
Introduction and Summary
Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of
subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current
conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies.

We have developed a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in
heterogeneous conductive materials. Maxwell’s equations are combined with isotropic constitutive relations to obtain
a set of six, coupled, first order, linear partial differential equations governing the electric and magnetic vectors. A
particular advantage of the system is that it does not contain spatial derivatives of the three medium parameters
electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of
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electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of
explicit, time-domain finite-differencing (FD) on a 3D staggered rectangular grid. Temporal and spatial FD operators
have order 2 and N (= 2, 4, 6, 8, 10). An artificially-large electric permittivity is used to maximize the FD timestep, and
thus reduce execution time. For the low-frequencies typically used in geophysical exploration, accuracy is not unduly
compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed
at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm
execution on a multi-thread computational platform.

Good agreement is obtained in comparisons of numerically-generated data with reference solutions (e.g., point current
density or magnetic dipole sources in a homogeneous conductive wholespace). We are particularly interested in
accurate representation of high-conductivity sub-grid-scale features common in an industrial environment (borehole
casing, pipes, railroad tracks). Present efforts are oriented toward calculating EM responses of these objects via a
First Born Approximation (FBA) approach.
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Δσ = +0.174 S/m (= 2x background ave) vertical point current density source, 450 m deep, 1 A magnitude 

Magnetic Field 3C Trace Data: X-Axis Stations  Electric Field 2C Trace Data: X-Axis Stations  
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3D Volume Visualizations

Electromagnetic Wave Equations and 3D Finite-Difference Solution

Combine two of Maxwell’s equations (i.e., the Ampere-Maxwell law and the Faraday 
law) with three constitutive relations (appropriate for linear, time-invariant, and isotropic 
media) to obtain the EH Partial Differential System:
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Cubit model construction

Z-component electric field 
(Ez) not routinely recorded
by  surface receivers.
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3D Volume Visualizations
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A set of six coupled, linear, first-order, inhomogeneous partial differential equations.

EM wavefield variables:     e(x,t) – electric vector,             h(x,t) – magnetic vector.

EM medium parameters:   ε(x) – electric permittivity,       σ(x) – current conductivity,

μ(x) – magnetic permeability.

EM sources:                       js(x,t) – current density,            bs(x,t) – magnetic induction,

ds(x,t) – electric displacement.  

Numerical solution methodology:  explicit, time-domain finite-differencing on a 3D 
staggered spatial grid (after Yee, 1966):
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Modeling  Conclusions
1) Multi-component magnetic and electric trace data display amplitude, waveform,

and polarity variations depending on receiver station location relative to sub-
surface geologic features.

- amplitudes (per unit source current) are small, but considered detectable.

2) Different geologic expressions of subsurface faulted zone (conductivity anomaly,
normal faulted layers, and both) imply different characteristics in surface-
recorded EM data. Interpretation is ambiguous!

3) 3D volume visualizations of time-evolving subsurface EM wavefields (both
physical fields and wavefield differences) provide clues for proper data
interpretation.

4) Air-earth interface (where conductivity changes by several orders of magnitude)
handled accurately by FD algorithm.

5) More realistic EM wavefield sourcing (i.e., current-carrying wire loops) now
needed.

6) Accurate modeling of sub-grid-scale features always a challenge!
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