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Objective and Approach

Develop a new capability to simulate diffusion of
point-defects in semiconductor alloys (InGaAs) with
density-functional-theory accuracy

Why is this challenging? — Configurational complexity
fundamentally alters defect energetics & behavior —
Computational burden rises exponentially

+ Kinetic Monte Carlo (KMC) simulations of point-defect diffusion
in an alloy require rapid evaluation of defect energies at all
relevant locations in the alloy

» Density-functional-theory (DFT) defect energies are sufficiently
accurate to produce physically realistic simulations, but the
computation time needed for DFT is orders of magnitude too
large for direct use

» Cluster Expansions (CE) allow rapid evaluation of defect
energies in an arbitrary local alloy environment

* We obtain the CE coefficients by fitting to a training set of
defect energies calculated using DFT
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| Cluster Expansions For Defects In Alloys

q='_1 _AS [1 10] Triplet » Performed cluster-expansion for the formation
split interstitial . o energy of the g=-1 As [110] split interstitial

* Used a modified version of the CHASM code
developed in Anton Van der Ven's group

» Calculated a 258 configuration training set
using Socorro DFT software

» The occupations of 18 Group-Ill sites near the
defect are represented by Ising-like variables

* Products of these Ising-like variables give
terms in the cluster expansion

* Current CE includes 6 single-site terms, 7
pair terms, & 26 triplet terms

* The 18 site CE models 66432 unique local
environments for the defect

Q. = | I oO. * Hence, direct simulations by DFT would be
¢ ! nearly impossible

E(G)=E,+2.V, ¢(5) )
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Accuracy of the Cluster Expansion

Comparison of CE and DFT for Fitting Set
‘491.5 I I I I | I I I I | I I I I | I I I I

* |dentified key procedures to
optimize the sites and interactions
included in the CE and improve the
accuracy of the CE

-492

» The cluster expansion for the q=-1
As [110] split interstitial captures

-492.5 over 90% of the energy variance:

» Training set rms error = 0.036 eV
» Training set max error = 0.105 eV
» Cross-validation error = 0.047 eV

-493 * The optimized CE errors are less
than typical DFT errors for defects

in semiconductors
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Defect Properties Strongly Dependent
on Local Alloy Environment

Histogram of Defect Energies

Obtained from the Cluster Expansion
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The range of predicted formation
energies for the g=-1 As [110] split
interstitial energies exceeds 1 eV!

In the alloy, the energy of the defect
depends strongly on position

This energy variation is large compared
to the diffusion barrier in GaAs and
should have a major impact on diffusion

The variations in defect energy are
correlated from site to site and have a
non-linear  dependence on alloy
composition

In order to explore these effects, we
have incorporated our CE into a Kinetic
Monte Carlo (KMC) model of diffusion
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* Thermal Diffusion of the q=-1 As Interstitial

Thermal-diffusion with a site-dependent energy (AE = Activation Energy) |

Lower-energy

1 Higher-energy s _
o stable state addle point stable state
g 0
g AE AE
>

time

Atomistic configurations obtained from DFT (Relaxation and Dimer Method) |

[110] split with
local environment A+B local environment B
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Kinetic Monte Carlo (KMC) for Thermal Diffusion

Defect Displacement vs Time
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The rate of diffusion decreases dramatically with
time!

KMC simulation of a single
thermally diffusing q = -1 As
interstitial in INnGaA

Use cluster expansion for
position-dependent stable-state
energies

Approximate saddle-point
energies chosen to give a small
constant barrier for the higher
energy stable state

Room temperature simulation
with an attempt rate of 10° s

Blue line is averaged over time
bins for a single trajectory; Black
line is averaged over time bins
and 96 independent trajectories
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Why Does Diffusion Slow Down?

Defect Energy vs Time Residence Time vs Energy
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* As the defect diffuses, it finds lower energy sites in the alloy.

» Lower energy sites trap the defect for (exponentially) longer times.
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"““Preliminary Work on CE for Saddle Point Energies

» Saddle-point structure has 7 nearest-neighbor sites and 31 next-nearest-neighbor sites
» Constructed a 358-configuration training set using DFT and the dimer method

« |nitial CE built using the 7 nearest neighbor sites and a 48 configuration training set
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Accuracy of Our Preliminary Cluster
Expansion for the Saddle Points

Comparison of CE and DFT
‘491 I I I I I I I I I I I I I I | I I I I

i /7 + Ourinitial cluster expansion for the
i / 711 saddle points is similar in accuracy
Y to initial cluster expansions for the
-491.51 4;4 + | stable states that used only nearest
A 11 neighbors

i
i +i|=ﬁ}‘|;‘f |1« Itis not as accurate as our final,
i + Tt + | optimized cluster expansion for the

-492 i— gf + 4 || stable states:

i T/ 41 » Training set rms error = 0.123 eV
/ 41 » Training set max error = 0.348 eV
= / 41 » Cross-validation error = 0.143 eV

B / =
-492.5 /  We will need to identify the next-

4 neighbor sites responsible for this
inaccuracy and include them in our
y 11 cluster expansion
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Conclusions

We have combined DFT, Cluster Expansions, and KMC to simulate
thermal diffusion of point defects in semiconductor alloys

We have applied our approach to the q=-1 As interstitial in InGaAs

The energy of a defect can vary dramatically (> 1eV) with position due to
changes in the local environment

Defects can become trapped in progressively lower energy sites leading to
a slowing of defect diffusion with time

We are continuing to work on cluster expansions for saddle point energies
and the stable-state energies of other charge states with the goal of
treating both thermal and athermal (Bourgoin-Corbett-like) diffusion
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Key Accomplishments:

Analyzed Initial KMC Simulation Results for Thermal Diffusion

Density of Defect States (DOS) in In, sGa, 5 As « The DOS are computed by sorting

VS the sequence of defect energies

Stable-State Defect Energy encountered as the defect moves

through the lattice during a single
KMC simulation. The resulting
distribution is normalized by the
population frequencies (slide 6) to
® kT=025¢eV]| | remove the biasing effect of

® kT=0.10eV| - population statistics
kT=0.05¢eV| |

(for As split-interstitial, C,,-110a, q=-1)

= . . |

o

o o]
|

o

» The KMC algorithm should “seek out”
the lowest energy configurations,
such that the defect spends more
time in them than in higher-energy
states (all else being equal)
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» As expected, the observed density of
states show that low-energy stable
states are very strongly favored,
especially at lower temperatures
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