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In situ lon
Irradiation TEM is
operational, while

still in development
it is providing
experimental
insight
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“The direct observation of ion

damage in the electron microscope :
thus represents a powerful means =. T
_of studying radiation damage” :
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- ¢ I3TEM History at the lon Beam Lab
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. ' Q
Beam burn from
14 MeV Si

Gas Heating TEM
Stage Controls

Microfluidic TEM
Stage Controls

Current Status of the In situ TEM Beamline

Collaborators: D.L. Buller & J.A. Scott

E
)
Double tilt stage

needs to tilt only
12°

Quantitative
Mechanical

Bending Testing
Magnet to TEM Stage
Mix Beams Controls

Pre-TEM Coupon
Irradiation Chamber

ISTEM is operational,
but also still in development
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In situ TEM Luminescence

Collaborators: D. Masiel, D. Buller, and C. Chisholm

Optical Mirror in TEM First IBIL in TEM

-

Two optical port were
added to the ISTEM already
containing a electron beam
and two ion beams, which

permits in situ TEM
luminescence studies

Optical Pathway in an I3STEM

= Angled mirror with bore hole for the
electron path was installed above the
polepiece

= Another mirror is located just above the ion
beams in the beamline

=« Two perspective of the sample are possible
=sPermits in situ IBIL and CL.




Quantifying Defect Evolution
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Single lon Strikes

Collaborators: C. Chisholm & A. Minor

7.9 x 10%ions/cm?/s 6.7 X 107 ions/cm?/s

Improved vibrational and ion beam stability permits us to work at 120kx
or higher permitting imaging of single cascade events




In situ Implantation

Gold thin-film implanted
with 10keV He?*

Result: porous
microstructure

Collaborators: C. Chisholm & A. Minor

4.0 x 1016 jons/cm? &

1.0 x 1017 jons/cm?




Single lon Strikes During Concurrent
Irradiation: Nucleation of Helium CaV|t|es

Collaborators: C. Chisholm & A. Minor

a) Initial
microstructure

b) Cascade: Creation
of dislocation loops,
vacancy clusters,
and three cavities

d) Cascade damage
still evolving

e) Apparent stability

f) Final
microstructure: Only
two remaining
cavities




Load (uN)

Add in-situ Capabilities from
Advancements in TEM Stages

Contributors: J. Sharon, B. L. Boyce, C. Chisholm, A.M. Minor, B.G. Clark, P.J. Cappillino, B.W. Jacobs, M.A. Hekmaty,
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| 30 fies Vapor-Phase Heating
TEM Stage
= Compatible with a range of
gases
Quantitative = In situ resistive heating
mechanical Environmental : .
testing = Continuous observation of

the reaction channel

= Chamber dimensions are
controllable

=1 atm H, after several pulses
to specified temp

125° C 200° C 300° C

Displacement (nm)




In situ TEM microfluidic Environments

Contributors: S.H. Pratt, E. Carnes, J. Brinker, D. Sasaki, D. Gross, J. Kacher, .M. Robertson & Protochips Inc.

Microfluidic Stage
= Mixing of two or more channels

sContinuous observation of the reaction
channel

s Chamber dimensions are controllable

In situ microfluidic TEM can provide insight in
events as diverse as corrosion and drug delivery

Fe Corrosion Liposomes in Water

Electron Beam

SIN Membrane

_LIposomes

Flowing Liquid

SIN Membrane
Scattered Electrons

Protocell Drug Delivery

-

Liposome
encapsulated
Silica
destroyed by
the electron
beam in
agueous
environment

Dilute flow of acetic acid over . Li‘posomes imaged in flowing
99.95% nc-PLD Fe aqueous channel

We hope to go a step further and combine it with
ion implantation and irradiation environments

Sandia National Laboratories



Low Temperature Synthesis of
Lanthanide and Actinide Nanoparticles

Fabrication of nuclear fuels at low
temperatures allowing for the
formation of complex Uranium metal
and alloys with minimum volatility of
alloy compounds in the process

Potentially permits the recycling of
dissolved uranium and lanthanide ions
from acidic solutions (used fuel) into
metals and alloys

Gamma (g) irradiation is used to
reduce uranium and lanthanide ions to
metal in solution at room temperature

result in Limits potential release to the
environment and/or other ES&H issues

Radiolytic formation of actinide nanoparticles
RT approach for nuclear fuels synthesis reducing
defect formations in bulk metals when compared

to normal sintering at 1500-1700°C
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In situ Observation of the
- Various Structural Evolutions

Structural evolution is
highly dependent on:

« thelanthanide salt
 Jlocal salt conc.

+ flow rate
* proximately to other
nanostructures

e e beam dose
e e beam dose rate
* etc.
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The Resulting Microstructures
EuCl;in H,0O EuCl;in H,0O LaCl; in H,0




~ Summary & Future Interests

g Sandia’s I3’TEM is one of only two
= facilities in the US

=  Insitu irradiation from H to Au
=  In situ gas implantation

=  Eight TEM stages with various
capabilities (two beta-testing)

ISTEM can provide fundamental
M understanding to key mechanisms
=% in a variety of extreme conditions

It has provided insight into the
formation of lanthanide
nanoparticles

Sandia’s I’'TEM although still under
The I3TEM capability are still being | development is providing a wealth
expanded of interesting initial observations
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