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Objective and Approach

Develop a new capability to simulate diffusion of 
point-defects in semiconductor alloys (InGaAs) with

density-functional-theory accuracy

• Kinetic Monte Carlo (KMC) simulations of point-defect diffusion 

in an alloy require rapid evaluation of defect energies at all 

relevant locations in the alloy

• Density-functional-theory (DFT) defect energies are sufficiently 

accurate to produce physically realistic simulations, but the 

computation time needed for DFT is orders of magnitude too 

large for direct use

• Cluster Expansions (CE) allow rapid evaluation of defect 

energies in an arbitrary local alloy environment

• We obtain the CE coefficients by fitting to a training set of 

defect energies calculated using DFT

GaAs
q=-1 As [110]
split interstitial

1 configuration

In0.5Ga0.5As
q=-1 As [110]
split interstitial

Sites within
R=6.5 Å give
66432 unique 
configurations

In

Ga As

Why is this challenging? – Configurational complexity 
fundamentally alters defect energetics & behavior –

Computational burden rises exponentially



Cluster Expansions For Defects In Alloys
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• Performed cluster-expansion for the formation 
energy of the q=-1 As [110] split interstitial

• Used a modified version of the CHASM code 
developed in Anton Van der Ven’s group

• Calculated a 258 configuration training set 
using Socorro DFT software

• The occupations of 18 Group-III sites near the 
defect are represented by Ising-like variables

• Products of these Ising-like variables give 
terms in the cluster expansion

• Current CE includes 6 single-site terms, 7 
pair terms, & 26 triplet terms

• The 18 site CE models 66432 unique local 
environments for the defect

• Hence, direct simulations by DFT would be 
nearly impossible



Accuracy of the Cluster Expansion

Comparison of CE and DFT for Fitting Set

• Identified key procedures to 
optimize the sites and interactions 
included in the CE and improve the 
accuracy of the CE 

• The cluster expansion for the q=-1 
As [110] split interstitial captures 
over 90% of the energy variance:

 Training set rms error = 0.036 eV
 Training set max error = 0.105 eV
 Cross-validation error = 0.047 eV

• The optimized CE errors are less
than typical DFT errors for defects
in semiconductors



Defect Properties Strongly Dependent
on Local Alloy Environment

• In the alloy, the energy of the defect
depends strongly on position

• This energy variation is large compared
to the diffusion barrier in GaAs and
should have a major impact on diffusion

• The variations in defect energy are
correlated from site to site and have a
non-linear dependence on alloy
composition

• In order to explore these effects, we
have incorporated our CE into a Kinetic
Monte Carlo (KMC) model of diffusion

Histogram of Defect Energies
Obtained from the Cluster Expansion 

The range of predicted formation 
energies for the q=-1 As [110] split 
interstitial energies exceeds 1 eV!

Variation in defect formation energy (eV)
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Thermal Diffusion of the q=-1 As Interstitial

Thermal-diffusion with a site-dependent energy (AE = Activation Energy)  

time

AE

Higher-energy
stable state Saddle point

Lower-energy
stable state

AE

Atomistic configurations obtained from DFT (Relaxation and Dimer Method)  
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[110] split with
local environment A

[110] split with
local environment B

“C2v-001g” saddle point with
local environment A+B



Kinetic Monte Carlo (KMC) for Thermal Diffusion

Defect Displacement vs Time

The rate of diffusion decreases dramatically with 
time!

• KMC simulation of a single 
thermally diffusing q = -1 As 
interstitial in InGaA

• Use cluster expansion for 
position-dependent stable-state 
energies

• Approximate saddle-point 
energies chosen to give a small 
constant barrier for the higher 
energy stable state

• Room temperature simulation 
with an attempt rate of 109 s-1

• Blue line is averaged over time 
bins for a single trajectory; Black 
line is averaged over time bins 
and 96 independent trajectories



Why Does Diffusion Slow Down?

• As the defect diffuses, it finds lower energy sites in the alloy.

• Lower energy sites trap the defect for (exponentially) longer times. 

Defect Energy vs Time Residence Time vs Energy



Preliminary Work on CE for Saddle Point Energies

• Saddle-point structure has 7 nearest-neighbor sites and 31 next-nearest-neighbor sites

• Constructed a 358-configuration training set using DFT and the dimer method 

• Initial CE built using the 7 nearest neighbor sites and a 48 configuration training set 
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Accuracy of Our Preliminary Cluster
Expansion for the Saddle Points

Comparison of CE and DFT

• Our initial cluster expansion for the 
saddle points is similar in accuracy 
to initial cluster expansions for the 
stable states that used only nearest 
neighbors

• It is not as accurate as our final, 
optimized cluster expansion for the 
stable states:

 Training set rms error = 0.123 eV
 Training set max error = 0.348 eV
 Cross-validation error = 0.143 eV

• We will need to identify the next-
neighbor sites responsible for this
inaccuracy and include them in our
cluster expansion



Conclusions 

• We have combined DFT, Cluster Expansions, and KMC to simulate 
thermal diffusion of point defects in semiconductor alloys

• We have applied our approach to the q=-1 As interstitial in InGaAs

• The energy of a defect can vary dramatically (> 1eV) with position due to 
changes in the local environment

• Defects can become trapped in progressively lower energy sites leading to 
a slowing of defect diffusion with time

• We are continuing to work on cluster expansions for saddle point energies 
and the stable-state energies of other charge states with the goal of 
treating both thermal and athermal (Bourgoin-Corbett-like) diffusion
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Key Accomplishments:
Analyzed Initial KMC Simulation Results for Thermal Diffusion

• The DOS are computed by sorting 
the sequence of defect energies 
encountered as the defect moves 
through the lattice during a single 
KMC simulation.  The resulting 
distribution is normalized by the 
population frequencies (slide 6) to 
remove the biasing effect of 
population statistics 

• The KMC algorithm should “seek out” 
the lowest energy configurations, 
such that the defect spends more 
time in them than in higher-energy 
states (all else being equal)

• As expected, the observed density of 
states show that low-energy stable 
states are very strongly favored, 
especially at lower temperatures

Density of Defect States (DOS) in In0.5Ga0.5 As
vs

Stable-State Defect Energy

(for As split-interstitial, C2v-110a, q=-1)


