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Outline

» Plasma kinetic simulations: Particle-in-cell (PIC) methods
« explicit, implicit time integrations
» Our approach: fully implicit electromagnetic PIC

<~ Vlasov-Darwin model, space-time-centered discretization
= Based on a JFNK solver with nonlinear elimination

» Preconditioning: Moment acceleration

= physics based, fluid set of equations (electrons only)

= targeting stiffest electrostatic waves (e.g. Langmuir wave)

~ targeting some fundamental electromagnetic effects (e.g. skin current)
=

some test case examples
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Kinetic Plasma Simulation

» A fully ionized collisionless plasma: ions, electrons, and electromagnetic fields

» Challenge: integrate ion-electron kinetic system (plus Maxwell's equations) on an ion time-scale
and a system length scale while retaining electron kinetic effects accurately.
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(We are developing a New implicit algorithm for long-term, system-scale simulations. )

» Problem features a hierarchical description:

~ Kinetic scales require transport models (3D-3V): high-order problem (PIC, direct Vlasov)
> Macroscopic scale well described by fluid models (3D): low-order problem (MHD)
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Particle-in-cell (PIC) methods for kinetic plasma simulation
oif +v- Vf—l—— Vaf = (%{)

» |gnoring collisions=- Lagrangian solution by the method of characteristics:
f(x,v,t):f0< dtvv——/th);xt: 0) =xp; v(t=0)=vy
» PIC approach follows characteristics employing macroparticles (volumes in phase space)

fx,v,t)=%,6(x—x,)6(v—vp)
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Implicit vs. explicit particle-in-cell (PIC) methods

» Explicit PIC features:

< Severe performance limitations:
» Ax < Apepye (finite-grid instability: enforces a minimum spatial resolution)
> wpeAt < 1 (CFL-type instability: enforces a minimum temporal resolution)
» Challenging for heterogeneous architectures: memory bounded

«~ Accuracy limitations: lack of energy conservation, problematic for long-time-scale
simulations

» Fully converged, nonlinear implicit PIC [1-7] can overcome difficulties of explicit PIC:

= Allowing stable and robust integrations with large At and Ax (2nd order accurate)

= Ensuring exact global energy conservation and local charge conservation properties

< Allowing adaptivity in both time and space without loss of the conservation properties
= Nonlinear elimination: particle subcycling (large operational intensities!)

= Allows fluid preconditioning to accelerate the iterative (JENK) kinetic solver
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Fluid equations

» Taking moments of Vlasov equation:

Btn,x = -V - l”,x
muoly, = gun, (E4+vxB)—V-II,

where

n, = /f,xdv
r, = / Vfado
I, = /vvfadv

» QOur goal: Using simplified fluid equations, which expose the stiffest modes in the system, and is
fast to invert, for algorithmic accelerations <— IMPLICIT PIC time integrations.
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Fully implicit electromagnetic Vlasov-Darwin
PIC
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Darwin model (potential form)

» A good approximation to the Maxwell's equation for low-frequency plasma phenomena, but
without the light wave.

~ Light waves can be excited by noises, accumulate errors, and introduce numerical Cherenkov
radiations/instabilities.

» We consider potentials ¢, A in the Coulomb gauge (V - A = 0) such that:

€0v28t¢ = V- j,
—VZA = Mo [] — €0V8tcp] .
» |n 1D:
€OatEx + jx — <]x> ’
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Time-space-centered discrete 1D Darwin model

» Field equations on a Yee grid:

+1
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» Current gather (with orbit averaging):
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Implicit particle mover

» Subcycled particle equations of motion:

v+l v
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» This in an implicit nonlinear system. We invert it locally using Picard iterations.

» \We use an implicit Boris push:

ATY
N v V+1/2 _ 4y
Vv, = Vp+(pr , = 1,2
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Jacobian-Free Newton-Krylov Methods

» A large set of nonlinear equations (in the residual form): A¥"*! = =| G(¥**") =0

» Converging nonlinear couplings requires iteration: Newton-Raphson method:

oG

ﬁ 53?]( — —G(fk)

k

» Jacobian linear systems require a linear solver = Krylov subspace methods (GMRES)

= Only require matrix-vector products to proceed.
= Jacobian-vector product can be computed Jacobian-free (CRITICAL: no need to form Jacobian
matrix):

<8G> 7 = lim G(X + €y) — G(Xy)

af e—0 €

=~ Krylov methods can be easily preconditioned: Pk_1 ~ ]k_1

]kpk_lpk53_f = —_Ck

‘ We explore physics-based preconditioning strategies. I
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Nonlinear elimination by Particle enslavement

» Full residual G({x, v}, {P}s) = 0 is impractical by GMRES method (too much memory
requirement for X = ICC where IC = Span{g, Ab, AZE...} and C is some appropriate vector).

» Alternative: nonlinearly eliminate particle quantities so that they are not dependent
variables:

«~ Formally, particle equations of motion are functionals of the electrostatic potential:

xi;-l—l — xp[q>n+1] ; vz—l—l — vp[q>n+1]

G(xp”+1,vp”+1,<l>”+1) — G(x[<I>”+1],V[<I>”+1], <I>”+1) — (~}(<I>”+1)

‘ Nonlinear residual can be unambiguously formulated in terms of fields only! I

» JFNK storage requirements are dramatically decreased, making it tractable:

« Solver storage requirements « N,, comparable to a fluid simulation

~ Particle quantities = auxiliary variables: only a single copy of particle population
needs to be maintained in memory throughout the nonlinear iteration

~ Moment preconditioning becomes possible!
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Algorithmic implementation details

Input E, B (given by JFNK iterative method)
Move particles (i.e., find x,[E], v,[E] by solving equations of motion)

Compute moments (current density)

il o

Form the Darwin equation residual

C time level n )
NONLINEAR ITERATION
i Maxwell egs Particle mover :
i n+l n+l X{}“,vﬁ‘” E
- JFINK |
| Nonli ‘ . :
| Fluid moments e,,-(,),?,-,',r;i,%rn Closure relations| !
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| P .ug,» Eg s o (o4 .
““““““““““ convergence
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JFENK preconditioning via moment equations

» We start with 1D electrostatic equations (x direction) :

0, = —0,u (1)

meatrex — QeneEx + axne (2)

eOatEx — qerex (3)
» Linearize and discretize:
on,

— —O0x01 ey 4

Y 0,0T (4)

) . II,
M, Y Ge léne E, + (ne)p OE,| + 0, (n—e>p o, (5)

eo- = At [qe(srex— G(Ex)] (6)

= Eq.(4) (5) can be combined, and inverted by a tri-diagonal solver;
« OE can be obtained from Eq.(6).
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JFNK preconditioning via moment equations (cont.)

» We then deal with electromagnetic equations (y,z directions)

medLyz = Gente |Eyz+ (¥/£/B)yz] + 4TEe (7)
E,, = —0iA,, (8)
%axxAy,Z = —qly; ()
» Linearize and discretize:
2m.oly, +gen.dA,, = 0 (10)
%axx(my,z 1 gedT,. = —G(Ay) (11)

« Eq.(10) (11) can be combined,

A, 1
o — 7 0Ayz = —2py G(Ay,) (12)

e

where d, = ¢/ w, is the skin depth.
=~ Eq. 12 is inverted by a tri-diagonal solver.
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Test cases: from unmagnetized to magnetized plasmas

1e-06
/“-ﬁ-’-_’-:
2 1e-04 : N~
: 1e-07 |
(0]
°
5 1e-05 /
(0]
° // 1e-08
RS
o 1e-06
&
E explicit —— 1e-09
implicit -------- . .
e inear theory - ; ' simulation, vy, .=0.025¢
linear theory , linear theory, 1/és,=0.103 -
0 500 1000 1500 2000 2500 1e-10 |, |i§é2#’{ﬁ28?;,"§?6§=,9b°8;g ____________ ]
/ bl pl— .
(VI | ‘ | | ‘ |
pe 0 20 40 60 80 100 120
implici‘t PIC ——
linear theory ---------
0.1 F
)
[0
3
k)
o
o 001
2
&
=
0.001 ¢

1)electron Weibel instability; 2) ion Weibel instability ; 3) Kinetic Alfven wave with ion-ion streaming instability.
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Preconditioner performance
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Preconditioner performance (cont.)

We change the lon Webel instability case from L=0.05 to a larger domain L=32 (Nx=64).
Correspondingly, kyaxde >~ 100 — 6.4 (see Eq. 12)
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Summary and conclusions

» Implicit PIC methods become practical by JFNK with nonlinear elimination.
~ JFNK solves for the field equations only; particle equations of motion can be solved separately.
» The nonlinear elimination allows us to construct an efficient moment-based preconditioner:

~ The fluid preconditioner is physics based, taking into account the electrostatic electron wave
physics, and electromagnetic skin current shielding effects.

> The fluid preconditioner (in 1D) allows good performance upto At = O.1w;i1.

~ The preconditioner is tested for unmagnetized and weakly unmagnetized problems, the ratio
between un-preconditioned and preconditioned NFE is from 5 to 10 (in the case of kd, > 1,
ratio=100!)
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