effort on
“hardening” it than on investigating compiler technologies surrounding it.

Although we lacked time to explore this issue, we believe that global view arrays would add
value to CAF. The Japanese XScalableMP effort combines global view arrays with local view
programming. We believe that this is an important direction to explore in the future. It may lead
to a more natural expression of irregular problems with access patterns like A(B(I)) = C(D(I),
described by Rich Barrett as critical to Sandia in his talk at the ASCR Pogramming Models
Workshop in August, 2011.

Although we have not directly explored interoperability of CAF 2.0 with other programming
models, we have been conscious throughout this effort that interoperability is a key requirement for
the success of any extension to a mainstream programming language. We have therefore been very
careful to ensure that nothing we do precludes interoperability with other programming models.

We have not published any results of integration of CAF 2.0 with programming environments
and tools; however, in order to evaluate the performance of applications written in CAF 2.0, we
have made extensive use of the HPCToolkit suite developed at Rice with DOE support through the
Performance Engineering Research Institute and the Center for Scalable Application Development
Software.

4 Findings
In brief, significant findings of the project were the following:
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Numrich and Reid’s original design for Coarray Fortran had significant flaws that merited a
complete redesign. For instance, the lack of support for processor subsets made it unsuitable
for use in writing coupled applications. In addition, the lack of built-in support for collective
communication meant that users would end up writing their own non-scalable implementa-
tions. Furthermore, the lack of adequate mechanisms for latency hiding meant that it would
not scale well to large systems.

Our new Coarray Fortran 2.0 design is expressive and admits high performance implementa-
tions, as shown by our experience with the HPC Challenge benchmarks. At SC10, CAF 2.0
was awarded Most Productive Language at the HPC Challenge Awards.

Interoperability with other programming models can’t be achieved at the programming lan-
guage level. For multiple programming models to interoperate, there must be a common
runtime layer below them all. In particular, there must be an agreed upon scalable represen-
tation for data descriptors that can be exchanged between runtime systems for the different
languages. Addressing this issue was part of the scope of the UNISTACK proposal to the
DOE SciDAC-3 program.

The GASNet substrate is presently not ideal as a low-level infrastructure suitable as a compiler
target for PGAS languages. In particular, some of the operations in the GASNet interface
bundle too much semantics into its interface operations. For instance, when calling a GASNet
routine to issue a non-blocking PUT, the call does not return until the source data can be
overwritten. On a modern system with RDMA support, it should be possible to simply queue
the operation for service, return immediately and check for completion later. Similarly, there
is no public interface to GASNet operations that don’t invoke the GASNet progress engine as
a side effect. This led to a problem when implementing an asynchronous progress engine for
CAF 2.0. For the future, there should be a unified progress engine in GASNet that provides
extension hooks for use by hosted language runtime systems. Addressing these issues were
part of the scope of the UNISTACK proposal to the DOE SciDAC-3 program.

The only way to move the computational science community to new programming models is
through language standards. Computational scientists won’t switch to a programming model
unless it is codified in a language standard, guaranteeing them longevity and portability for
their code for years to come. Thus, our effort to engage the Fortran standards committee is
an essential step to transferring our ideas into common use.

Changes in emerging architectures require that programming models for HPC platforms ad-
dress the issues of dynamic multithreading, load balance, and accelerators. We began work
on multithreading, exploring both function shipping and work stealing to address this issue.
Language support that will naturally enable application developers to harness accelerators is
also essential for many emerging systems.

Scalable algorithms will be essential to meet the challenges of next-generation systems. We
expect that topology awareness will play an important role as well. Our work on scalable
team construction, which served to catalyze follow on work in the MPI community was the
first step in this direction. More work is necessary.

Asynchronous algorithms will play an increasingly important role for future systems. At
present, implementing asynchronous algorithms in the runtime is somewhat difficult. Coordi-
nation between our CAF 2.0 runtime, the GASNet communication substrate, the underlying
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OS, and hardware support is somewhat problematic. We believe that overhauling support
for asynchrony will require significant attention for future systems.

e Fault tolerance concerns, expected to be significant at the exascale, can’t be handled by a
programming language alone. The underlying communication infrastructure must provide
appropriate support. For instance, in our CAF 2.0 implementation using GASNet, there is
presently no way to deal with failing processes or nodes at the GASNet level. This must be
the subject of future work.

5 Products of the Research
5.1 An Open Source Compiler and Runtime for CAF 2.0

In addition to feature development for CAF 2.0, we have expended considerable energy on the
usability of our CAF 2.0 compiler and runtime system and on making it publicly available. To
this end, we have written a sophisticated compiler driver script that automatically combines our
runtime library, coarray type wrapper modules, and proper runtime initialization procedures with
translated CAF 2.0 source code. The script supports multiple back-end Fortran 90 compilers,
including GNU gfortran, the PGI group’s pgf90, and Intel’s ifort compiler. CAF 2.0 users do
not need to manually compile the disparate intermediaries created in the process of translating CAF
2.0 source code to standard Fortran 90. This in turn vastly simplifies development of Makefiles for
CAF-based projects.

In addition to the CAF compiler driver script, we have developed extensive autoconfig and
automake scripts that allow the CAF 2.0 language to be built on a wide array of host hardware,
and with multiple compilers. In particular, we have used these scripts to support CAF 2.0 on Cray
XT4 and XT5 machines, and with both the GNU and PGI back-end Fortran 90 compilers.

We are dedicated to the proposition of open-source software, and to this end we have provided
direct (read-only) access to our svn source control repository for anyone interested in CAF 2.0.
This pre-alpha release of the CAF 2.0 software is being evaluated by groups all over the world.
We consider our release preliminary because the ROSE Fortran infrastructure does not yet provide
sufficiently robust support for Fortran to enable our compiler to be used with arbitrary programs.
Full support for Fortran in ROSE is still a work in progress. Instructions for downloading and using
the CAF 2.0 software are described in formal release notes served from a website (caf.rice.edu)
dedicated to the CAF 2.0 project.

5.2 Contributions to Community Open-source Infrastructure
5.2.1 GASNet

Over the course of this project, we coordinated with the GASNet team at LBNL to improve their
communication library for general usability and for CAF 2.0 needs in particular. In evaluating the
scalability of executables generated from CAF 2.0 programs, we identified an issue with the GASNet
startup routines that required every pair of processors to effect a pairwise exchange of data. The
quadratic overhead of this exchange was not scalable and led to increasingly high overhead as we
experimented with larger and larger groups of processor cores. Based on our feedback, the LBNL
group implemented a more scalable initialization sequence that led to dramatic improvements in
the GASNet startup time. We also tracked down the root cause of a bug that caused GASNet to
fail with more than 4096 processor cores, enabling it to be resolved.

5.2.2 ROSE

Over the course of this project, we worked closely with both LANL and LLNL to enhance support
for Fortran in the LLNL’s ROSE compiler infrastructure, a well respected and widely used tool
for HPC programming model research. We focused on ROSE’s Fortran language support, which
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is both necessary for our project and in demand by the HPC community at large.?> Our work has
resulted in measurably improved Fortran language coverage, more comprehensive test suites, and
better design and implementation quality.

Why does so highly regarded a system need so much work? The answer is historical. ROSE’s
support for C++ is quite mature (over a decade of steady development), whereas Fortran support
is still in its infancy. Moreover, ROSE’s C++ front end is based on a robust commercial compiler,
whereas its Fortran front end is a newly hand written one based on an open source Fortran grammar
still being developed. Consequently, ROSE Fortran is incomplete and buggy and needs a lot of
work to become as useful as ROSE C++.

We found problems with ROSE’s implementation of Fortran in all areas of operation, including
lexical behavior (line endings, line continuation, constant handling); syntactic behavior (unim-
plemented and misparsed constructs); semantic behavior (name scoping, type checking, intrinsic
functions and modules); unparsing behavior (invalid Fortran output, output not equivalent to in-
put); and pragmatic behavior (configuration, option handling, failed assertions, crashes).

We worked closely with the group at LANL that produces the OpenFortranParser being used
as the Fortran front-end for ROSE. We helped them identify and resolve errors in the Fortran
grammar. In addition, we devised a set of CAF 2.0 extension hooks that can folded back into the
main parser branch. These hooks enable the parser to be used both with CAF 2.0 (by matching
parsing code to the hooks so that CAF 2.0 syntax is recognized and processed) and with standard-
issue Fortran (by leaving the hooks unmatched).

In September 2010 we began a serious effort to improve the robustness of ROSE Fortran. We
established a close collaboration with the ROSE team, including internal developer privileges. We
focused on three widely used benchmark applications. First, the GFortran test suite, contains 1801
files with roughly 79,000 lines of code, excluding negative, Gnu-specific, and multi-language tests.
Second, LANL’s Parallel Ocean Program (POP) code consists of 63 files and 68,000 lines of code
in a representative build. Finally Sandia’s S3D combustion code contains 65 files and about 45,000
lines of code in a representative build.

When we began our “hardening”, ROSE failed on 44% of the files in the GFortran test suite
and on 50% each of POP and S3D. As of this writing, we have fixed about a hundred bugs in
ROSE and redesigned and reimplemented several key parts of the ROSE Fortran front end. We
have also contributed bug fixes to the open source ANTLR parser generator project. As a result
of our efforts, ROSE failures are down to 21% in the GFortran test suite and zero failures in POP
and S3D. We have added both POP and the GFortran test suite to the ROSE automatic test suite.

5.3 Contributions to Community Standards
5.3.1 Fortran 2008

Beginning with our critique of proposed coarray and synchronization features for the Fortran 2008
standard [17], we have had a long interaction with Working Group 5 of the standards committee.
Based in part on our input, these features were deferred from the initial standard into a TR for
further consideration. After a period of feedback on the TR, we submitted another critique [3] on
the proposed modifications to the TR. Because of our experience with advanced CAF 2.0 features,
we have been asked to participate directly in the upcoming (as of this writing) standards meeting
in October 2011 in Las Vegas to advise the standards committee.

5.3.2 MPI

Our algorithm for team creation, which we wrote in 2009, yields lower asymptotic time and
space complexity than an algorithm by Sack and Gropp in a 2010 paper entitled “A Scalable

30ur work on ROSE at Rice was jointly supported by the Center for Scalable Application Development Software.
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MPI Comm split Algorithm for Exascale Computing” [23]. A 2011 evaluation of scalable algo-
rithms for MPI_Comm split by Moody, Ahn, and de Supinski showed that our algorithm and an
alternative hash-based approach they introduce offer the best scalability and performance [19]. We
thus expect this algorithm to be adopted into the MPI standard shortly.

5.4
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5.4.1 Presentations

John Mellor-Crummey. Coarray Fortran: An emerging language for parallel programming.
Future Technologies Colloquium Series, ORNL, July 2006.
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Machines, Petascale Applications, and Performance Strategies. Snowbird, UT, July 2008.
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Peta-Scale Computing Programming Environment, Languages and Tools. Tsukuba, Japan,
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sion for Coarray Fortran, The 3"% Conference on Partitioned Global Address Space (PGAS)
Programming Models (PGAS 2009), Oct., 2009, Ashburn, Virginia.

e W. N. Scherer III, L. Adhianto, G. Gin, J. Mellor-Crummey, and C. Yang. Hiding Latency
in Coarray Fortran 2.0. The 4th Conf. on Partitioned Global Address Space (PGAS) Pro-
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features in Fortran 2008. Fortran Standards Technical Committee Document J3/08-126,
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5.5 Awards

e Most Productive Language, HPC Challenge Class II Award. HPC Challenge Awards Com-
petition, SC10. New Orleans, LA, November 2010.

6 Conclusions of the Project

When the project began, Coarray Fortran was widely regarded as an up and coming partitioned
global address space model for parallel programming. As we explored the semantics and expres-
siveness of this model, we discovered numerous problems and limitations. We reported these to
the Fortran 2008 Standards Committee and were able to significantly influence the standardization
process to avoid having the wrong set of coarray features added to Fortran 2008.

Our subsequent exploration of these issues led us to conclude that a new set of coarray constructs
was the only solution to the raft of problems we had discovered. We realized our solutions to these
problems in a new set of extensions for Fortran that we call Coarray Fortran 2.0 (CAF 2.0).

Over the course of this project, we demonstrated that our new CAF 2.0 language extensions
are useful for expressing applications with a wide range of characteristics. As shown by our receipt
of the 2010 HPC Challenge Award for the Most Productive Language, CAF 2.0 applications are
not only highly performant, but compact as well. The relative simplicity of writing applications
in CAF 2.0 yields a language that is highly productive and expressive. We attribute this success
in large part to careful selection of features most needed for a range of HPC applications, and to
keeping these features orthogonal and easy to use.

27



However, more work remains to be done. In particular, the CAF 2.0 programming model
needs further refinement to better support coupled applications. Additionally, renewed focus on
interoperability with other programming models and environments will greatly simplify adoption
of CAF 2.0 for many users. As we look forward to the exascale, more research is needed into
managing massive multithreading in the presence hierarchical locality and deep memory hierarchies.
Furthermore, language and compiler support is necessary for hardware accelerators such as GPUs,
which are becoming common in HPC; and APUs (e.g., AMD’s Fusion product line which combines
CPU and GPU logic on the same chip), which are emerging. It is imperative that language,
compiler, and runtime support for accelerators enable programmers to develop codes using a natural
programming style that is independent from the characteristics of today’s accelerators; otherwise,
we will be faced with an awful porting task as processor designs evolve in the future.

For the coming exascale era, programming models will also need to provide support for fault
tolerance; something better than simple program-wide checkpoint/restart is clearly needed if the
expected interval between processor failures is on the order of hours rather than weeks. We would
like to investigate using teams (process subsets) and coarrays mapped across their members as a
mechanism for implementing components for finer grain checkpointing and recovery.

Our overarching goal has been and continues to be to develop a suitable model for writing scal-
able and high performance programs that is useful for programmers at all points on the application
spectrum, from desktop workstations to supercomputers. This requires attracting application pro-
grammers, who have been historically skeptical about adopting anything not a standard. To have
a practical impact, we have focused our efforts on Fortran, which is the dominant programming
language today for HPC. It is thus crucially important to prove the viability of CAF 2.0 features
with further language prototyping and evaluation to show that (1) it is practical to implement
the rich set of features in CAF 2.0, (2) these features are necessary and sufficient for expressing
a wide variety of important algorithms, and (3) these features can be implemented in a way that
delivers high performance across the entire range of computer sizes. Without that we will be
unable to provide an authoritative argument that they should be incorporated into the Fortran
standard. Having CAF 2.0 features adopted into the Fortran standard will be critical in moving
the community forward.
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