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Hybrid Discrete/Continuum Algorithms for Stochastic
Reaction Networks

Abstract

Direct solutions of the Chemical Master Equation (CME) governing Stochas-
tic Reaction Networks (SRNs) are generally prohibitively expensive due to
excessive numbers of possible discrete states in such systems. To enhance
computational efficiency we develop a hybrid approach where the evolution
of states with low molecule counts is treated with the discrete CME model
while that of states with large molecule counts is modeled by the continuum
Fokker-Planck equation. The Fokker-Planck equation is discretized using a
274 order finite volume approach with appropriate treatment of flux com-
ponents to avoid negative probability values. The numerical construction
at the interface between the discrete and continuum regions implements the
transfer of probability reaction by reaction according to the stoichiometry of
the system. The performance of this novel hybrid approach is explored for
a two-species circadian model with computational efficiency gains of about
one order of magnitude.
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1. Introduction

Stochastic noise is prevalent in a wide variety of systems, especially when
the system behavior is affected or controlled by phenomena on a nanoscale,
molecular level, where thermal noise introduces intrinsic variability in molec-
ular interactions. Common examples of such phenomena are chemical, bio-
chemical, or electrochemical reactions between small numbers of molecules,
found in gene regulation, cell signaling, or interfacial electrochemistry, gener-
ally referred to in this paper as Stochastic Reaction Networks (SRNs). Given
the relevance of these processes in applications ranging from bioremediation
and bioenergy (bacterial behavior), biomedicine (immune system signaling),
to electrical storage (electrodes), effective tools are needed for the simulation
and analysis of SRNs.

Mathematically, SRNs are continuous time, discrete state Markov pro-
cesses, governed by the Chemical Master Equation (CME) [1], which de-
scribes the time evolution of the probability of the system being in a par-
ticular state. Here the system state consists of the number of molecules of
each species in the system. While the CME can be solved as a system of
linear equations, its solution quickly becomes challenging as the number of
possible system states increases exponentially with the number of species.
For this reason, many studies rely on the Stochastic Simulation Algorithm
(SSA)[2, 3], which can efficiently generate sample trajectories of the system
state. Based on this fundamental simulation method, many advances have
been made over the years [4-12] resulting in a wide range of powerful methods
for sampling stochastic systems.

While SSA is a powerful tool for generating sample trajectories of the



system state, even in high dimensions, one of its drawbacks is that many
samples are needed to construct an accurate probability density function of
the system state. As the CME solution offers a full probability distribution
of the system states, rather than just samples, it is able to better capture low
probability events, which are often missed by sampling-based methods unless
a prohibitively large number of samples is used. In recent years, various
approaches have been developed to make the direct solution of the CME
more computationally tractable. One approach is finite state projection [13—
16], which reduces the size of the system of equations to be solved by only
keeping track of those states that have a non-neglible probability associated
with them. This projected state space is adaptively expanded and shrunk
as the state probabilities vary in time. Another approach to reducing the
number of equations is to group multiple states together via aggregation [17,
18]. For a given set of equations, advances in matrix exponentiation [18-21],
or taking advantage of time scale separation [22] can speed up the CME
solution. Ohter CME solution approaches rely on a spectral representation
of the probabilities of the system states [17, 23-27].

The combination of these algorithms has led to dramatic speedups in the
solution of the CME, enabling the study of small SRNs by solving their CME
directly. For small system (a few species), this approach has been shown to be
competitive with and complementary to the SSA sampling based approaches
(see e.g. [19]).

Despite these advances in solving the CME, a direct solution is still in-
tractable for systems with many species, especially if some of those species

are present in large numbers of molecules, thereby significantly increasing



the size of the state space. For species that are present in large molecule
counts, it is often appropriate to use a continuum representation for the
system state [28], and rely on the Fokker-Planck Equation (FPE) [29, 30],
which is the continuum equivalent to the discrete CME, or use deterministic
rate equations. In this context, Sjoberg et al. [31] developed a hybrid ap-
proach that uses the FPE for species that are present in large numbers of
molecules, while keeping the discrete CME for species that only have a few
molecules. Other approaches use the discrete SSA approach for some species,
and continuum, deterministic rate equations for others [32].

While the hybrid approaches offer large computational savings for sys-
tems where a clean separation is possible between the species that should
be handled with a discrete formulation, and those that can be handled with
a continuum approach, such a separation is not always feasible, and may
vary as species molecule counts vary in time. Rather than relying on a static
separation, where species are handled with either a discrete or continuum
formulation, the current work varies the formulation over different areas in
the species phase space. In the area where all species are present with few
molecules, the CME is used for all species, since discreteness is important
in that area. In areas corresponding to a large number of molecules for
all species the FPE formulation is used. In regions where some species are
present in small numbers, but others in large numbers, the formulation by
Sjoberg et al. [31] is used.

By using the discrete CME formulation only where it is needed, the al-
gorithm presented in this paper can allocate computational resources (i.e.

grid density) more effectively. Also, as will be shown, the resulting set of



equations for the hybrid approach is very similar as the original set of linear
equations corresponding to the CME. This means that the hybrid algorithm
can be used in synergy with other approaches such as finite state projec-
tion and improved matrix exponentiation for further computational gains.
For proof of concept, the approach was implemented for systems with two
molecular species, and applied to the simulation of SRNs describing a simple
metabolite model, and a circadian rhythm model. Canonical tests show sec-
ond order convergence and good accuracy compared to full CME simulation,
with an order of magnitude gain in computational efficiency.

This paper is organized as follows. Section 2 describes the CME approach
to study SRNs and compares its direct solution with results based on the
SSA. Section 3 introduces the Fokker-Planck approximation to the CME,
and results based on a finite volume discretization of the FPE are compared
to full CME results. The hybrid CME-FPE formulation is formulated in
Section 4, numerical experiments are presented in Section 5, and conclusions

are presented in Section 6.

2. Chemical Master Equation

In this section we describe the Chemical Master Equation (CME) ap-
proach to study the dynamics of Stochastic Reaction Networks. The CME
models the evolution of the probability of the state of the system.

Consider a stochastic reaction network (SRN) for a system consisting
of two species, X and Y. The 2-dimensional state space: n = (n,,n,) €
N2, corresponds to molecule counts for species X and Y and Ny is the

set of all non-negative integers. Denote the (jump, propensity) pairs by



{(vy,w,(IN))}, where R is the number of all reactions. More specifically,
n — n + v, with probability w,(n) per unit time.
The process is fully specified by the probabilities p(n;t) that evolve ac-

cording to the CME:
R

—p n;t) Zp — v tw(n —v,) — Zp(n;t)wr(n). (1)

r=1

Here, p(n;t) is the probability for the system to be in state n at time ¢. As
a function of n, p(n;t) is the probability mass function (PMF).
In a system with two species, X and Y, the right-hand side (RHS) for

equation (1) corresponding to reaction r can be written as

p(nx - Vr,a:a ny - Vr,y; t)wr<na: - VT,IL’? ny - Vr,y) - p(”m ny; t)wr<nm7 ny) (2>

where v, ;, v, are the stoichiometric coefficients for species X, Y in reaction
r, respectively, and v, = (Vy4, Vyy).

Figure 1 shows a schematic of a two dimensional CME system. In this
figure, colored arrows correspond to reactions, with changes in the number
of molecules being at most £1 for each species. Reactions leading to larger
changes in the number of molecules are possible, however the corresponding
sample “jumps” are not shown, to keep the sketch simple. Eq. (1) can be

written in matrix form as

dp _ A(CME)

where p is an array of PMF values for all possible system states. For two-

species systems the components of ACCME) are given by
R

CME A(CME) _
wr na:a ny kk+j — wr(nx_l/r,a:a ny_l/r,y)‘zzryy-Nz+zxr7z:j

(4)
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Figure 1: Schematic of the CME domain. The red arrows correspond to a reaction with

v = (1,1), blue arrows to v = (1, —1), and green arrows to v = (0, 1).

Here, k = n, - N, +n, is a linear index spanning the 2-D state space (n,,n,)
in a row-major format, and N, is the maximum number of molecules for
species X. Similarly, element py, is the PMF for state (n,,n,). The second
summation in Eq. (4) is over all reactions for which j = v, - Ny + v;,.

In this section we compare two methodologies to solve the system of
coupled ordinary differential equations (ODEs) defined by Eq. (3). In the first
approach, we explore the stochastic simulation algorithm [2, 3] (SSA). SSA
provides a mechanism for the time evolution of species numbers, effectively
sampling the CME solution and allowing its statistical analysis. The SSA
model is implemented in a simulation code using the StochKit library [33]. In
the second approach, the CME system is integrated in time using a two-stage
2" order total variation diminishing Runge-Kutta scheme [34].

Tests were conducted for two kinetic models, both involving two-species



systems. The first system involves five reactions modeling the creation of

two metabolites, a joint reaction, and their destruction [35-37]:

0 x gy
X+Y 520 (5)
X500 vioe

The propensities for the five reactions are given by w = {ky, ky, kanan,, pn., ,tmy}T,

where n,, n, are the number of molecules of species X, Y, respectively. The

matrix of stoichiometric coefficients is given by {(1,0), (0,1), (-1, —1), (—1,0), (0,—1)}".

For the results presented in this section, we adopted the same values for the
model parameters as in [37]: k, = k, = 0.6, ks = = 0.001.

Figure 2 shows PMF contour lines at steady state, obtained using the
two methodologies mentioned above: the SSA approach and direct integra-
tion of the CME. For all simulations, the initial condition was a 2D Gaussian
“blob”, symmetrical in both directions, centered at (200,200) and with stan-
dard deviations set to o, = 0,, = 25. The PMF field evolves towards the
elongated steady-state solution seen in the figure. The SSA solution consists
of the time evolution of an ensemble of system states. The initial condition
for this ensemble are sampled from the same Gaussian distribution used as
initial condition for the direct solution. The PMF values for the SSA sim-
ulations are obtained via Kernel Density Estimation (KDE) [38, 39]. For
the metabolic configuration, the SSA approach using 107 realizations, shown
in Fig. 2b, produces PMF values close to the ones obtained by the direct
solution of the CME, shown in Fig. 2c. For this configuration, the SSA simu-

lations required in order to obtain converged PMF values via KDE are about
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Figure 2: Steady state PMF contours for the metabolic model: (a) and (b) Kernel Density

Estimate based on SSA solutions with 105 and 107 realizations; (c) direct integration of

CME given by Eq. (3).

50% more expensive than the CME solution. Next we will compare the two
approaches for a 2D system that exhibits more complicated dynamics.
This system models a circadian rhythm using two molecular species, the

complex X and the repressor Y, and 4 reactions:

Py, Y290 (6)
Y 2B X, XY

?

The expressions for the propensities for the four reactions are provided below

for completeness. Reference [35] provides more detail on this model.
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The coefficients used in the circadian rhythm models are shown in Table 1.

p(ny) = Kq=04/74.

A 50 BA 50 YA 1 5,4 1 9A 50
apR 0.01 ﬂR 5 Yo 2 (SR 0.2 QR 100
Oéi4 500 YR 1 5MA 10

Table 1: Coefficients for the circadian rhythm model [35].

Several numerical tests were performed with computational domain sizes
starting from 25002 and scaled down to 1800 x 1400. These tests, results
not shown, indicate that relevant system dynamics are contained in a rect-
angle [0,1400] x [0,1000], and that a 1800 x 1400 computational domain is

sufficiently large to minimize the effect of boundaries on the simulation.
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Figure 3 shows contour lines corresponding to the natural logarithm of
PMF for the circadian rhythm at ¢ = 200. This model exhibits limit-
cycle behavior, with the peak PMF transitioning from the neighborhood
of (ng,n,) ~ (300,1200) to regions with n, < 10, then going through
(ng,ny) = (1000, 200) back to the first region. A logarithm scale is employed
for the vertical axis to highlight the system dynamics for small molecule
counts of species Y.

The circadian rhythm configuration is particularly difficult to simulate
since relevant dynamics are observed for molecule counts spanning three or-
ders of magnitude, and PMF values spanning five orders of magnitude. The
SSA approach using 10® realizations, in Fig. 3b, while not fully converged,
is about 100 times more expensive compared to the direct CME integration,
shown in Fig. 3d.

In this section we presented results comparing the direct integration of the
CME equation with results obtained using the SSA algorithm for the 2D sys-
tems. For these low-dimensional cases, the SSA algorithm, characterized by
slow convergence properties of Monte-Carlo sampling methods, is less efficient
compared to the direct integration of CME. For high-dimensional systems,
however, the curse of dimensionality makes direct integration prohibitively
expensive. The SSA approach is more affected by the system dynamics than
its dimensionality and remains viable for generating sample trajectories of
high-dimensional systems. However, when PMF's of the sampled states are
needed, or when regions of low probability are of interest, the prohibitively
large number of SSA samples to generate these values for such high dimen-

sional systems presents a problem. Effective, non-sampling-based approaches

11
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Figure 3: PMF contour plots for the circadian rhythm systems. (a) and (b): Kernel
Density Estimate based on SSA solutions with 10 and 108 realizations; (c) SSA states
colored according to the number of particles in each state; (d) direct integration of Eq. (3);
The colormaps correspond to the natural logarithm of PMF in (a), (b), and (d) and natural
logarithm of number of particles in (c¢). All frames employ a logarithmic scale for the

molecule counts n, of species Y.
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would therefore be welcome in such situations. In the remainder of this pa-
per we explore several approaches derived from the CME to improve the

computational efficiency of solving for the state PMF.

3. Fokker-Planck Equation

In the limit of large numbers of molecules, the discrete states representing
molecule counts can be replaced by the continuous concentrations € = n/V,
where V' is the system volume. The propensities, the jump vectors and the

probability p are also rescaled, respectively,

1

iy (@) = —w, (n), & =1 pla:t) = Vp(ni).  (8)

For the purposes of this text, the value of V' is not relevant since it can be
simplified out of the evolution equations. Therefore, we will choose volume
units so that V' = 1. Also, for notational simplicity, we will drop the overbars.
In the discrete formulation, p represents the PMF, while in the continuum
formulation p is the probability density function (PDF) which is the proba-
bility per unit volume. For a unified view, the PMF can be interpreted as a
PDF that has been integrated over a hypercube of unit volume.

The Fokker-Planck equation (FPE) corresponding to the SRN introduced

above is R
Op(x; t) _
Ny F0) 9
TRy ©)
where
- 1
PO = v, (ol = o V(@) ()
The flux F™ consists of advection and diffusion components
. - 1
FO = —vw,(@)p(a;t), Fy) = gve (v Viw@p(a:) (1)
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The FPE can be interpreted as a Taylor series expansion starting from the
CME, and retaining the first order, advection, and the 2"¢ order, diffusion,
terms.

A finite volume approach is adopted for the discretization of Eqs. (9)
and (10). This approach naturally preserves the total probability inside
the computational domain. Further details are presented in the subsections

below.

3.1. Finite Volume Discretization
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Figure 4: Schematic of the computational mesh for a 2D FPE domain. Cell centers are

shown with open symbols while edge centers for cell (,7) are shown with filled symbols.

Figure 4 shows a schematic of the computational grid in a 2D domain
with & = (x,y). The horizontal axis coordinate = corresponds to species X

while the vertical coordinate y to species Y. The PDF for the FPE solution

14



is represented by cell averages

1
= —— d 12
p7.] AQij /f;”p W ( )

where Aq,, = Ag;A, ;. After integration over cell volumes, the FPE can be

written in finite volume form as

R
Wi _ L5~ [y Fing
v — . w

i p=1 Y Qi
R (FCD _pCD pCU gl
_ Z Z+§7] =357 + 17]"‘5 “LI—3 (13>
Az i Ay i
r=1 ’ ’

The fluxes in the rhs of Eq. (13) are edge-averaged fluxes along the edges
of cell (i,7), i.e. for edge (i + 1/2, )

—(7r,T 1 ijrl _”I“ =
= [ (Pl )
Yy

Y,J

where 7 is the unit normal to edge (i + 1/2, j) pointing outside of cell (i, j).
The advection and diffusion components are discretized separately with spe-
cialized schemes that maintain positive probability values and are 2"4-order
accurate. For the advection component we adopt a MUSCL scheme [40]
combined with a local Laz-Friedrichs flux splitting [41, 42] to approximate
numerical fluxes at cell interfaces. This construction can be tailored to avoid
Gibbs phenomena leading to negative PDFs near high-gradient regions. For
ease of notation we present the formulation in the x—direction, dropping sub-
script j for brevity. The formulation extends naturally direction-by-direction
to 2D or higher dimensions.

The numerical advection flux at edge (i + 1/2) is written as

T,x 1 r.x r.x r,x
i =5 (Pl + FE 0l )+l (v — o)

i
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where F\") is here the z—component of the advection flux. The Ph Jp and

pﬁl /o are “left” and “right” edge-averaged PDF values at i + 1/2, extrapo-

(r,z)

lated from cell-averaged values in cells ¢ and i + 1, respectively. Here a,. /2

is the peak value of |9F," /dp| in the vicinity of edge (i + 1/2)

o™

i+1/2 = Imax <|Vr,xwr,i‘7 |Vr,xwr,i+1|) (14>

A linear extrapolation inside each finite volume cell is sufficient for an

overall 2™-order discretization

Priaje = pi+ 0.58,p;, pﬁu/g = pir1 — 0.50:pit1

The construction of d,p; requires a careful evaluation to avoid introducing
new maxima in the solution. In this work we adopt a minmod limiter for

these slopes. This limiter ensures the scheme is Total Variation Diminishing

(TVD) [43]

0zpi = Ay, - minmod (pi —Pi-1 Pit1 —DPi  Piv1 —Pi-1 )
o v AZ‘*1/2 ’ A2'+1/2 ,Ai71/2 +Ai+1/2

where A ; is the width of cell ¢, and A;41/2 = 5(Azi +Asiv1). The minmod

1
2
function is defined as

sgn(ap) min(|a;|) if all a;’s have the same sign
minmod(ay, as, ...) = :

0 otherwise
with “sgn” denoting the sign function.
Numerical discretization of the diffusion term employs auxiliary control
volumes and an example is shown with dashed lines in Fig. 4. This auxiliary

control volume, 2, corresponds to edge (i + 1/2,7). Further we employ a

16



similar notation as in [30], ¢, = w,p. The volume-averaged diffusion flux at

(1 +1/2,7) is computed as

Fd,i+1/2,j - 5”7‘ (Vr ’ A_Q/S;VQT dw) - 51/7" (Vr ’ A_Q 90 QTnda ) (15>

and the x-component of this flux is given by

1 0q;

~(r,x 1 ar
(ra) - 2 a — FVraVry 75—
27777 Oy

dit1/25 — 17re By (16)

i+3.] i3,
Here 7 is the unit normal to the edges of control volume €2, and the second
integral in Eq. (15) is over all edges of this control volume. For uniform grids,

the partial derivatives are given by

% — QT’i+17j — QT,i,j agT
A, T Oy

_ qT7Z+%7]+% - q’f’ﬂr‘r%,]*%

A

(17)

i+3.,j y

1
Triviird = 3 (@rig =+ Grig+1 + i1 + drivrge)

For non-uniform grids, ¢, ;1 ;.1 is evaluated using weighted averages based
’ 27 2

on the sizes of cells adjacent to vertex (i + 3,7 + 3).

3.2. Comparison of CMFE and FPE solutions

The FPE results using the discretizations presented in this section are
compared to CME solutions to illustrate the range of applicability of the
FPE approach. To this end we employ the metabolite system presented in
the previous section in Eq. (5). In addition to the “nominal” setup we also
consider cases based on modified propensity rates.

The red contour lines in Fig. 5a show the steady state field corresponding

to the nominal parameters provided in Section 2. The blue contour lines
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Figure 5: (a) Steady state CME solutions for the metabolite system; (b) L; error between

CME solutions and FPE solutions with several grid size

show the steady state for a system where k, and k, are scaled down by a
factor of 5 while k5 is scaled up by the same factor. The steady state for
this case corresponds to small molecule counts of both species. The green
contour lines correspond to a system where the steady state occurs when
both species are in large molecule counts. For this case k, and k, are scaled
up by a factor of 5 while &, is scaled down by the same factor. The re-scaling
of propensity rates is equivalent to re-scaling the volume V' in Eq. (8). For
large V', equivalent to the solution shown with green contours, the stochastic
effects are diminished by averaging over a larger number of molecule counts,
while for small V' the effect is opposite and stochasic effects become more
important.

Fig. 5b shows the L; error between FPE solution and the CME solution,

for several grid sizes A, = A, = A. While in principle one could generate
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FPE solutions for smaller A values compared to the values shown in the
figure, in practice the FPE approximation is only useful when the grid size
spans more than one molecule count. For the system exhibiting dynamics at
small molecule counts, shown in blue, the magnitude of the error between
CME and FPE remains high rendering the FPE approach infeasible for this
type of systems. At the other end of the spectrum chosen for this set of tests,
shown in green, the error drops to small levels for A =1...2.

Physical processes often operate at different scales with respect to copy
numbers. For some processes the discrete CME approach is necessary to cap-
ture the reaction dynamics while for others the continuum FPE formulation
is sufficient to resolve all dynamical scales. Results presented in this section
suggest that a hybrid approach combining CME where necessary and FPE
when the system dynamics occur at larger molecule counts can provide an

accurate modeling approach, while improving computational efficiency.

4. Hybrid CME/FPE Formulation

We first introduce a formulation developed by Sjéberg et al. [31] that
combines both discrete and continuum approximations. Let us assume that
species X can be modeled by a continuum approximation while Y requires the
discrete approach. We construct the hybrid approach starting from Eq. (2),
splitting its rhs as

p(nac = Vpg, Ny — Vr,y)wr(nm = Vpg, My — Vr,y) - p(”mv Ny — Vr,y)wr(nxv Ty — Vr,y)

(. J

~
CME—x

+ [P(nx, ny - Vr,y)wr(nxa ny - Vr,y) - p(nma ny)wr(laj)]

N J

CME-y
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Figure 6: Schematic of CME decomposition into fractional “jumps” for a two-species
system. The red arrow shows the fractional jump corresponding to species X and blue

arrow corresponds to changes in molecule counts for species Y only.

In the expression above the time dependency is not shown, to simplify
the notation. A schematic illustrating this decomposition is shown in Fig. 6.
The first two sets of terms correspond to a fictitious system with reactions
changing the molecule counts for X, while the other terms correspond to
reactions modifying Y only. Based on the hypothesis that X can be modeled
by a continuum approximation, we employ the FPE approximation to replace
the first two terms in the expression above, while retaining the discrete terms

for the dynamics in the Y direction.

R (rx)
Doy (19
t r=1 L TY—Vry
R
32 o (0,115 (0,15,)) — pls ey )]
r=1

The first term in the rhs of Eq. (18) is discretized using the finite volume
formulation for the FPE presented in Section 3.1, while the other terms rep-
resent discrete terms corresponding to the CME. This approach can be gen-
eralized to any number of species, separating the group of species for which

the discrete effects are important from the group for which the continuum

20



formulation is sufficient.

Figure 7 shows a schematic of a hybrid CME-FPE (hCF) computational
domain. In this figure the blue arrow corresponds to reactions with v, , = 1,
and the green arrow to v,, = —1. In the hCF approach, for a two-species
system, the PDF' is now represented on one-dimensional grids or lines, and p
becomes a probability density per unit length along lines of constant y. The
2-dimensional index (i, j) represents cell i of width A, ; for species X and a

molecule count j for species Y.

i—1 it 3
J+Ury e I o I o
J o } e> } ©
j_Vr,y © I © I ©
1 —1 1 1+ 1

Figure 7: Schematic of the computational mesh for the hybrid CME-FPE domain.

The advection and diffusion components of flux F* in Eq. (18) are dis-
cretized similar to the expressions presented in Sec. 3.1. However, for this
formulation, the flux in the xz—direction corresponding to cell (7, ) is com-
puted along the line j — v,.,. Specifically, in the finite volume formulation,
this contribution is given by

F(Tﬂ»‘) . F‘(T‘J)

L1 1 .
1+5,0=Vry 1=35:) " Vry
27 2 (19)

Aaz,i

where the convection and diffusion flux components on faces (i %, J—Vry)
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are computed using the formulations presented in Section 3.1. The rhs of
Eq. (18) is completed by the CME formulation along (¢, j — v;,,) — (4, 7).

Since many models exibit both discrete, usually at small molecule counts,
and continuum behaviour, we aim to design a hybrid approach that switches
to the appropriate model, discrete CME, continuum FPE, or hCF depending
on the system dynamics locally in the state space. Figure 8 shows an illustra-
tion of the region where all three types of sub-domains mentioned above join
together to form a composite computational domain for a two-species sys-
tem, X and Y. For small molecule counts, in the lower left corner, stochastic
effects are potentially important for all species and we employ CME to model
the system dynamics. For regions corresponding to larger molecule counts
for one of the species, in sub-domains labeled hCF, we switch to a contin-
uum FPE formulation for that species while still employing a CME formu-
lation for the species with small molecule counts. Finally, at large molecule
counts for all species, we switch to a continuum formulation. This approach,
while allowing a more efficient allocation of computational resources, requires
consistent treatment of probability fields across different formulations. The
CME formulation models the transport of probability mass while the FPE
approach models the transport of probability density. In the hCF scheme
the probability field is also represented by a density, but corresponding to a
unit of space of lower dimensionality compared to the full FPE scheme, e.g.
per unit length rather than per unit volume in the 2D case.

The next sections introduce algorithmic constructions designed to ensure
conservation of probability and preservation of order-of-accuracy for these

transitions. We will present derivations that pertain to reactions with stoi-
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Figure 8: Schematic of a composite computational domain with CME, hCF, and FPE

computational subdomains.

chiometric coefficients that are at most £1. Derivations for higher reaction
orders are conceptually similar, however their practical implementation in

a simulation code is more involved and is outside the scope of the current

paper.

4.1. Coupling between CME and Hybrid CME-FPE Scheme

Figure 9 shows a schematic of the interface between CME and hCF com-
putational domains. The blue arrow shows the transfer of probability corre-
sponding to a reaction r with stoichiometric coefficients v, , = 1, while the
green arrow corresponds to v,, = —1. For both reactions presented in the
figure the value of v, is the same as v, ,, however the derivations below are
generic and applicable to cases when v,, # v, .. In this figure the index in

the vertical direction is common between the two sub-domains. In the hor-
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Figure 9: Schematic of the computational mesh at the interface between CME and hCF

computational domains.

izontal direction, the CME domain extends up to a molecule count of N, .
The index counter in the horizontal direction is reset in the hCF domain,
starting at 0.

In the first case, probability leaves state (N, ., 7) in the CME domain and
“jumps” to cell (0,7 +v;,) in the hCF domain. This transfer can be cast as
a boundary condition for the Fokker-Planck flux on line j. The (i —1/2) flux
in Eq. (19) corresponding to line cell i = 0 is given by

F(Tvx)

7%7j+1/7‘y = wer,cJ pNz,c:j

In the second case, with v, , = —1, probability leaves the hCF region towards

the CME domain. This corresponds to

ey _ [
Foio=1 . wr(z)]; p(z)|;do (20)
2. x,0

Here, x represents the continuum coordinate along the j line, starting on the

left boundary at z = —A, /2, and p(x)|; is the probability line density along
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this line with cell averages py j, p1; and so on. The width of the integration
domain is equal to 1 and represents the region from which probability can
possibly be transferred to the CME states for a stoichiometric coefficient
vy, = —1. For larger, in absolute sense, stoichiometric coefficients, the limits
of this integral need to be adjusted accordingly.

In general, numerical quadrature can be employed to evaluate the integral

in Eq. (20). For computational efficiency we adopt a linearized form

Az,O

—=2041
F&ﬂl)/Q,j ~ wr(x)|j/% p(x)|; de, (21)

=
where F(xﬂ ; is the average propensity along the integration segment. This
linearization can be employed for systems with propensity fields that have
smooth dependence on the molecule counts. Numerical tests confirm this
hypothesis for the two models presented in this paper. Further, in order
to evaluate the integral in Eq. (21) we approximate p(z)|; by a 2" degree
polynomial P5(x) constrained by the PMF at CME state (N, ., j) and by the

PDF along hCF cells (0, j) and (1, j)

;

fCMENz,C Py(z)dx = pn, ;- 1
Jucr, P2(@)dz = poj + Aug (22)

\thFl Py(r)dx = [N RAVS

Using the approximation in Eq. (21) and the solution of the linear system in

Eq. (22), the boundary condition in Eq. (20) can be written as

FET{%J = w,(2)|; (1PN, ..j + 2P0, + Cap15) (23)

In the computations presented in this paper, the cell sizes were uniform in

each computational subdomain, i.e. A,y = A,;; = A. For this particular
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case, the coefficients above are given by

(A-12A-1) TA2 — 1 A1
ATDRA+1) T AR+ 2A+1)® T TAQA+ )

Cc1 =

Numerical tests, results not shown, indicate that, for the metabolite and
circadian rhythm models presented in this paper, a first order approximation
for p(x)|;, would have been sufficient to obtain a scheme that is overall 27-
order accurate. This approximation can be derived by assuming a first order
polynomial for p(x)|; and employing the first two constraints in Eq. (22).
The derivation above is presented for completeness to ensure a consistent
2"d_order spatial discretization.

The boundary conditions for the CME sub-domain are set consistent to
the boundary conditions derived above for the hybrid CME-FPE sub-domain.
For the case with v,, > 0 the CME equations remain unchanged on the
boundary since information propagates from the CME domain towards the
hCF region. For the case with v, , < 0 the first term in Eq. (2) is replaced by
the flux coming out of the hCF region, computed according to the expression
in Eq. (23).

The approach presented in this section and throughout the rest of the
paper leads to a smooth transition of information between heterogenous for-
mulations while preserving the total probability mass in the computational
domain. The interface conditions derived in this paper correspond to jump
sizes normal to the boundary, |v,| < 1. For models with |v,;| > 1, the
numerical construction can follow similar arguments without any conceptual
difficulties. However the algorithmic implementation for these cases is more

involved and outside the scope of the current work.
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4.2. Coupling between FPE and Hybrid CME-FPE Formulation

This section extends the above algorithmic construction to the 2D in-
terface presented in Fig. 10. In this figure, the arrows show the transfer of
probability from the hCF domain to the FPE domain, corresponding to a
reaction with v = (1,1). However, the numerical conditions derived below

correspond to reactions with both |1, .| <1 and |y, ,| < 1.

i—3 i+ 3
1 o} o o}
= €|
=
0 e} o o &

LTI TTET 7T e

Y,

1
hCF

N

yh — 1| O | O | O |

1—1 1 1+1

Figure 10: Schematic of the computational mesh at the interface between hybrid CME-
FPE domain and the FPE domain. Lines Ny j; — 1 and Ny} are in the hybrid domain,
while cells 0 and 1 are in the FPE domain.

We first derive the boundary conditions for the FPE domain. For the case
shown in Fig. 10, with the probability flux going into the FPE domain, we
use upwind considerations to set the boundary condition for the flux entering

the FPE domain equal to the probability amount leaving the hCF domain.
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Following the stoichiometry in the above schematic, the FPE flux on edge
(7, —1/2) for this case is given by

Agp—1

Ti+=%5
P = / (@), , p@)ly, , d (24)

_Agptl
iy

where w,(z)|x,, and p(r)|y, , are the propensity and PDF along the top line
in the hCF domain. The range for the integral above is determined by the
jump values. For the case shown here, with v = (1,1), the flux on the lower
edge of FPE cell (0,4) originates on segment (xl — Qe _Llogy % — %) on
the last line in the hCF region. Similar arguments can be made for systems
with jump sizes greater than one. To simplify the notation, we will drop
subscript N, 5 for the remainder of this section.

Similar to Section 4.1, we linearize the above expression and construct
a 2"d-order polynomial P(x) to approximate p(x). The coefficients of this

polynomial are set so that line averages along adjacent cells (i — 1 : 7+ 1)

match the numerical solution

(

thFi_l Py(v)dr = p;i 1A,
thFi Py(z)dz = piA, (25)
kfhcm+1 Py(z)dr = pis1A,

The above expressions assume a uniform grid in the x—direction. Given these

constraints, the numerical flux in Eq. (24) is computed as

(2A; + 1)pimt — 2pi + (1 — 2A,)pisa
SA,

(26)

2

F(tyl) = wy(7) (Ampz‘ +

Ag+1
2

Here, w,(x) is the average propensity along segment (mz — St + A3”—’).

2
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The numerical flux construction for v = (—1,1) is similar to the above
workflow, with averages now computed for segment (31:Z — % t T+ %)
For the case with v = (0, 1), the vertical flux is simply given by w, ;p;A,.

The expressions derived above correspond to v,, > 0. For these cases,
no boundary conditions are necessary for the hCF domain. For reactions
with v,, = —1, the probability flows from the FPE domain to the hCF do-
main. For this case edge-averaged fluxes on the edge of the domain, Fz(r_y%)
are evaluated using the 2"4-order formulations for the advection and diffu-
sion components presented in Section 3.1. Continuum approximations for
these fluxes are constructed as described above in Egs. (25) and (26). Their
contributions to hCF domain are then partitioned according to the value of

Vrs, 1.6. acounting for the +1/2 segments from adjacent cells as described

above in this section.

4.3. Coupling between CME, FPE and Hybrid CME-FPE Formulations

In the previous sections we presented algorithms for the transition of
probability between two formulations at a time: discrete CME and discrete-
continuum hCF, or between hCF and the continuum FPE. In this section
we present the numerical construction of interface conditions in the “corner”
region, at the confluence between discrete, continuum, and hybrid discrete-
continuum regions. Figure 11a shows a schematic corresponding to a reaction
with v = (1,1), while the illustration in Fig. 11b corresponds to a reaction
with v = (1,—1). In this figure, the CME state (NNV,, N,) near the corner
is shown with a filled circle while the FPE cell (0,0) is shown with light
grey shading. The hCF lines (0, N,) and (N,,0) are surrounded by dashed

contours corresponding to “virtual” cells around the hCF grids.
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Figure 11: Schematic of the transfer of probability near the corner between CME, FPE,
and hCF. Grid sizes near the corner are shown in frame (a) while grid indices are shown

in frame (b).

For the reaction illustrated in Fig. 11a, the probability is transferred from
the CME and hCF sub-domains towards the FPE sub-domain. We employ
the same techniques as in Sections 4.1 and 4.2 to construct the interface
fluxes for the FPE sub-domain. The flux on the bottom edge of the FPE cell

shown in Fig. 11a is written as

1 zot S5

%) = SWrNo.Ny PNe Ny +/ Au wy(z)|n, p()|N, dz (27)

To— =

(r7
Fy

The computation of integral in the rhs of Eq. (27) follows the steps outlined
in Egs. (20)-(23). Numerically the flux normal to the bottom edge of the

FPE cell is given by

1

= §wr,Nz,Ny DN,,N, T wr(I)|Ny (Clez,Ny + capo,N, + 03p1,Ny) (28)

~

(ry
F o

N[

and the coefficients above are given by

@A D) A -D)EAZETA LD 2A, -1
TR 1) T 167, (A, + 1) T
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The computation of the flux normal to the right edge of the FPE cell, F Erf()]
2’
employs a similar approach as above. For this case, with v = (1,1), no

boundary conditions are necessary for the CME and hCF sub-domains.
The construction of interface conditions for a reversed reaction, with
v = (—1,—1) (schematic not shown) follows the same approach, now ap-
plied to 2"d-order reconstructions for the edge-averaged fluxes normal to the
FPE interfaces. The limits for the integrals along the FPE edges are set ac-
cordingly to the stoichiometry of each reaction, as explained in Section 4.1.
Specifically, the probability flux exiting the FPE sub-domain and entering

the lower hCF subdomain is given by.

mot- St
FyR = / F(x)™)_1 /9 do (29)

Ag—1
O_LT

where F'(x)"¥|_1/; is the y-component of the combined FPE advection and
diffusion fluxes along the lower edge of the bottom FPE cells. A 2"%-order
reconstruction for the FPE fluxes on the boundary is employed. This recon-
struction is similar to the steps presented above. The transfer between FPE
and the left hCF cell is computed with the same reconstruction approach
along the left edges of the FPE cells.

The remaining segments on the lower and left edges of the corner FPE

cells account for the transfer of probability between FPE and CME regions:

Ap—1 Ay—l
zo— 2L yo— =%
/ N F(2)"| 5 da +/ N F(y)"™| 12 dy (30)
wo—5* vo— ="

For the reaction illustrated in Fig. 11b, the red arrows illustrate the trans-
fer of probability between the two hCF regions, in addition to the transfers

between hCF and FPE sub-domains, shown with blue lines. For this case,
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with v = (1, —1), the transfer from the vertical hCF line cell and the hori-

zontal hCF cell is computed numerically as

wi [ T ), dy (31)

Here, w,(y) is the average propensity along segment (yo — % D Yo — Ay2_1>.
The integral in Eq. (31) is evaluated numerically by replacing p(y) with a
2"d_order polynomial reconstruction near the interface between the CME

sub-domain and the vertical hCF sub-domain.

5. Numerical Experiments

The algorithms presented in Section 4 were numerically implemented in
a software framework using mixed python/C++ libraries. The data arrays
and kinetic model and numerical experiment setup are implemented through
python scripts. The computationally intensive flux evaluations are handled
in C++. The data communication between the two languages is handled
with swig tools [44] using array templates defined in numpy.i [45]. For all
simulations presented below, the numerical time integration is based on a
two-stage 2"%-order total variation diminishing (7VD) Runge-Kutta scheme

[34].

5.1. Convergence Tests

We performed several tests using synthetic one-reaction models to vali-
date the numerical implementations presented above and to determine the
overall order-of-accuracy of the numerical construction. Fig. 12 shows a
schematic of a composite computational domain. In order to test the or-

der of accuracy of the combined scheme we employ a 2D Gaussian “blob”
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with o, = 0, = 50. This initial condition is placed at several locations in
the composite domain and evolved in time using select one-reaction models
with v = (£1,41). The arrows in Fig. 12 shows sample trajectories for the
PMF /PDF fields. For example, line #4 corresponds to runs where the prob-

ability moves between the two hCF domains by crossing the FPE domain.

Figure 12: Schematic of the composite computational domain. The arrows show trajec-

tories for sets of tests to check the order of accuracy of the CME-hCF-FPE formulations.

Figure 13 shows sample contour plots for run #2, using v = (1,1). The
black arrow in the figure shows the direction of propagation of the PMF, i.e.
it propagates from the CME domain through the corner between all regions
to the FPE domain. The first two frames correspond to the time when the
peak PMF /PDF values are nearly centered at the corner. The detail view
in Fig. 13b shows the dependency with the grid size once the solution enters

domains emloying the FPE approximation to the CME. Similarly at later
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times, shown in Figs. 13c and 13d, the FPE solution corresponding to A = 2
(green contours) is closer to the full CME solution (red contours) compared
to the coarse FPE solution (blue contours).

We verify the overall order of accuracy for the spatial discretization by
comparing the solutions on successively refined grids. For the set of runs
shown schematically in Fig. 12, we employ composite simulations with FPE
grids A = {2,4,8}. The L; error between composite simulation results and

the CME solution reference is computed as

L, = / p\&) — p“ME| dw (32)
Q

In order to compute the integral above, the CME results are interpolated to
a coarser grid A using bicubic spline interpolations. We assume a power-law
dependency of the L, error on the grid size, L;, o A7, with the exponent
v indicating the order-accuracy of the discretization. The order-of-accuracy

can then be estimated as

7 =logy (Lis/Las ) (33)

For the set of simulations employed for testing the discretization order we
found 7 values in the range 1.82...2.01, confirming the theoretical 2"-order
spatial accuracy of the numerical construction. Fig. 14 shows the error de-
pendency on the grid size for the set of tests outlined in Fig. 12. Results
for Set # 3 are not shown since the results nearly overlap with Set # 1.
The theoretical 2°¢-order slope is shown with black line in Fig 14 for refer-
ence. Numerical simulations, results not shown, also confirm the 2"d-order

accuracy for the numerical implementation of the time integration scheme.
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Figure 13: Contour plots of PMF/PDF fields corresponding to run #2 (see Fig. 12). Red
contours correspond to full CME simulations, green contours to hybrid simulations with
A = 2, and blue contours to A = 4. Frame (a) shows the solution as it passes through
the corner between sub-domains and frame (b) shows a detail near the corner. Frame (c)
shows the solution at a later time, fully contained in the FPE domain, with an enlarged

detail shown in frame (d).
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Figure 14: Spatial convergence test for the composite CME-FPE model. The test setup

corresponds to paths shown in Fig. 12.

5.2. Circadian Rhythm Stmulations

Next we consider composite runs for the circadian rhythm model, intro-
duced in Sec. 2. The parameters for these simulations are provided in Table 2.
Runs R; though Rj use the same grid size for the FPE cells, A = 4. These
runs use progressively smaller CME regions, details shown on the second line
in the table. Refer back to the sketch in Fig. 12 for the sub-domain placement
in the global, composite computational domain. The extent of subdomains
for run Ry are similar to Ry. R4 employs a smaller cell size, A = 2 to explore
the effect of grid refinement on the dynamics of this system.

Figure 15 shows the time evolution of the peak ot the PMF. For the circa-
dian rhythm, the location of peak PMF (for CME) or PDF (for FPE) exhibits
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Run 1 2 3 4

CME size || 400 x 400 | 400 x 100 | 100 x 100 | 400 x 100
A 4 4 4 2

Table 2: Parameters for composite CME-hCF-FPE runs. For all runs the computational
domain spans [0,1800] x [0,1400], and the FPE grids have the same grid spacing in each
direction, A, = A, = A.

a limit-cycle pattern, from a region where species Y has low molecule counts,
to regions where both species have molecure counts in the hundreds. The
results for runs R; through R4 are compared to the full CME solution shown
with black line. Since the initial conditions place the bulk of probability in
the FPE sub-domain, at early times the peak PMF decreases compared to
the CME solution due to the increased diffusivity given by larger grids. At
later times the results for run R;, which employs CME formulations for a
region 400 wide at small molecule counts, are in very good agreement with
the full CME solution. At the other end of the spectrum, it is clear that a
setup with CME regions 100 wide at small molecule counts, combined with a
grid size of 4 in the FPE regions, for Rj3 is not sufficient to accurately capture
the dynamics of the circadian rhythm model.

Figures 16 and 17 show contour lines of PMFs values at t = 17 and ¢ = 41
for the composite runs listed in Table 2. These figures also show results for
full CME and FPE simulations, respectively, for comparison purposes. The
times for these snapshots were selected based on simulation dynamics. At
t = 17 large PMF values can be simultaneously observed at small and large

counts for species Y, while at ¢ = 41 the PMF peaks at both small and
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Figure 15: Time evolution of the peak PMF for composite simulations compared to the
values from full CME simulation of the circadian rhythm. The PDFs from composite

simulations are converted to PMF's for the purpose of this comparison.

intermediate counts of molecules for the same species. The contour values
in Figs. 16 and 17 are computed on a logarithmic scale with red contours
corresponding to large PMF values, of 0(107*), and blue ones to small PMF
values, of 0(107'2). The FPE simulation uses a grid size of 4. While the FPE
simulation is about 10 times less expensive compared to the CME approach,
the quality of the FPE results is very poor as this approach fails to capture
the model dynamics at small molecule counts.

The composite approach results, shown on the second and third rows of
these figures provide visually a very good agreement to the full CME solution.
At early times, ¢t = 17, all four composite runs capture the dynamics of

low and high PMF values well. At later times, run Rj3, which employs the
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thinnest CME region at small molecule counts, exhibits a slightly diffused
solution while runs Ry, Ry, and R, are still in a good visual agreement with
the CME solution.

In order to quantify the error introduced by the mixture of CME and
FPE formulations for the circadian rhythm model, we examine the L; dis-
crepancies between the composite simulations results and the full CME ap-
proach. These results are shown in Fig. 18. The horizontal axis in this figure
corresponds to the ratio between the average CPU time per time step for
composite simulation and the corresponding CPU time for the CME simula-
tion. The tags near select markers in the figure indicate the location of the
CME/FPE interface for that data entry, i.e. “1” corresponds to a composite
simulation with transition between CME and FPE formulations imposed at
100 molecule counts for both species, “3” to 300 molecule counts and “5” to
500 molecule counts. The transition for the remaining data sets are intuitive.
For all grid sizes there is significant drop in the error compared to full CME
results when the interface is shifted from 300 to 400 molecule counts. This
suggests that, for the circadian rhythm model, the discrete dynamics are im-
portant for molecule counts less than 400. For simulations using grid sizes
equal to 4 and 8, respectively, moving the interface towards larger molecule
counts also leads to more expensive simulations. However, these simulations
remain computationally efficient, and are about one order of magnitude less
expensive compared to the CME simulations. It is interesting to note the
evolution of the relative CPU time for the simulations using a grid size of 2.
For these simulations, the CPU times are not necessarily correlated with the

number of grid points. While further analysis of this behaviour is outside the
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Figure 17: Comparison of (a) full CME and (b) FPE solutions, respectively, with composite
simulations (c-f) for the circadian rhythm at ¢ = 41. The initial conditions for these

simulations are the same as for results presented in Fig. 3.
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scope of this paper, we suspect that this is due to a less efficient memory and
cache usage compared to the previous two simulations, which use a smaller
grid.

For the circadian rhythm tests presented in this section the FPE only
simulations are by design cheaper computationally compared to the already
efficient composite simulations. However, the FPE solution fails to capture
the key system features. The simulations employing the composite CME-
hCF-FPE formulation are in very good agreement compared to the CME
solution. The computational expense of the composite approach is about 10
times cheaper compared to the CME solution for an error of approximately
1%. This makes the composite approach promising for extensions to higher

dimensional systems.

6. Conclusions

In this paper we introduce a hybrid modeling approach to study the be-
havior of Stochatic Reaction Networks. This approach employs a combina-
tion of the Chemical Master Equation (CME), which describes the evolution
of the probability of the discrete system to be in a particular state, and the
Fokker-Planck Equation (FPE) which is a continuum approximation to the
CME in the limit of large molecule count.

In the hybrid formulation, the CME is used to advance the system state
for species present in small molecule counts and for which discreteness is
important. For species present in large molecule counts the FPE is used
instead. The numerical construction for the transfer of probability between

CME and FPE regions is designed according to the stoichiometry of each
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reaction. The FPE is discretized using a finite volume formulation. The ad-
vection component of the FPE fluxes is discretized using a 2"4-order MUSCL
scheme with Lax-Friedrichs flux splitting and employs a minmod limiter to
keep the probabilities positive even in regions with high gradients. The diffu-
sion component is discretized with a 2"d-order centered scheme. The overall
order of the composite numerical scheme is verified to be approximately 2 by
comparing sample solutions on successively refined grids.

The efficiency of the hybrid CME/FPE approach is tested on a circa-
dian rhythm model consisting of two species and 4 reactions. The full CME
and the hybrid solutions are found to be in very good agreement. For this
model the hybrid approach is one order of magnitude cheaper compared to a
full-domain CME computation. For comparison, obtaining the system state
PMF with SSA sampling is about two orders of magnitude more expensive
compared to the CME solution for this system. Also, an approximation with
the FPE over the full domain, while computationally more efficient than the
hybrid methodology, is not sufficiently accurate.

A key consideration regarding the performance of any approach for solving
the CME is how the computational cost scales with the number of species. As
discussed in the introduction, the computational cost of the full CME solu-
tion increases exponentially with the number of species. Sampling approaches
like SSA are less dependent on the dimensionality of the system for gener-
ating individual trajectories in time of the system state. However, if PMF
values of the system state are needed, the number of SSA samples required
also increases prohibitively with the system dimensionality. The results pre-

sented in this paper suggest that a higher-dimensional implementation of the
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current hybrid scheme can help alleviate this curse of dimensionality by re-

ducing the number of grid points needed in each species dimension. Also, the

hybrid approach in this paper can be combined with many other approaches

for speeding up the CME simulation, such as finite state projection, adap-

tive mesh refinement in the FPE regime, stiffness reduction, or improved

matrix exponentiation. Also, the hybrid scheme may be extended to treat

some species with deterministic rate equations for further efficiency gains.

Combined, all of these approaches can provide a direct way to evaluate of

the PMF values for realistic SRNs with moderate dimensionality.
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