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Abstract

Direct solutions of the Chemical Master Equation (CME) governing Stochas-

tic Reaction Networks (SRNs) are generally prohibitively expensive due to

excessive numbers of possible discrete states in such systems. To enhance

computational efficiency we develop a hybrid approach where the evolution

of states with low molecule counts is treated with the discrete CME model

while that of states with large molecule counts is modeled by the continuum

Fokker-Planck equation. The Fokker-Planck equation is discretized using a

2nd order finite volume approach with appropriate treatment of flux com-

ponents to avoid negative probability values. The numerical construction

at the interface between the discrete and continuum regions implements the

transfer of probability reaction by reaction according to the stoichiometry of

the system. The performance of this novel hybrid approach is explored for

a two-species circadian model with computational efficiency gains of about

one order of magnitude.
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1. Introduction

Stochastic noise is prevalent in a wide variety of systems, especially when

the system behavior is affected or controlled by phenomena on a nanoscale,

molecular level, where thermal noise introduces intrinsic variability in molec-

ular interactions. Common examples of such phenomena are chemical, bio-

chemical, or electrochemical reactions between small numbers of molecules,

found in gene regulation, cell signaling, or interfacial electrochemistry, gener-

ally referred to in this paper as Stochastic Reaction Networks (SRNs). Given

the relevance of these processes in applications ranging from bioremediation

and bioenergy (bacterial behavior), biomedicine (immune system signaling),

to electrical storage (electrodes), effective tools are needed for the simulation

and analysis of SRNs.

Mathematically, SRNs are continuous time, discrete state Markov pro-

cesses, governed by the Chemical Master Equation (CME) [1], which de-

scribes the time evolution of the probability of the system being in a par-

ticular state. Here the system state consists of the number of molecules of

each species in the system. While the CME can be solved as a system of

linear equations, its solution quickly becomes challenging as the number of

possible system states increases exponentially with the number of species.

For this reason, many studies rely on the Stochastic Simulation Algorithm

(SSA)[2, 3], which can efficiently generate sample trajectories of the system

state. Based on this fundamental simulation method, many advances have

been made over the years [4–12] resulting in a wide range of powerful methods

for sampling stochastic systems.

While SSA is a powerful tool for generating sample trajectories of the
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system state, even in high dimensions, one of its drawbacks is that many

samples are needed to construct an accurate probability density function of

the system state. As the CME solution offers a full probability distribution

of the system states, rather than just samples, it is able to better capture low

probability events, which are often missed by sampling-based methods unless

a prohibitively large number of samples is used. In recent years, various

approaches have been developed to make the direct solution of the CME

more computationally tractable. One approach is finite state projection [13–

16], which reduces the size of the system of equations to be solved by only

keeping track of those states that have a non-neglible probability associated

with them. This projected state space is adaptively expanded and shrunk

as the state probabilities vary in time. Another approach to reducing the

number of equations is to group multiple states together via aggregation [17,

18]. For a given set of equations, advances in matrix exponentiation [18–21],

or taking advantage of time scale separation [22] can speed up the CME

solution. Ohter CME solution approaches rely on a spectral representation

of the probabilities of the system states [17, 23–27].

The combination of these algorithms has led to dramatic speedups in the

solution of the CME, enabling the study of small SRNs by solving their CME

directly. For small system (a few species), this approach has been shown to be

competitive with and complementary to the SSA sampling based approaches

(see e.g. [19]).

Despite these advances in solving the CME, a direct solution is still in-

tractable for systems with many species, especially if some of those species

are present in large numbers of molecules, thereby significantly increasing
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the size of the state space. For species that are present in large molecule

counts, it is often appropriate to use a continuum representation for the

system state [28], and rely on the Fokker-Planck Equation (FPE) [29, 30],

which is the continuum equivalent to the discrete CME, or use deterministic

rate equations. In this context, Sjöberg et al. [31] developed a hybrid ap-

proach that uses the FPE for species that are present in large numbers of

molecules, while keeping the discrete CME for species that only have a few

molecules. Other approaches use the discrete SSA approach for some species,

and continuum, deterministic rate equations for others [32].

While the hybrid approaches offer large computational savings for sys-

tems where a clean separation is possible between the species that should

be handled with a discrete formulation, and those that can be handled with

a continuum approach, such a separation is not always feasible, and may

vary as species molecule counts vary in time. Rather than relying on a static

separation, where species are handled with either a discrete or continuum

formulation, the current work varies the formulation over different areas in

the species phase space. In the area where all species are present with few

molecules, the CME is used for all species, since discreteness is important

in that area. In areas corresponding to a large number of molecules for

all species the FPE formulation is used. In regions where some species are

present in small numbers, but others in large numbers, the formulation by

Sjöberg et al. [31] is used.

By using the discrete CME formulation only where it is needed, the al-

gorithm presented in this paper can allocate computational resources (i.e.

grid density) more effectively. Also, as will be shown, the resulting set of
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equations for the hybrid approach is very similar as the original set of linear

equations corresponding to the CME. This means that the hybrid algorithm

can be used in synergy with other approaches such as finite state projec-

tion and improved matrix exponentiation for further computational gains.

For proof of concept, the approach was implemented for systems with two

molecular species, and applied to the simulation of SRNs describing a simple

metabolite model, and a circadian rhythm model. Canonical tests show sec-

ond order convergence and good accuracy compared to full CME simulation,

with an order of magnitude gain in computational efficiency.

This paper is organized as follows. Section 2 describes the CME approach

to study SRNs and compares its direct solution with results based on the

SSA. Section 3 introduces the Fokker-Planck approximation to the CME,

and results based on a finite volume discretization of the FPE are compared

to full CME results. The hybrid CME-FPE formulation is formulated in

Section 4, numerical experiments are presented in Section 5, and conclusions

are presented in Section 6.

2. Chemical Master Equation

In this section we describe the Chemical Master Equation (CME) ap-

proach to study the dynamics of Stochastic Reaction Networks. The CME

models the evolution of the probability of the state of the system.

Consider a stochastic reaction network (SRN) for a system consisting

of two species, X and Y . The 2-dimensional state space: n = (nx, ny) ∈

N
2
0, corresponds to molecule counts for species X and Y and N0 is the

set of all non-negative integers. Denote the (jump, propensity) pairs by

5



{(νr, wr(N ))}Rr=1, where R is the number of all reactions. More specifically,

n → n+ νr with probability wr(n) per unit time.

The process is fully specified by the probabilities p(n; t) that evolve ac-

cording to the CME:

d

dt
p(n; t) =

R∑

r=1

p(n− νr; t)wr(n− νr)−
R∑

r=1

p(n; t)wr(n). (1)

Here, p(n; t) is the probability for the system to be in state n at time t. As

a function of n, p(n; t) is the probability mass function (PMF).

In a system with two species, X and Y , the right-hand side (RHS) for

equation (1) corresponding to reaction r can be written as

p(nx − νr,x, ny − νr,y; t)wr(nx − νr,x, ny − νr,y)− p(nx, ny; t)wr(nx, ny) (2)

where νr,x, νr,y are the stoichiometric coefficients for species X, Y in reaction

r, respectively, and νr = (νr,x, νr,y).

Figure 1 shows a schematic of a two dimensional CME system. In this

figure, colored arrows correspond to reactions, with changes in the number

of molecules being at most ±1 for each species. Reactions leading to larger

changes in the number of molecules are possible, however the corresponding

sample “jumps” are not shown, to keep the sketch simple. Eq. (1) can be

written in matrix form as

∂p

∂t
= A(CME) · p (3)

where p is an array of PMF values for all possible system states. For two-

species systems, the components of A(CME) are given by

A
(CME)
k,k = −

R∑

r=1

wr(nx, ny); A
(CME)
k,k+j =

R∑

r=1

wr(nx−νr,x, ny−νr,y)|νr,y ·Nx+νr,x=j

(4)
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Figure 1: Schematic of the CME domain. The red arrows correspond to a reaction with

ν = (1, 1), blue arrows to ν = (1,−1), and green arrows to ν = (0, 1).

Here, k = ny ·Nx+nx is a linear index spanning the 2-D state space (nx, ny)

in a row-major format, and Nx is the maximum number of molecules for

species X. Similarly, element pk is the PMF for state (nx, ny). The second

summation in Eq. (4) is over all reactions for which j = νr,y ·Nx + νr,x.

In this section we compare two methodologies to solve the system of

coupled ordinary differential equations (ODEs) defined by Eq. (3). In the first

approach, we explore the stochastic simulation algorithm [2, 3] (SSA). SSA

provides a mechanism for the time evolution of species numbers, effectively

sampling the CME solution and allowing its statistical analysis. The SSA

model is implemented in a simulation code using the StochKit library [33]. In

the second approach, the CME system is integrated in time using a two-stage

2nd-order total variation diminishing Runge-Kutta scheme [34].

Tests were conducted for two kinetic models, both involving two-species
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systems. The first system involves five reactions modeling the creation of

two metabolites, a joint reaction, and their destruction [35–37]:

∅
kx−→ X, ∅

ky
−→ Y

X + Y
k2−→ ∅ (5)

X
µ
−→ ∅, Y

µ
−→ ∅

The propensities for the five reactions are given by w = {kx, ky, k2nxny, µnx, µny}
T ,

where nx, ny are the number of molecules of species X, Y , respectively. The

matrix of stoichiometric coefficients is given by {(1, 0), (0, 1), (−1,−1), (−1, 0), (0,−1)}T .

For the results presented in this section, we adopted the same values for the

model parameters as in [37]: kx = ky = 0.6, k2 = µ = 0.001.

Figure 2 shows PMF contour lines at steady state, obtained using the

two methodologies mentioned above: the SSA approach and direct integra-

tion of the CME. For all simulations, the initial condition was a 2D Gaussian

“blob”, symmetrical in both directions, centered at (200, 200) and with stan-

dard deviations set to σnx = σny = 25. The PMF field evolves towards the

elongated steady-state solution seen in the figure. The SSA solution consists

of the time evolution of an ensemble of system states. The initial condition

for this ensemble are sampled from the same Gaussian distribution used as

initial condition for the direct solution. The PMF values for the SSA sim-

ulations are obtained via Kernel Density Estimation (KDE) [38, 39]. For

the metabolic configuration, the SSA approach using 107 realizations, shown

in Fig. 2b, produces PMF values close to the ones obtained by the direct

solution of the CME, shown in Fig. 2c. For this configuration, the SSA simu-

lations required in order to obtain converged PMF values via KDE are about
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Figure 2: Steady state PMF contours for the metabolic model: (a) and (b) Kernel Density

Estimate based on SSA solutions with 106 and 107 realizations; (c) direct integration of

CME given by Eq. (3).

50% more expensive than the CME solution. Next we will compare the two

approaches for a 2D system that exhibits more complicated dynamics.

This system models a circadian rhythm using two molecular species, the

complex X and the repressor Y , and 4 reactions:

∅
w1−→ Y, Y

w2−→ ∅ (6)

Y
w3−→ X, X

w4−→ Y

The expressions for the propensities for the four reactions are provided below

for completeness. Reference [35] provides more detail on this model.
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w1 =
βR

δMR

αRθR + α′

RγRÃ(ny)

θR + γRÃ(ny)
(7)

w2 = δRny

w3 = γCÃ(ny)ny

w4 = δAnx

where

Ã(ny) =
1

2

(

α′

Aρ(ny)−Kd +

√

(α′

Aρ(ny)−Kd)
2 + 4αAρ(ny)Kd

)

and

ρ(ny) =
βA

δMA(γCny + δA)
, Kd = θA/γA.

The coefficients used in the circadian rhythm models are shown in Table 1.

αA 50 βA 50 γA 1 δA 1 θA 50

αR 0.01 βR 5 γC 2 δR 0.2 θR 100

α′

A 500 γR 1 δMA 10

α′

R 50 δMR 0.5

Table 1: Coefficients for the circadian rhythm model [35].

Several numerical tests were performed with computational domain sizes

starting from 25002 and scaled down to 1800 × 1400. These tests, results

not shown, indicate that relevant system dynamics are contained in a rect-

angle [0, 1400] × [0, 1000], and that a 1800 × 1400 computational domain is

sufficiently large to minimize the effect of boundaries on the simulation.
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Figure 3 shows contour lines corresponding to the natural logarithm of

PMF for the circadian rhythm at t = 200. This model exhibits limit-

cycle behavior, with the peak PMF transitioning from the neighborhood

of (nx, ny) ≈ (300, 1200) to regions with ny < 10, then going through

(nx, ny) ≈ (1000, 200) back to the first region. A logarithm scale is employed

for the vertical axis to highlight the system dynamics for small molecule

counts of species Y .

The circadian rhythm configuration is particularly difficult to simulate

since relevant dynamics are observed for molecule counts spanning three or-

ders of magnitude, and PMF values spanning five orders of magnitude. The

SSA approach using 108 realizations, in Fig. 3b, while not fully converged,

is about 100 times more expensive compared to the direct CME integration,

shown in Fig. 3d.

In this section we presented results comparing the direct integration of the

CME equation with results obtained using the SSA algorithm for the 2D sys-

tems. For these low-dimensional cases, the SSA algorithm, characterized by

slow convergence properties of Monte-Carlo sampling methods, is less efficient

compared to the direct integration of CME. For high-dimensional systems,

however, the curse of dimensionality makes direct integration prohibitively

expensive. The SSA approach is more affected by the system dynamics than

its dimensionality and remains viable for generating sample trajectories of

high-dimensional systems. However, when PMFs of the sampled states are

needed, or when regions of low probability are of interest, the prohibitively

large number of SSA samples to generate these values for such high dimen-

sional systems presents a problem. Effective, non-sampling-based approaches
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Figure 3: PMF contour plots for the circadian rhythm systems. (a) and (b): Kernel

Density Estimate based on SSA solutions with 106 and 108 realizations; (c) SSA states

colored according to the number of particles in each state; (d) direct integration of Eq. (3);

The colormaps correspond to the natural logarithm of PMF in (a), (b), and (d) and natural

logarithm of number of particles in (c). All frames employ a logarithmic scale for the

molecule counts ny of species Y .
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would therefore be welcome in such situations. In the remainder of this pa-

per we explore several approaches derived from the CME to improve the

computational efficiency of solving for the state PMF.

3. Fokker-Planck Equation

In the limit of large numbers of molecules, the discrete states representing

molecule counts can be replaced by the continuous concentrations x = n/V ,

where V is the system volume. The propensities, the jump vectors and the

probability p are also rescaled, respectively,

w̄r(x) =
1

V
wr(n), ξr =

νr

V
, p̄(x; t) = V p(n; t). (8)

For the purposes of this text, the value of V is not relevant since it can be

simplified out of the evolution equations. Therefore, we will choose volume

units so that V = 1. Also, for notational simplicity, we will drop the overbars.

In the discrete formulation, p represents the PMF, while in the continuum

formulation p is the probability density function (PDF) which is the proba-

bility per unit volume. For a unified view, the PMF can be interpreted as a

PDF that has been integrated over a hypercube of unit volume.

The Fokker-Planck equation (FPE) corresponding to the SRN introduced

above is
∂p(x; t)

∂t
=

R∑

r=1

∇ · ~F (r) (9)

where

~F (r) = −νr

(

wr(x)p(x; t)−
1

2
νr · ∇ (wr(x)p(x; t))

)

(10)

The flux ~F (r) consists of advection and diffusion components

~F (r)
a = −νrwr(x)p(x; t), ~F

(r)
d =

1

2
νr (νr · ∇ (wr(x)p(x; t))) (11)
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The FPE can be interpreted as a Taylor series expansion starting from the

CME, and retaining the first order, advection, and the 2nd order, diffusion,

terms.

A finite volume approach is adopted for the discretization of Eqs. (9)

and (10). This approach naturally preserves the total probability inside

the computational domain. Further details are presented in the subsections

below.

3.1. Finite Volume Discretization

∆x,i

∆y,j

L R L R

i− 1 i i+ 1

j − 1

j

j + 1

i− 1
2 i+ 1

2

j − 1
2

j + 1
2

Figure 4: Schematic of the computational mesh for a 2D FPE domain. Cell centers are

shown with open symbols while edge centers for cell (i, j) are shown with filled symbols.

Figure 4 shows a schematic of the computational grid in a 2D domain

with x = (x, y). The horizontal axis coordinate x corresponds to species X

while the vertical coordinate y to species Y . The PDF for the FPE solution
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is represented by cell averages

pi,j =
1

AΩij

∫

Ωij

p dω (12)

where AΩij
= ∆x,i∆y,j. After integration over cell volumes, the FPE can be

written in finite volume form as

∂pi,j
∂t

=
1

AΩi,j

R∑

r=1

∫

Ωi,j

∇ · ~F (r)dω

=
R∑

r=1





F̄
(r,x)

i+ 1

2
,j
− F̄

(r,x)

i− 1

2
,j

∆x,i

+
F̄

(r,y)

i,j+ 1

2

− F̄
(r,y)

i,j− 1

2

∆y,j



 (13)

The fluxes in the rhs of Eq. (13) are edge-averaged fluxes along the edges

of cell (i, j), i.e. for edge (i+ 1/2, j)

F̄
(r,x)

i+ 1

2

=
1

∆y,j

∫ y
j+1

2

y
j− 1

2

(

~F (r)(xi+ 1

2
, y) · ~n

)

dy

where ~n is the unit normal to edge (i+ 1/2, j) pointing outside of cell (i, j).

The advection and diffusion components are discretized separately with spe-

cialized schemes that maintain positive probability values and are 2nd-order

accurate. For the advection component we adopt a MUSCL scheme [40]

combined with a local Lax-Friedrichs flux splitting [41, 42] to approximate

numerical fluxes at cell interfaces. This construction can be tailored to avoid

Gibbs phenomena leading to negative PDFs near high-gradient regions. For

ease of notation we present the formulation in the x−direction, dropping sub-

script j for brevity. The formulation extends naturally direction-by-direction

to 2D or higher dimensions.

The numerical advection flux at edge (i+ 1/2) is written as

F
(r,x)

a,i+ 1

2

=
1

2

(

F (r,x)
a (pL

i+ 1

2

) + F (r,x)
a (pR

i+ 1

2

)
)

+ a
(r,x)

i+ 1

2

(

pL
i+ 1

2

− pR
i+ 1

2

)
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where F
(r)
a is here the x−component of the advection flux. The pLi+1/2 and

pRi+1/2 are “left” and “right” edge-averaged PDF values at i + 1/2, extrapo-

lated from cell-averaged values in cells i and i + 1, respectively. Here a
(r,x)
i+1/2

is the peak value of |∂F
(r,x)
a /∂p| in the vicinity of edge (i+ 1/2)

a
(r,x)
i+1/2 = max (|νr,xwr,i|, |νr,xwr,i+1|) (14)

A linear extrapolation inside each finite volume cell is sufficient for an

overall 2nd-order discretization

pLi+1/2 = pi + 0.5δxpi, pRi+1/2 = pi+1 − 0.5δxpi+1

The construction of δxpi requires a careful evaluation to avoid introducing

new maxima in the solution. In this work we adopt a minmod limiter for

these slopes. This limiter ensures the scheme is Total Variation Diminishing

(TVD) [43]

δxpi = ∆x,i ·minmod

(
pi − pi−1

∆i−1/2

,
pi+1 − pi
∆i+1/2

,
pi+1 − pi−1

∆i−1/2 +∆i+1/2

)

where ∆x,i is the width of cell i, and ∆i+1/2 =
1
2
(∆x,i+∆x,i+1). The minmod

function is defined as

minmod(a1, a2, . . .) =







sgn(a1)min
i
(|ai|) if all ai’s have the same sign

0 otherwise

with “sgn” denoting the sign function.

Numerical discretization of the diffusion term employs auxiliary control

volumes and an example is shown with dashed lines in Fig. 4. This auxiliary

control volume, Ω, corresponds to edge (i + 1/2, j). Further we employ a
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similar notation as in [30], qr = wrp. The volume-averaged diffusion flux at

(i+ 1/2, j) is computed as

~F
(r)
d,i+1/2,j =

1

2
νr

(

νr ·
1

AΩ

∫

Ω

∇qr dω

)

=
1

2
νr

(

νr ·
1

AΩ

∫

∂Ω

qr ~n dσ

)

, (15)

and the x-component of this flux is given by

F̄
(r,x)
d,i+1/2,j =

1

4
ν2
r,x

∂qr
∂x

∣
∣
∣
∣
i+ 1

2
,j

−
1

2
νr,xνr,y

∂qr
∂y

∣
∣
∣
∣
i+ 1

2
,j

(16)

Here ~n is the unit normal to the edges of control volume Ω, and the second

integral in Eq. (15) is over all edges of this control volume. For uniform grids,

the partial derivatives are given by

∂qr
∂x

∣
∣
∣
∣
i+ 1

2
,j

=
qr,i+1,j − qr,i,j

∆x

,
∂qr
∂y

∣
∣
∣
∣
i+ 1

2
,j

=
qr,i+ 1

2
,j+ 1

2
− qr,i+ 1

2
,j− 1

2

∆y

(17)

with

qr,i+ 1

2
,j+ 1

2
=

1

4
(qr,i,j + qr,i,j+1 + qr,i+1,j + qr,i+1,j+1)

For non-uniform grids, qr,i+ 1

2
,j+ 1

2
is evaluated using weighted averages based

on the sizes of cells adjacent to vertex (i+ 1
2
, j + 1

2
).

3.2. Comparison of CME and FPE solutions

The FPE results using the discretizations presented in this section are

compared to CME solutions to illustrate the range of applicability of the

FPE approach. To this end we employ the metabolite system presented in

the previous section in Eq. (5). In addition to the “nominal” setup we also

consider cases based on modified propensity rates.

The red contour lines in Fig. 5a show the steady state field corresponding

to the nominal parameters provided in Section 2. The blue contour lines
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Figure 5: (a) Steady state CME solutions for the metabolite system; (b) L1 error between

CME solutions and FPE solutions with several grid size

show the steady state for a system where kx and ky are scaled down by a

factor of 5 while k2 is scaled up by the same factor. The steady state for

this case corresponds to small molecule counts of both species. The green

contour lines correspond to a system where the steady state occurs when

both species are in large molecule counts. For this case kx and ky are scaled

up by a factor of 5 while k2 is scaled down by the same factor. The re-scaling

of propensity rates is equivalent to re-scaling the volume V in Eq. (8). For

large V , equivalent to the solution shown with green contours, the stochastic

effects are diminished by averaging over a larger number of molecule counts,

while for small V the effect is opposite and stochasic effects become more

important.

Fig. 5b shows the L1 error between FPE solution and the CME solution,

for several grid sizes ∆x = ∆y = ∆. While in principle one could generate

18



FPE solutions for smaller ∆ values compared to the values shown in the

figure, in practice the FPE approximation is only useful when the grid size

spans more than one molecule count. For the system exhibiting dynamics at

small molecule counts, shown in blue, the magnitude of the error between

CME and FPE remains high rendering the FPE approach infeasible for this

type of systems. At the other end of the spectrum chosen for this set of tests,

shown in green, the error drops to small levels for ∆ = 1 . . . 2.

Physical processes often operate at different scales with respect to copy

numbers. For some processes the discrete CME approach is necessary to cap-

ture the reaction dynamics while for others the continuum FPE formulation

is sufficient to resolve all dynamical scales. Results presented in this section

suggest that a hybrid approach combining CME where necessary and FPE

when the system dynamics occur at larger molecule counts can provide an

accurate modeling approach, while improving computational efficiency.

4. Hybrid CME/FPE Formulation

We first introduce a formulation developed by Sjöberg et al. [31] that

combines both discrete and continuum approximations. Let us assume that

speciesX can be modeled by a continuum approximation while Y requires the

discrete approach. We construct the hybrid approach starting from Eq. (2),

splitting its rhs as

p(nx − νr,x, ny − νr,y)wr(nx − νr,x, ny − νr,y)− p(nx, ny − νr,y)wr(nx, ny − νr,y)
︸ ︷︷ ︸

CME−x

+ [p(nx, ny − νr,y)wr(nx, ny − νr,y)− p(nx, ny)wr(i, j)]
︸ ︷︷ ︸

CME−y
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(nx, ny)− (νr,x, νr,y) (nx, ny)− (0, νr,y)

(nx, ny)

CME-x

CME-y

Figure 6: Schematic of CME decomposition into fractional “jumps” for a two-species

system. The red arrow shows the fractional jump corresponding to species X and blue

arrow corresponds to changes in molecule counts for species Y only.

In the expression above the time dependency is not shown, to simplify

the notation. A schematic illustrating this decomposition is shown in Fig. 6.

The first two sets of terms correspond to a fictitious system with reactions

changing the molecule counts for X, while the other terms correspond to

reactions modifying Y only. Based on the hypothesis that X can be modeled

by a continuum approximation, we employ the FPE approximation to replace

the first two terms in the expression above, while retaining the discrete terms

for the dynamics in the Y direction.

∂p

∂t
=

R∑

r=1

∂F (r,x)

∂x

∣
∣
∣
∣
x,y−νr,y

(18)

+
R∑

r=1

[p(n− (0, νr,y); t)wr(n− (0, νr,y))− p(n; t)wr(n)]

The first term in the rhs of Eq. (18) is discretized using the finite volume

formulation for the FPE presented in Section 3.1, while the other terms rep-

resent discrete terms corresponding to the CME. This approach can be gen-

eralized to any number of species, separating the group of species for which

the discrete effects are important from the group for which the continuum
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formulation is sufficient.

Figure 7 shows a schematic of a hybrid CME-FPE (hCF) computational

domain. In this figure the blue arrow corresponds to reactions with νr,y = 1,

and the green arrow to νr,y = −1. In the hCF approach, for a two-species

system, the PDF is now represented on one-dimensional grids or lines, and p

becomes a probability density per unit length along lines of constant y. The

2-dimensional index (i, j) represents cell i of width ∆x,i for species X and a

molecule count j for species Y .

i− 1 i i+ 1

j − νr,y

j

j + νr,y

i− 1
2

i+ 1
2

Figure 7: Schematic of the computational mesh for the hybrid CME-FPE domain.

The advection and diffusion components of flux F r,x in Eq. (18) are dis-

cretized similar to the expressions presented in Sec. 3.1. However, for this

formulation, the flux in the x−direction corresponding to cell (i, j) is com-

puted along the line j − νr,y. Specifically, in the finite volume formulation,

this contribution is given by

F
(r,x)

i+ 1

2
,j−νr,y

− F
(r,x)

i− 1

2
,j−νr,y

∆x,i

(19)

where the convection and diffusion flux components on faces (i± 1
2
, j − νr,y)
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are computed using the formulations presented in Section 3.1. The rhs of

Eq. (18) is completed by the CME formulation along (i, j − νr,y) → (i, j).

Since many models exibit both discrete, usually at small molecule counts,

and continuum behaviour, we aim to design a hybrid approach that switches

to the appropriate model, discrete CME, continuum FPE, or hCF depending

on the system dynamics locally in the state space. Figure 8 shows an illustra-

tion of the region where all three types of sub-domains mentioned above join

together to form a composite computational domain for a two-species sys-

tem, X and Y . For small molecule counts, in the lower left corner, stochastic

effects are potentially important for all species and we employ CME to model

the system dynamics. For regions corresponding to larger molecule counts

for one of the species, in sub-domains labeled hCF, we switch to a contin-

uum FPE formulation for that species while still employing a CME formu-

lation for the species with small molecule counts. Finally, at large molecule

counts for all species, we switch to a continuum formulation. This approach,

while allowing a more efficient allocation of computational resources, requires

consistent treatment of probability fields across different formulations. The

CME formulation models the transport of probability mass while the FPE

approach models the transport of probability density. In the hCF scheme

the probability field is also represented by a density, but corresponding to a

unit of space of lower dimensionality compared to the full FPE scheme, e.g.

per unit length rather than per unit volume in the 2D case.

The next sections introduce algorithmic constructions designed to ensure

conservation of probability and preservation of order-of-accuracy for these

transitions. We will present derivations that pertain to reactions with stoi-
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CME hCF

h
C
F

FPE

Figure 8: Schematic of a composite computational domain with CME, hCF, and FPE

computational subdomains.

chiometric coefficients that are at most ±1. Derivations for higher reaction

orders are conceptually similar, however their practical implementation in

a simulation code is more involved and is outside the scope of the current

paper.

4.1. Coupling between CME and Hybrid CME-FPE Scheme

Figure 9 shows a schematic of the interface between CME and hCF com-

putational domains. The blue arrow shows the transfer of probability corre-

sponding to a reaction r with stoichiometric coefficients νr,x = 1, while the

green arrow corresponds to νr,x = −1. For both reactions presented in the

figure the value of νr,y is the same as νr,x, however the derivations below are

generic and applicable to cases when νr,y 6= νr,x. In this figure the index in

the vertical direction is common between the two sub-domains. In the hor-
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Nx,c − 1 Nx,c 0 1

j − νr,y

j

j + νr,y

CME hCF

Figure 9: Schematic of the computational mesh at the interface between CME and hCF

computational domains.

izontal direction, the CME domain extends up to a molecule count of Nx,c.

The index counter in the horizontal direction is reset in the hCF domain,

starting at 0.

In the first case, probability leaves state (Nx,c, j) in the CME domain and

“jumps” to cell (0, j + νr,y) in the hCF domain. This transfer can be cast as

a boundary condition for the Fokker-Planck flux on line j. The (i−1/2) flux

in Eq. (19) corresponding to line cell i = 0 is given by

F
(r,x)

−
1

2
,j+νr,y

= wrNx,c,j pNx,c,j

In the second case, with νr,x = −1, probability leaves the hCF region towards

the CME domain. This corresponds to

F
(r,x)

−
1

2
,j
=

∫
−

∆x,0
2

+1

−
∆x,0

2

wr(x)|j p(x)|jdx (20)

Here, x represents the continuum coordinate along the j line, starting on the

left boundary at x = −∆x,0/2, and p(x)|j is the probability line density along
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this line with cell averages p0,j, p1,j and so on. The width of the integration

domain is equal to 1 and represents the region from which probability can

possibly be transferred to the CME states for a stoichiometric coefficient

νr,x = −1. For larger, in absolute sense, stoichiometric coefficients, the limits

of this integral need to be adjusted accordingly.

In general, numerical quadrature can be employed to evaluate the integral

in Eq. (20). For computational efficiency we adopt a linearized form

F
(r)
−1/2,j ≈ wr(x)|j

∫
−

∆x,0
2

+1

−
∆x,0

2

p(x)|j dx, (21)

where wr(x)|j is the average propensity along the integration segment. This

linearization can be employed for systems with propensity fields that have

smooth dependence on the molecule counts. Numerical tests confirm this

hypothesis for the two models presented in this paper. Further, in order

to evaluate the integral in Eq. (21) we approximate p(x)|j by a 2nd degree

polynomial P2(x) constrained by the PMF at CME state (Nx,c, j) and by the

PDF along hCF cells (0, j) and (1, j)






∫

CMENx,c
P2(x)dx = pNx,c,j · 1

∫

hCF0
P2(x)dx = p0,j ·∆x,0

∫

hCF1
P2(x)dx = p1,j ·∆x,1

(22)

Using the approximation in Eq. (21) and the solution of the linear system in

Eq. (22), the boundary condition in Eq. (20) can be written as

F
(r,x)
−1/2,j = wr(x)|j

(
c1pNx,c,j + c2p0,j + c3p1,j

)
(23)

In the computations presented in this paper, the cell sizes were uniform in

each computational subdomain, i.e. ∆x,0 = ∆x,1 = ∆. For this particular
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case, the coefficients above are given by

c1 =
(∆− 1)(2∆− 1)

(∆ + 1) (2∆ + 1)
, c2 =

7∆2 − 1

∆ (∆ + 1) (2∆ + 1)
, c3 = −

∆− 1

∆ (2∆ + 1)

Numerical tests, results not shown, indicate that, for the metabolite and

circadian rhythm models presented in this paper, a first order approximation

for p(x)|j, would have been sufficient to obtain a scheme that is overall 2nd-

order accurate. This approximation can be derived by assuming a first order

polynomial for p(x)|j and employing the first two constraints in Eq. (22).

The derivation above is presented for completeness to ensure a consistent

2nd-order spatial discretization.

The boundary conditions for the CME sub-domain are set consistent to

the boundary conditions derived above for the hybrid CME-FPE sub-domain.

For the case with νr,x > 0 the CME equations remain unchanged on the

boundary since information propagates from the CME domain towards the

hCF region. For the case with νr,x < 0 the first term in Eq. (2) is replaced by

the flux coming out of the hCF region, computed according to the expression

in Eq. (23).

The approach presented in this section and throughout the rest of the

paper leads to a smooth transition of information between heterogenous for-

mulations while preserving the total probability mass in the computational

domain. The interface conditions derived in this paper correspond to jump

sizes normal to the boundary, |νr| ≤ 1. For models with |νr,i| > 1, the

numerical construction can follow similar arguments without any conceptual

difficulties. However the algorithmic implementation for these cases is more

involved and outside the scope of the current work.
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4.2. Coupling between FPE and Hybrid CME-FPE Formulation

This section extends the above algorithmic construction to the 2D in-

terface presented in Fig. 10. In this figure, the arrows show the transfer of

probability from the hCF domain to the FPE domain, corresponding to a

reaction with ν = (1, 1). However, the numerical conditions derived below

correspond to reactions with both |νr,x| ≤ 1 and |νr,y| ≤ 1.

i− 1 i i+ 1

Ny,h − 1

Ny,h

0

1

i− 1
2 i+ 1

2

F
P
E

h
C
F

∆
y
,0

1
1 2

Figure 10: Schematic of the computational mesh at the interface between hybrid CME-

FPE domain and the FPE domain. Lines Ny,h − 1 and Ny,h are in the hybrid domain,

while cells 0 and 1 are in the FPE domain.

We first derive the boundary conditions for the FPE domain. For the case

shown in Fig. 10, with the probability flux going into the FPE domain, we

use upwind considerations to set the boundary condition for the flux entering

the FPE domain equal to the probability amount leaving the hCF domain.
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Following the stoichiometry in the above schematic, the FPE flux on edge

(i,−1/2) for this case is given by

F
(r,y)

i,− 1

2

=

∫ xi+
∆x−1

2

xi−
∆x+1

2

wr(x)|Ny,h
p(x)|Ny,h

dx (24)

where wr(x)|Ny,h
and p(x)|Ny,h

are the propensity and PDF along the top line

in the hCF domain. The range for the integral above is determined by the

jump values. For the case shown here, with ν = (1, 1), the flux on the lower

edge of FPE cell (0, i) originates on segment
(
xi −

∆x

2
− 1

2
: xi +

∆x

2
− 1

2

)
on

the last line in the hCF region. Similar arguments can be made for systems

with jump sizes greater than one. To simplify the notation, we will drop

subscript Ny,h for the remainder of this section.

Similar to Section 4.1, we linearize the above expression and construct

a 2nd-order polynomial P2(x) to approximate p(x). The coefficients of this

polynomial are set so that line averages along adjacent cells (i − 1 : i + 1)

match the numerical solution






∫

hCFi−1
P2(x)dx = pi−1∆x

∫

hCFi
P2(x)dx = pi∆x

∫

hCFi+1
P2(x)dx = pi+1∆x

(25)

The above expressions assume a uniform grid in the x−direction. Given these

constraints, the numerical flux in Eq. (24) is computed as

F
(r,y)

i,− 1

2

= wr(x)

(

∆xpi +
(2∆x + 1)pi−1 − 2pi + (1− 2∆x)pi+1

8∆x

)

(26)

Here, wr(x) is the average propensity along segment
(
xi −

∆x+1
2

: xi +
∆x−1

2

)
.
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The numerical flux construction for ν = (−1, 1) is similar to the above

workflow, with averages now computed for segment
(
xi −

∆x−1
2

: xi +
∆x+1

2

)
.

For the case with ν = (0, 1), the vertical flux is simply given by wr,ipi∆x.

The expressions derived above correspond to νr,y > 0. For these cases,

no boundary conditions are necessary for the hCF domain. For reactions

with νr,y = −1, the probability flows from the FPE domain to the hCF do-

main. For this case edge-averaged fluxes on the edge of the domain, F
(r,y)

i,− 1

2

are evaluated using the 2nd-order formulations for the advection and diffu-

sion components presented in Section 3.1. Continuum approximations for

these fluxes are constructed as described above in Eqs. (25) and (26). Their

contributions to hCF domain are then partitioned according to the value of

νr,x, i.e. acounting for the ±1/2 segments from adjacent cells as described

above in this section.

4.3. Coupling between CME, FPE and Hybrid CME-FPE Formulations

In the previous sections we presented algorithms for the transition of

probability between two formulations at a time: discrete CME and discrete-

continuum hCF, or between hCF and the continuum FPE. In this section

we present the numerical construction of interface conditions in the “corner”

region, at the confluence between discrete, continuum, and hybrid discrete-

continuum regions. Figure 11a shows a schematic corresponding to a reaction

with ν = (1, 1), while the illustration in Fig. 11b corresponds to a reaction

with ν = (1,−1). In this figure, the CME state (Nx, Ny) near the corner

is shown with a filled circle while the FPE cell (0, 0) is shown with light

grey shading. The hCF lines (0, Ny) and (Nx, 0) are surrounded by dashed

contours corresponding to “virtual” cells around the hCF grids.
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(a) ν = (1, 1)

1 ∆x,0

1
∆

y
,0

(b) ν = (1,−1)

Nx 0
Ny

0

Figure 11: Schematic of the transfer of probability near the corner between CME, FPE,

and hCF. Grid sizes near the corner are shown in frame (a) while grid indices are shown

in frame (b).

For the reaction illustrated in Fig. 11a, the probability is transferred from

the CME and hCF sub-domains towards the FPE sub-domain. We employ

the same techniques as in Sections 4.1 and 4.2 to construct the interface

fluxes for the FPE sub-domain. The flux on the bottom edge of the FPE cell

shown in Fig. 11a is written as

F
(r,y)

0,− 1

2

=
1

2
wr,Nx,Ny pNx,Ny +

∫ x0+
∆x−1

2

x0−
∆x
2

wr(x)|Ny p(x)|Ny dx (27)

The computation of integral in the rhs of Eq. (27) follows the steps outlined

in Eqs. (20)-(23). Numerically the flux normal to the bottom edge of the

FPE cell is given by

F
(r,y)

0,− 1

2

=
1

2
wr,Nx,Ny pNx,Ny + wr(x)|Ny

(
c1pNx,Ny + c2p0,Ny + c3p1,Ny

)
(28)

and the coefficients above are given by

c1 =
(2∆x − 1)

8 (∆x + 1)
, c2 =

(2∆x − 1) (8∆2
x + 7∆x + 1)

16∆x (∆x + 1)
, c3 = −

2∆x − 1

16∆x
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The computation of the flux normal to the right edge of the FPE cell, F
(r,x)

−
1

2
,0

employs a similar approach as above. For this case, with ν = (1, 1), no

boundary conditions are necessary for the CME and hCF sub-domains.

The construction of interface conditions for a reversed reaction, with

ν = (−1,−1) (schematic not shown) follows the same approach, now ap-

plied to 2nd-order reconstructions for the edge-averaged fluxes normal to the

FPE interfaces. The limits for the integrals along the FPE edges are set ac-

cordingly to the stoichiometry of each reaction, as explained in Section 4.1.

Specifically, the probability flux exiting the FPE sub-domain and entering

the lower hCF subdomain is given by.

F
(r)
0,Ny

=

∫ x0+
∆x+1

2

x0−
∆x−1

2

F (x)r,y|−1/2 dx (29)

where F (x)r,y|−1/2 is the y-component of the combined FPE advection and

diffusion fluxes along the lower edge of the bottom FPE cells. A 2nd-order

reconstruction for the FPE fluxes on the boundary is employed. This recon-

struction is similar to the steps presented above. The transfer between FPE

and the left hCF cell is computed with the same reconstruction approach

along the left edges of the FPE cells.

The remaining segments on the lower and left edges of the corner FPE

cells account for the transfer of probability between FPE and CME regions:

∫ x0−
∆x−1

2

x0−
∆x
2

F (x)(r,y)|−1/2 dx+

∫ y0−
∆y−1

2

y0−
∆y
2

F (y)(r,x)|−1/2 dy (30)

For the reaction illustrated in Fig. 11b, the red arrows illustrate the trans-

fer of probability between the two hCF regions, in addition to the transfers

between hCF and FPE sub-domains, shown with blue lines. For this case,
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with ν = (1,−1), the transfer from the vertical hCF line cell and the hori-

zontal hCF cell is computed numerically as

wr(y)

∫ y0−
∆y−1

2

y0−
∆y
2

p(y)|Nx dy (31)

Here, wr(y) is the average propensity along segment
(

y0 −
∆y

2
: y0 −

∆y−1

2

)

.

The integral in Eq. (31) is evaluated numerically by replacing p(y) with a

2nd-order polynomial reconstruction near the interface between the CME

sub-domain and the vertical hCF sub-domain.

5. Numerical Experiments

The algorithms presented in Section 4 were numerically implemented in

a software framework using mixed python/C++ libraries. The data arrays

and kinetic model and numerical experiment setup are implemented through

python scripts. The computationally intensive flux evaluations are handled

in C++. The data communication between the two languages is handled

with swig tools [44] using array templates defined in numpy.i [45]. For all

simulations presented below, the numerical time integration is based on a

two-stage 2nd-order total variation diminishing (TVD) Runge-Kutta scheme

[34].

5.1. Convergence Tests

We performed several tests using synthetic one-reaction models to vali-

date the numerical implementations presented above and to determine the

overall order-of-accuracy of the numerical construction. Fig. 12 shows a

schematic of a composite computational domain. In order to test the or-

der of accuracy of the combined scheme we employ a 2D Gaussian “blob”
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with σx = σy = 50. This initial condition is placed at several locations in

the composite domain and evolved in time using select one-reaction models

with ν = (±1,±1). The arrows in Fig. 12 shows sample trajectories for the

PMF/PDF fields. For example, line #4 corresponds to runs where the prob-

ability moves between the two hCF domains by crossing the FPE domain.

CME hCF

h
C
F FPE

#1

#2
#3

#4

Figure 12: Schematic of the composite computational domain. The arrows show trajec-

tories for sets of tests to check the order of accuracy of the CME-hCF-FPE formulations.

Figure 13 shows sample contour plots for run #2, using ν = (1, 1). The

black arrow in the figure shows the direction of propagation of the PMF, i.e.

it propagates from the CME domain through the corner between all regions

to the FPE domain. The first two frames correspond to the time when the

peak PMF/PDF values are nearly centered at the corner. The detail view

in Fig. 13b shows the dependency with the grid size once the solution enters

domains emloying the FPE approximation to the CME. Similarly at later
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times, shown in Figs. 13c and 13d, the FPE solution corresponding to ∆ = 2

(green contours) is closer to the full CME solution (red contours) compared

to the coarse FPE solution (blue contours).

We verify the overall order of accuracy for the spatial discretization by

comparing the solutions on successively refined grids. For the set of runs

shown schematically in Fig. 12, we employ composite simulations with FPE

grids ∆ = {2, 4, 8}. The L1 error between composite simulation results and

the CME solution reference is computed as

L1∆ =

∫

Ω

∣
∣p(∆) − pCME

∣
∣ dω (32)

In order to compute the integral above, the CME results are interpolated to

a coarser grid ∆ using bicubic spline interpolations. We assume a power-law

dependency of the L1 error on the grid size, L1∆ ∝ ∆γ, with the exponent

γ indicating the order-accuracy of the discretization. The order-of-accuracy

can then be estimated as

γ = log2

(

L1∆/L1∆/2

)

(33)

For the set of simulations employed for testing the discretization order we

found γ values in the range 1.82 . . . 2.01, confirming the theoretical 2nd-order

spatial accuracy of the numerical construction. Fig. 14 shows the error de-

pendency on the grid size for the set of tests outlined in Fig. 12. Results

for Set # 3 are not shown since the results nearly overlap with Set # 1.

The theoretical 2nd-order slope is shown with black line in Fig 14 for refer-

ence. Numerical simulations, results not shown, also confirm the 2nd-order

accuracy for the numerical implementation of the time integration scheme.
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Figure 13: Contour plots of PMF/PDF fields corresponding to run #2 (see Fig. 12). Red

contours correspond to full CME simulations, green contours to hybrid simulations with

∆ = 2, and blue contours to ∆ = 4. Frame (a) shows the solution as it passes through

the corner between sub-domains and frame (b) shows a detail near the corner. Frame (c)

shows the solution at a later time, fully contained in the FPE domain, with an enlarged

detail shown in frame (d).
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Figure 14: Spatial convergence test for the composite CME-FPE model. The test setup

corresponds to paths shown in Fig. 12.

5.2. Circadian Rhythm Simulations

Next we consider composite runs for the circadian rhythm model, intro-

duced in Sec. 2. The parameters for these simulations are provided in Table 2.

Runs R1 though R3 use the same grid size for the FPE cells, ∆ = 4. These

runs use progressively smaller CME regions, details shown on the second line

in the table. Refer back to the sketch in Fig. 12 for the sub-domain placement

in the global, composite computational domain. The extent of subdomains

for run R4 are similar to R2. R4 employs a smaller cell size, ∆ = 2 to explore

the effect of grid refinement on the dynamics of this system.

Figure 15 shows the time evolution of the peak ot the PMF. For the circa-

dian rhythm, the location of peak PMF (for CME) or PDF (for FPE) exhibits
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Run 1 2 3 4

CME size 400× 400 400× 100 100× 100 400× 100

∆ 4 4 4 2

Table 2: Parameters for composite CME-hCF-FPE runs. For all runs the computational

domain spans [0, 1800] × [0, 1400], and the FPE grids have the same grid spacing in each

direction, ∆x = ∆y = ∆.

a limit-cycle pattern, from a region where species Y has low molecule counts,

to regions where both species have molecure counts in the hundreds. The

results for runs R1 through R4 are compared to the full CME solution shown

with black line. Since the initial conditions place the bulk of probability in

the FPE sub-domain, at early times the peak PMF decreases compared to

the CME solution due to the increased diffusivity given by larger grids. At

later times the results for run R1, which employs CME formulations for a

region 400 wide at small molecule counts, are in very good agreement with

the full CME solution. At the other end of the spectrum, it is clear that a

setup with CME regions 100 wide at small molecule counts, combined with a

grid size of 4 in the FPE regions, for R3 is not sufficient to accurately capture

the dynamics of the circadian rhythm model.

Figures 16 and 17 show contour lines of PMFs values at t = 17 and t = 41

for the composite runs listed in Table 2. These figures also show results for

full CME and FPE simulations, respectively, for comparison purposes. The

times for these snapshots were selected based on simulation dynamics. At

t = 17 large PMF values can be simultaneously observed at small and large

counts for species Y , while at t = 41 the PMF peaks at both small and
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Figure 15: Time evolution of the peak PMF for composite simulations compared to the

values from full CME simulation of the circadian rhythm. The PDFs from composite

simulations are converted to PMFs for the purpose of this comparison.

intermediate counts of molecules for the same species. The contour values

in Figs. 16 and 17 are computed on a logarithmic scale with red contours

corresponding to large PMF values, of o(10−4), and blue ones to small PMF

values, of o(10−12). The FPE simulation uses a grid size of 4. While the FPE

simulation is about 10 times less expensive compared to the CME approach,

the quality of the FPE results is very poor as this approach fails to capture

the model dynamics at small molecule counts.

The composite approach results, shown on the second and third rows of

these figures provide visually a very good agreement to the full CME solution.

At early times, t = 17, all four composite runs capture the dynamics of

low and high PMF values well. At later times, run R3, which employs the
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Figure 16: Comparison of (a) full CME and (b) FPE solutions, respectively, with composite

simulations (c-f) for the circadian rhythm at t = 17. The initial conditions for these

simulations are the same as for results presented in Fig. 3.
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thinnest CME region at small molecule counts, exhibits a slightly diffused

solution while runs R1, R2, and R4 are still in a good visual agreement with

the CME solution.

In order to quantify the error introduced by the mixture of CME and

FPE formulations for the circadian rhythm model, we examine the L1 dis-

crepancies between the composite simulations results and the full CME ap-

proach. These results are shown in Fig. 18. The horizontal axis in this figure

corresponds to the ratio between the average CPU time per time step for

composite simulation and the corresponding CPU time for the CME simula-

tion. The tags near select markers in the figure indicate the location of the

CME/FPE interface for that data entry, i.e. “1” corresponds to a composite

simulation with transition between CME and FPE formulations imposed at

100 molecule counts for both species, “3” to 300 molecule counts and “5” to

500 molecule counts. The transition for the remaining data sets are intuitive.

For all grid sizes there is significant drop in the error compared to full CME

results when the interface is shifted from 300 to 400 molecule counts. This

suggests that, for the circadian rhythm model, the discrete dynamics are im-

portant for molecule counts less than 400. For simulations using grid sizes

equal to 4 and 8, respectively, moving the interface towards larger molecule

counts also leads to more expensive simulations. However, these simulations

remain computationally efficient, and are about one order of magnitude less

expensive compared to the CME simulations. It is interesting to note the

evolution of the relative CPU time for the simulations using a grid size of 2.

For these simulations, the CPU times are not necessarily correlated with the

number of grid points. While further analysis of this behaviour is outside the
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Figure 17: Comparison of (a) full CME and (b) FPE solutions, respectively, with composite

simulations (c-f) for the circadian rhythm at t = 41. The initial conditions for these

simulations are the same as for results presented in Fig. 3.
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Figure 18: Comparison of L1 error between PMF values obtained with CME and composite

simulations with several grid sizes, at t = 17 and t = 41.
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scope of this paper, we suspect that this is due to a less efficient memory and

cache usage compared to the previous two simulations, which use a smaller

grid.

For the circadian rhythm tests presented in this section the FPE only

simulations are by design cheaper computationally compared to the already

efficient composite simulations. However, the FPE solution fails to capture

the key system features. The simulations employing the composite CME-

hCF-FPE formulation are in very good agreement compared to the CME

solution. The computational expense of the composite approach is about 10

times cheaper compared to the CME solution for an error of approximately

1%. This makes the composite approach promising for extensions to higher

dimensional systems.

6. Conclusions

In this paper we introduce a hybrid modeling approach to study the be-

havior of Stochatic Reaction Networks. This approach employs a combina-

tion of the Chemical Master Equation (CME), which describes the evolution

of the probability of the discrete system to be in a particular state, and the

Fokker-Planck Equation (FPE) which is a continuum approximation to the

CME in the limit of large molecule count.

In the hybrid formulation, the CME is used to advance the system state

for species present in small molecule counts and for which discreteness is

important. For species present in large molecule counts the FPE is used

instead. The numerical construction for the transfer of probability between

CME and FPE regions is designed according to the stoichiometry of each
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reaction. The FPE is discretized using a finite volume formulation. The ad-

vection component of the FPE fluxes is discretized using a 2nd-order MUSCL

scheme with Lax-Friedrichs flux splitting and employs a minmod limiter to

keep the probabilities positive even in regions with high gradients. The diffu-

sion component is discretized with a 2nd-order centered scheme. The overall

order of the composite numerical scheme is verified to be approximately 2 by

comparing sample solutions on successively refined grids.

The efficiency of the hybrid CME/FPE approach is tested on a circa-

dian rhythm model consisting of two species and 4 reactions. The full CME

and the hybrid solutions are found to be in very good agreement. For this

model the hybrid approach is one order of magnitude cheaper compared to a

full-domain CME computation. For comparison, obtaining the system state

PMF with SSA sampling is about two orders of magnitude more expensive

compared to the CME solution for this system. Also, an approximation with

the FPE over the full domain, while computationally more efficient than the

hybrid methodology, is not sufficiently accurate.

A key consideration regarding the performance of any approach for solving

the CME is how the computational cost scales with the number of species. As

discussed in the introduction, the computational cost of the full CME solu-

tion increases exponentially with the number of species. Sampling approaches

like SSA are less dependent on the dimensionality of the system for gener-

ating individual trajectories in time of the system state. However, if PMF

values of the system state are needed, the number of SSA samples required

also increases prohibitively with the system dimensionality. The results pre-

sented in this paper suggest that a higher-dimensional implementation of the
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current hybrid scheme can help alleviate this curse of dimensionality by re-

ducing the number of grid points needed in each species dimension. Also, the

hybrid approach in this paper can be combined with many other approaches

for speeding up the CME simulation, such as finite state projection, adap-

tive mesh refinement in the FPE regime, stiffness reduction, or improved

matrix exponentiation. Also, the hybrid scheme may be extended to treat

some species with deterministic rate equations for further efficiency gains.

Combined, all of these approaches can provide a direct way to evaluate of

the PMF values for realistic SRNs with moderate dimensionality.
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