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Efficient self-consistent quantum transport simulation in complex geometry devices
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Motivation

Silicon double quantum dots are designed and fabricated for qubit

applications at Sandia National Laboratories.
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J Characterization of tunnel barriers {e.g., dot and QPC barriers) -> information on
barrier shape and disorder defect -> controllability of tunnel barriers
] Typical measurements of dot barrier: fix all the depletion gates and Ohmic
contacts, while TP and SD voltages are being varied.

L To aid the experiment and improve DQD designs, a quantum transport
modeling capability is needed.
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conductance in better qualitative
agreement with the experiment
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*D. Mamaluy, Xujiao Gao, “Large scale quantum transport simulations using the CBR method”, to be published

Conclusion: in the complex geometry devices for which electrostatic potentials are
known from TCAD tools, very fast, yet sufficiently accurate, quantum transport
simulations can be performed using the charge self-consistent CBR method and the
described effective charge extraction technique. Simulated drain-source
conductance using the self-consistent simulator across a tunnel barrier

in a silicon DQD device show much better qualitative agreement with experimental
data than the non-selfconsistent model assuming a linear potential drop.
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