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Outline

ä Plasma kinetic simulations: Particle-in-cell (PIC) methods

ë explicit, implicit time integrations

ä Our approach: fully implicit electromagnetic PIC

ë Vlasov-Darwin model, space-time-centered discretization
ë Based on a JFNK solver with nonlinear elimination

ä Preconditioning: Moment acceleration

ë physics based, fluid set of equations (electrons only)
ë targeting stiffest electrostatic waves (e.g. Langmuir wave)
ë targeting some fundamental electromagnetic effects (e.g. skin current)
ë some test case examples
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Introduction
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Kinetic Plasma Simulation

ä A fully ionized collisionless plasma: ions, electrons, and electromagnetic fields
ä Challenge: integrate ion-electron kinetic system (plus Maxwell’s equations) on an ion time-scale

and a system length scale while retaining electron kinetic effects accurately.

(We are developing a New implicit algorithm for long-term, system-scale simulations. )

ä Problem features a hierarchical description:
ë Kinetic scales require transport models (3D-3V): high-order problem (PIC, direct Vlasov)
ë Macroscopic scale well described by fluid models (3D): low-order problem (MHD)
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Particle-in-cell (PIC) methods for kinetic plasma simulation

∂t f + v · ∇ f +
F
m
· ∇v f =

(
∂ f
∂t

)
col

ä Ignoring collisions⇒ Lagrangian solution by the method of characteristics:

f (x, v, t) = f0

(
x−

∫ t

0
dtv, v− 1

m

∫ t

0
dtF
)

; x(t = 0) = x0 ; v(t = 0) = v0

ä PIC approach follows characteristics employing macroparticles (volumes in phase space)

f (x, v, t) = ∑p δ(x− xp)δ(v− vp)

ẋp = vp

v̇p =
qp

mp
(E + v× B)

∂tB +∇× E = 0

−µ0ε0∂tE +∇× B = µ0j

∇ · B = 0

∇ · E =
e(ni − ne)

ε0

δ(x− xp) −→ S(x− xp) ; Ep = ∑
i

EiS(xi − xp) ; ji = ∑
p

jpS(xi − xp)

Guangye Chen, gchen@lanl.gov



Implicit vs. explicit particle-in-cell (PIC) methods

ä Explicit PIC features:

ë Severe performance limitations:
I ∆x < λDebye (finite-grid instability: enforces a minimum spatial resolution)
I ωpe∆t < 1 (CFL-type instability: enforces a minimum temporal resolution)
I Challenging for heterogeneous architectures: memory bounded

ë Accuracy limitations: lack of energy conservation, problematic for long-time-scale
simulations

ä Fully converged, nonlinear implicit PIC [1-7] can overcome difficulties of explicit PIC:

ë Allowing stable and robust integrations with large ∆t and ∆x (2nd order accurate)
ë Ensuring exact global energy conservation and local charge conservation properties
ë Allowing adaptivity in both time and space without loss of the conservation properties
ë Nonlinear elimination: particle subcycling (large operational intensities!)
ë Allows fluid preconditioning to accelerate the iterative (JFNK) kinetic solver
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Fluid equations

ä Taking moments of Vlasov equation:

∂tnα = −∇ · Γα

mα∂tΓα = qαnα (E + v× B)−∇ ·Πα

• • •

where

nα =
∫

fαdv

Γα =
∫

v fαdv

Πα =
∫

vv fαdv

ä Our goal: Using simplified fluid equations, which expose the stiffest modes in the system, and is
fast to invert, for algorithmic accelerations ← IMPLICIT PIC time integrations.
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Fully implicit electromagnetic Vlasov-Darwin
PIC
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Darwin model (potential form)

ä A good approximation to the Maxwell’s equation for low-frequency plasma phenomena, but
without the light wave.
ë Light waves can be excited by noises, accumulate errors, and introduce numerical Cherenkov

radiations/instabilities.
ä We consider potentials φ, A in the Coulomb gauge (∇ ·A = 0) such that:

ε0∇2∂tφ = ∇ · j,

−∇2A = µ0 [j− ε0∇∂tφ] .

ä In 1D:

ε0∂tEx + jx = 〈jx〉 ,

1
µ0

∂2
x Ay + jy =

〈
jy
〉

,

1
µ0

∂2
x Az + jz = 〈jz〉 .
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Time-space-centered discrete 1D Darwin model

ä Field equations on a Yee grid:

ε0
En+1

x,i+1/2− En
x,i+1/2

∆t
+ j̄n+1/2

x,i+1/2 = 〈jx〉 ,

1
µ0

∂2
x

An+1
y + An

y

2

∣∣∣∣∣
i

+ j̄n+1/2
y,i =

〈
jy
〉

,

1
µ0

∂2
x

An+1
z + An

z

2

∣∣∣∣
i
+ j̄n+1/2

z,i = 〈jz〉

E  , A  , j
x      x     x

E  , A  , j
y      y     y

E  , A  , j
z      z     z

B  , B
y      z

ρ

ä Current gather (with orbit averaging):

j̄n+1/2
x,i+1/2 =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,x Sm(xν+1/2

p − xi+1/2)∆τν,

j̄n+1/2
y,i =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,y Sl(xν+1/2

p − xi)∆τν,

j̄n+1/2
z,i =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,z Sl(xν+1/2

p − xi)∆τν,
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Implicit particle mover

ä Subcycled particle equations of motion:

xν+1
p − xν

p

∆τν
= vν+1/2

x ,

vν+1
p − vν

p

∆τν
=

qp

mp

[
Eν+1/2

p (xν+1/2
p ) + vν+1/2

p × Bν+1/2
p (xν+1/2

p )
]

.

ä This in an implicit nonlinear system. We invert it locally using Picard iterations.

ä We use an implicit Boris push:

v̂p = vν
p + αEν+1/2

p , α =
qp∆τν

mp2

vν+1/2
p =

v̂p + α
[
v̂p × Bν+1/2

p + α(v̂p · Bν+1/2
p )Bν+1/2

p

]
1 +

(
αBp

)2 .
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Jacobian-Free Newton-Krylov Methods

ä A large set of nonlinear equations (in the residual form): A~xn+1 =~b⇒ ~G(~xn+1) =~0

ä Converging nonlinear couplings requires iteration: Newton-Raphson method:

∂~G
∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk)

ä Jacobian linear systems require a linear solver ⇒ Krylov subspace methods (GMRES)
ë Only require matrix-vector products to proceed.
ë Jacobian-vector product can be computed Jacobian-free (CRITICAL: no need to form Jacobian

matrix): (
∂~G
∂~x

)
k

~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

ë Krylov methods can be easily preconditioned: P−1
k ∼ J−1

k

JkP−1
k Pkδ~x = ~−Gk

We explore physics-based preconditioning strategies.
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Nonlinear elimination by Particle enslavement

ä Full residual G({x, v}p, {Φ}g) = 0 is impractical by GMRES method (too much memory
requirement for ~x = K~c where K = span{~b, A~b, A2~b...} and ~c is some appropriate vector).

ä Alternative: nonlinearly eliminate particle quantities so that they are not dependent
variables:
ë Formally, particle equations of motion are functionals of the electrostatic potential:

xn+1
p = xp[Φn+1] ; vn+1

p = vp[Φn+1]

G(xp
n+1, vp

n+1, Φn+1) = G(x[Φn+1], v[Φn+1], Φn+1) = G̃(Φn+1)

Nonlinear residual can be unambiguously formulated in terms of fields only!

ä JFNK storage requirements are dramatically decreased, making it tractable:
ë Solver storage requirements ∝ Ng, comparable to a fluid simulation
ë Particle quantities ⇒ auxiliary variables: only a single copy of particle population

needs to be maintained in memory throughout the nonlinear iteration
ë Moment preconditioning becomes possible!

Guangye Chen, gchen@lanl.gov



Algorithmic implementation details

1. Input E, B (given by JFNK iterative method)
2. Move particles (i.e., find xp[E], vp[E] by solving equations of motion)
3. Compute moments (current density)
4. Form the Darwin equation residual
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JFNK preconditioning via moment equations

ä We start with 1D electrostatic equations (x direction) :

∂tne = −∂xΓex (1)

me∂tΓex = qeneEx + ∂xΠe (2)

ε0∂tEx = qeΓex (3)

ä Linearize and discretize:

δne

∆t
= −∂xδΓex (4)

me
δΓex

∆t
≈ qe

[
δne Ex + (ne)p δEx

]
+ ∂x

 (
Πe

ne

)
p

δne

 (5)

ε0 δEx = ∆t
[

qeδΓex − G(Ex)

]
(6)

ë Eq.(4) (5) can be combined, and inverted by a tri-diagonal solver;
ë δE can be obtained from Eq.(6).
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JFNK preconditioning via moment equations (cont.)

ä We then deal with electromagnetic equations (y,z directions) :

me∂tΓy,z = qene
[
Ey,z + //////(v× B)y,z

]
+ ////∂xΠe (7)

Ey,z = −∂t Ay,z (8)

1
µ0

∂xx Ay,z = −qΓy,z (9)

ä Linearize and discretize:

2meδΓy,z + qeneδAy,z = 0 (10)

1
µ0

∂xxδAy,z + qeδΓy,z = −G(Ay,z) (11)

ë Eq.(10) (11) can be combined,

∂δAy,z

∂x2 −
1
d2

e
δAy,z = −2µ0 G(Ay,z) (12)

where de = c/ωpe is the skin depth.
ë Eq. 12 is inverted by a tri-diagonal solver.
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Test cases: from unmagnetized to magnetized plasmas
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Preconditioner performance
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Preconditioner performance (cont.)

We change the Ion Webel instability case from L=0.05 to a larger domain L=32 (Nx=64).
Correspondingly, kmaxde ' 100→ 6.4 (see Eq. 12) :
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Summary and conclusions

ä Implicit PIC methods become practical by JFNK with nonlinear elimination.

ë JFNK solves for the field equations only; particle equations of motion can be solved separately.

ä The nonlinear elimination allows us to construct an efficient moment-based preconditioner:

ë The fluid preconditioner is physics based, taking into account the electrostatic electron wave
physics, and electromagnetic skin current shielding effects.

ë The fluid preconditioner (in 1D) allows good performance upto ∆t = 0.1ω−1
pi .

ë The preconditioner is tested for unmagnetized and weakly unmagnetized problems, the ratio
between un-preconditioned and preconditioned NFE is from 5 to 10 (in the case of kde � 1,
ratio=100!)
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