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Introduction and Summary 3D Conductivity Model and
Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of Surface ACqUISItIOn Geometry Four Model Va riants (Vertical XZ SeCtionS at y = 0 km)

subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current
conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies.
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We have developed a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in Horizontal Layers Conductivity Anomaly Normal Faulted Layers Conductivity Anomaly

heterogeneous conductive materials. Maxwell’s equations are combined with isotropic constitutive relations to obtain
a set of six, coupled, first order, linear partial differential equations governing the electric and magnetic vectors. A
particular advantage of the system is that it does not contain spatial derivatives of the three medium parameters
electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of
explicit, time-domain finite-differencing (FD) on a 3D staggered rectangular grid. Temporal and spatial FD operators
have order 2 and N (= 2, 4, 6, 8, 10). An artificially-large electric permittivity is used to maximize the FD timestep, and
thus reduce execution time. For the low-frequencies typically used in geophysical exploration, accuracy is not unduly
compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed
at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm
execution on a multi-thread computational platform.
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Good agreement is obtained in comparisons of numerically-generated data with reference solutions (e.g., point current
density or magnetic dipole sources in a homogeneous conductive wholespace). We are particularly interested in
accurate representation of high-conductivity sub-grid-scale features common in an industrial environment (borehole
casing, pipes, railroad tracks). Present efforts are oriented toward calculating EM responses of these objects via a

First Born Approximation (FBA) approach.
Z-component electric field

Ao = +0.174 S/m (= 2x background ave) vertical point current density source, 450 m deep, 1 A magnitude (E2) not routinely recorded

by surface receivers.
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Electromagnetic Wave Equations and 3D Finite-Difference Solution
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Numerical solution methodology: explicit, time-domain finite-differencing on a 3D
staggered spatial grid (after Yee, 1966): 3D Volume Visualizations of Difference Electric Wavefields (Ex-component)
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