SAND2013-10156C

Electronic dispersion in two overlapping
graphene sheets:
Impacts of long-range atomic ordering and
periodic potentials

Taisuke Ohta

Sandia National Laboratories, Albuguerque, NM 87185

9th International Symposium on Atomic Level Characterizations for New Materials and Devices '13
Dec. 2 - 7, 2013, Kailua-Kona, HI, USA.

M)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



Stacked 2D-crystals: a new class of materials

Monolayer A-BN

» Various two-dimensional (2D) crystals
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NbOg Graphene & h-BN
Titanium Niobate http://en.wikipedia.org/wiki/Graphene
Germanane Osada et al., Adv. Funct. Mater. 21, 3482 (2011)

Molybdenum dichalcogenide Bianco et al., ACS Nano, 7, 4414 (2013)
Lee et al., Advanced Materials, 24, 2320 (2012)

* Hybrid 2D-solids can be r‘eallzed
- Combining materials ' .pumssine
- Emerging properties
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. Graphene/BN superlattice
Graphene on BN Haigh et al., Nature Materials 11, 764 (2012)

- Dean et al., Nature Physics 7, 693 (2011); Dean et al.,
2D-based heterostructure Nt w67, 556 (5023

Novoselov et al., Nature 490, 192 (2012)

How would 2D-crystals interact electronically with each other?
- We examine Twisted Bilayer Graphene (TBG)assembled via transfer process
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How does azimuthal misorientation manifest

itself in bilayer graphene?

STS indicates van Hove Moire
singularities (vHs)
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Raman shows resonant transition
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e study:
* Microscopic & atomic view of Twisted Bilayer Graphene (TBG)
* Interacting Dirac cones through moiré periodic potential
 Tunable optical absorption & emergent color domains 5
» Defects & inhomogeneities

w ®
A
< <

Aysug

1200 1300 1400 1500 1l:‘»13ll31 1700
Li et al., Nature Physics 6, 109 ( 2010) Wavenumber (cm)
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LEEM/PEEM and ARPES

LEEM

Photon Imaging Electron ;
Source Detector energy  (LOw Energy Electron Microscopy)
Filter — Surface-sensitive “reflection” electron
microscopy
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Photoemission SpeCtrOSCOpy) Electron energy Count: color’

— Occupied electronic states’ dispersion analyzer Figure courtesy: Eli Rotenberg



We make TBG by transfer

* Transferring CVD graphene onto epi-graphene (on SiC) yields large
TBG domains with various twist angles
- Carried out in collaboration with Jeremy Robinson at Naval Research Laboratory
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X — A — X ] .
CVD grown Spin coat photoresist  Etch off Cu foil Place photoresist /CVD-graphene on Dissolve photoresist
graphene on Cu foil on CVD-graphene/Cu epi-graphene grown on SiC and clean the surface
with H2

- Monolithic epi-graphene
- Large-domain CVD graphene (>100um-size domain)

Epi-graphene on SiC(0001) CVD graphene
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Bostwick et al., Nature Phys. 3, 36 (2007) Figure courtesy: Jeremy Robinson



TBG shows electron reflectivity characteristic

of bilayer graphene

» Two dips in electron reflectivity spectra: bilayer graphene on SiC
- Low energy electron microscopy (LEEM) measurement

TBG on H-
terminated SiC
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Ohta et al., PRB, 85, 075415 (2012)



TBG has long-range atomic order

» Diffraction patterns from TBG with a small and a large twist angles
- Diffraction spots due to moiré

Real-space moiré vectors

© Underlayer diffraction spots

o QOverlayer diffraction spots

- Minimum damage of graphene was confirmed using Raman spectroscopy
* Please see PRB, 85, 075415 (2012) for detail



TBG has two sets of Dirac cones

* Electronic dispersion is measured using PEEM (photoemission electron
microscopy) and ARPES (angle-resolved photoemission spectroscopy)

- Upper (blue hexagon) and lower (red hexagon)
graphene sheets create two sets of Dirac cones
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Two Dirac cones display anti-crossing

» Departure from the simple Dirac cone picture

- Twist angle, 6 = 11.6°
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* Two cones' interaction leads to mini-gap
and van Hove singularities
- Match very well with DFT calculation

» Additional feature at the green arrow



Additional Dirac cone emerges

* Anti-crossing is found b/w the original and the additional Dirac cone
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Moiré periodic potential produces Dirac cones

* Umklapp scattering by moiré periodic potential
- Similar to moiré-induced Raman band and LEED spots
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Superlattice changes electronic dispersion

- Substrate or neighboring material provides periodic potentials

Surface superlattice

Mini-bands & gaps formed in
inversion layer of vicinal Si
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Graphene superlattice
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How does the band renormalization affect the

properties of TBG?

* Does interlayer interaction lead fo changes in
properties of TBG other than electronic dispersion?

* How does it vary as a function of twist angle?

- Color variation is found in TRG!

Li et al., Nature Physics 6, 109 ( 2010)

DOS (E)

-1.5-1 -O.SKIEKO.S 1 1.5 Kin;fé%’é I(DZFBIEQ)OS Graphene in Color, Science 152, 374 (2013)

Tabert et al., PRB 87, 121402(R) (2013)



Electronic dispersion changes as a function of

twist angle

* Interlayer overlap integral (y,*) and the characteristic energy (v, Ak)
dictate band renormalization

- Crossoveg at twist angle, 6 = 5°
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“Colored grain” are observed for TBG on
Si0,/Si substrate

* Patches of "colored grain” observed in
optical microscope

- TBG on Si0,/Si substrate

Robinson et al., ACS Nano, 7, 637 (2013) & Science 152, 374 (2013)



Emerging absorption band is responsible for

“Colored grain”
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Optical absorption depends on the twist angle
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* LEED correlates the color to the twist angle : e
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- Supported theoretically




We study local inhomogeneities

using Raman G-mode
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« Grains with giant Raman G-mode are
found in TBG on SiC
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We study local inhomogeneities

using Raman G-mode
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* Sub-grains separated by wrinkles and
blisters
- Rotation disorders make Raman G-mode
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Rotational disorder is quantified using Raman
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» Twist angle varies by ~1° within CVD
graphene domain

» Twist angle variations from Raman and
LEED match

» Sub-grains show ~0.1" twist angle
variation (below measurement limit)

- Future opportunity to improve the properties
of stacked 2D-crystals




Summary

Twisted Bilayer Graphene (TBG) can be produced using transfer approach
Electronic dispersion is altered by moiré (long-range periodicity)

Optical properties can be tuned by the twist angle

Band renormalization is relatively robust against rotational disorders

Moiré influences the electronic structure of TBG

Moiré is ubiquitous in 2D-solids: handle to tailor electronic properties
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For details of our work, please see the following publications:
+ T. Ohtaq, T. E. Beechem, J. Robinson, 6. L. Kellogg, Long-range atomic ordering and variable interfayer interactions in two

overlapping graphene lattices with stacking misorientations, Phys. Rev. B, 85,075415, 2012.

+ T. Ohta, J. T. Robinson, P. J. Feibelman, A. Bostwick, E. Rotenberg, T. E. Beechem, Evidence for interlayer coupling and moiré
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* Graphene in Color, Science 152, 374, 2013 "editor's choice."
+ R. M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, Taisuke Ohtaq, 6. L. Kellogg, J. T. Robinson, I. V. Vlassiouk, Low-

enerqgy Electron Reflectivity from Multilayer Graphene, Phys. Rev. B Rapid Communications, 87, 041406(R), 2013.



We study MoS, using LEEM

» Identifying the crystallographic orientation and the domain size of
single-crystal MoS, monolayer

Single layer
MoS, crystal

- Dark-field images of MoS, film

Mann, Bartels, et al., European Phys. J. B 86, 226 (2013)
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LEEM-PEEM research opportunities

* Postdoc in LEEM group at Sandia National Laboratories, Albuguerque
- Defects and 2D-electron gas in nitride semiconductor heterostructures
- Electronic properties of 2D-crystals and their stacked structures

Job posting: 644053
http://www.sandia.gov/careers/index.html

* New research capabilities: energy-filtered LEEM-PEEM
- Real-time surface imaging and diffraction
- Electronic structure study using EELS and ARPES (UV-light sources)

For further information, please contact
Taisuke Ohta (tohta@sandia.gov)
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