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Motivation

m Typical cyber security operations monitor multiple sensor
feeds.

m When certain conditions in the data are met, an alert is
generated in a Security Event and Incident Management
system (SEIM).

m Analysts inspect alerts and close or promote to an event.

m Triage process is manual, time-consuming, and detracts from
in-depth investigations.
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Proposed Solution

m Prioritize alerts using supervised machine learning.

m Efficiently use unlabeled alerts via active learning. Do we
outperform passive learning?

m Demonstrate effectiveness of active learning on large,
real-world dataset of cyber security alerts.
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Operational Challenges

m As more sensor feeds are added, more data is available and
the flow of alerts increases.

m Asymmetric nature of cyber defense.



D,
Hypothesis

Automatic alert prioritization would benefit analysts.
m Crucial alerts would not be missed.
m More time for in-depth investigations

m Reduce time gap betweeen event and response, potentially
mitigating impact.



Motivating Active Learning

m Challenge: supervised learning requires labeled data.
m Potentially expensive in terms of time and cost.
m Proposed solution: active learning
m Query analysts for labels on alerts predicted to best train
models.
m Desired Result: need fewer labeled training examples than
passive learning.

m Match or beat accuracy of passive learning with fewer labeled
instances.
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Related Work

m Literature review suggests that active learning theory is well
established.

m Also indicates that the application of active learning to
real-world problems is in its infancy

m Relatively small number of papers employing active learning in
cyber security settings
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Datasets

m Lack of publically available datasets relevant to cyber security

m Many papers present analyses on the KDD-CUP'99 dataset,
which has known issues:

m High redundancy hinders generalization.

m Not sufficiently challenging as even the worst model attained
86% accuracy

m Many attacks appearing in the dataset are no longer relevant.
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Aladin: Active Learning of Anomalies to Detect Intrusions

m Real-world application of active learning to network traffic
classification, anomaly detection, and malware detection.

m Queries for labels to discover new categories and improve
accuracy.
m Results:

m Reduced the number of queries required to attain acceptable
accuracy and coverage.
m Discovered new trojan missed by rule-based methods
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Detecting Adversarial Advertisements in the Wild

m Used active learning to discover real-world, adversarial
advertisements (e.g., counterfeit goods)

m Only needed a few dozen queries to build accurate
one-vs-good models



Data Collection - Feature Extraction

m An alert in the SEIM contains both metadata and the raw
alert text.

m The metadata contains information about where the alert
came from, when it was created, etc.

m Named-entity recognition (NER) is used to extract, e.g.,
filenames and URLs

m Latent Dirichlet Allocation used to extract topic-based
features.

m Used NER output as vocabulary to build model
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Data Collection - Implicit Label Extraction

m Explicit labels obtained from active learning queries.
m Implicit labels based on alert life-cycle.
m Augment explicit labels
m Allow us to build models before obtaining any explicit labels
(i-e., bootstrapping)
m Sample implicit labels: False Positive, Promoted False Positive,
Promoted, and Incident
m Mapped all labels to Closed or Promoted to allow binary
classification
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Tested Models

m Linear methods
m Linear Support Vector Machine (SVM)
m Logistic Regression
m Linear Discriminant Analysis (LDA)
m Naive Bayes

m Non-linear methods
m SVM with Radial Basis Function (RBF) Kernel
m k-Nearest Neighbors (kNN)
m Quadratic Discriminant Analysis (QDA)
m Multilayer Perceptron (MLP)
m Random Forest




Active Learning

m Only small percentage of data is labeled in many real-world
applications.

m Obtaining labels can be costly in time and effort, generally
requiring human annotator.

m Active learning tries to maximize utility of labeled data.

m Learner can match or beat the performance obtained via

passive learning with less training data if it can choose the
data from which it learns.
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Example

(b) Passive Learning

(c) Active Learning (d) Full Learning

Figure: Passive vs. Active Learning on a Toy Dataset.




Query Frameworks

These are common settings in which active learning is applied.

m Query Synthesis

m Learner allowed to query any point in input space

m Synthesized points may be nonsensical (e.g., digit recognition)
m Selective Sampling

m Instances arrive sequentially.

m Learner chooses to query or discard.

m Typically only applicable to streaming settings
m Pool-based Sampling

m Set of labeled instances and pool of unlabeled instances

m Learner allowed to look at all instances in unlabeled pool to

select optimal query
m Most common framework in practical settings




Query Strategies

A query strategy identifies the points to label.
m Random Sampling

m No info about input space or model used to select instances
(passive)
m Baseline for comparison (not a type of active learning)
m Sometimes outperforms active learning
m Uncertainty Sampling
m Selects instances the model is least certain how to classify
m Getting labels for least confident points may yield more info
m Involves estimating distance to decision boundary
m Initial model trained on little data. May bias sampling.
m Other Strategies
m Hypothesis-space search

m Expected error or variance reduction
m Exploiting structure in data




Types of Uncertainty Sampling

m Least Confident
m Queries instance whose predicted output is least confident
m Query Instance + argmax [1 — Pg(:\\/|X)]

= Margin
m Margin is difference between two most likely predictions.
m Queries instance with smallest margin

m Query Instance + argmax [Pg()?2|x) - Pg()?1|x)]

m Entropy

m Entropy is a measure of average information content.
m Queries instance with highest entropy

= Query Instance «+ argmax{ -, Pg(y|x)log(P9(y|x))}
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Experimental Results

m 8905 alerts
m 1436 promoted (approximately 16%)
m scikit-learn used for all models except MLP (PyBrain)
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Baseline Performance

m Used class-averaged accuracy (CAA) as evaluation metric
m Can mitigate effects of class skew

m 3 runs of 10-fold stratified cross-validation
m Best model: random forest using 100 base decision trees

m Wilcoxon signed-rank test with o = 0.05 confirmed statistical
significance
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Baseline Performance

Method average CAA (SD)
LDA 0.774 (0.019)
s | Naive Bayes 0.684 (0.016)
5| Linear SVM 0.585 (0.015)
Logistic Regression 0.556 (0.014)
Random Forest 0.814 (0.020)
5| QDA 0.753 (0.074)
=S| MLP 0.560 (0.021)
2| SVM w/ RBF 0.516 (0.007)
kNN 0.457 (0.014)




Active Learning Performance

m Pool-based sampling
m Variation on 10-fold stratified cross-validation

m 10% of data in training folds used to build initial model
m Active learning strategies sample from remaining 90%.
m Per iteration of active learning

m Query 50 instances.
B Retrain model and evaluate against test fold.

m Repeat 10x for every fold.

m Plot on next page shows average over 100 iterations. (10
folds x 10 initial models)




Sandia
National
Laboratories

Active Learning Performance

0.70F -+ Random
-+ Uncertainty (entropy)
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Approaches baseline performance using only 30% of the data




Deployment to Enterprise Security

m Integrate ranking model into SEIM to automatically prioritize
alerts for analysts
m Batch processing (perform at off-peak times)
m Rebuild model using all labeled alerts.
m Relabel open alerts.
m Periodically revisit closed alerts.
m Near real-time (processing new and modified alerts)
m Extract features.
m Predict label.
m Insert into prioritized alert list.

m Query interface for SEIM
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