
Active Learning for Alert Triage

JD Doak, Joe Ingram, Jeff Shelburg, Josh
Johnson, Brandon Rohrer

Sandia National Laboratories

Albuquerque, New Mexico

{jedoak, jbingra, jsshelb, jajohn, brrohre}@sandia.gov

E x c e p t i o n a l

s e r v i c e

i n t h e

n a t i o n a l

i n t e r e s t

SAND2013-10143C



Motivation

Typical cyber security operations monitor multiple sensor
feeds.

When certain conditions in the data are met, an alert is
generated in a Security Event and Incident Management
system (SEIM).

Analysts inspect alerts and close or promote to an event.

Triage process is manual, time-consuming, and detracts from
in-depth investigations.



Proposed Solution

Prioritize alerts using supervised machine learning.

Efficiently use unlabeled alerts via active learning. Do we
outperform passive learning?

Demonstrate effectiveness of active learning on large,
real-world dataset of cyber security alerts.



Operational Challenges

As more sensor feeds are added, more data is available and
the flow of alerts increases.

Asymmetric nature of cyber defense.



Hypothesis

Automatic alert prioritization would benefit analysts.

Crucial alerts would not be missed.

More time for in-depth investigations

Reduce time gap betweeen event and response, potentially
mitigating impact.



Motivating Active Learning

Challenge: supervised learning requires labeled data.

Potentially expensive in terms of time and cost.

Proposed solution: active learning

Query analysts for labels on alerts predicted to best train
models.

Desired Result: need fewer labeled training examples than
passive learning.

Match or beat accuracy of passive learning with fewer labeled
instances.



Related Work

Literature review suggests that active learning theory is well
established.

Also indicates that the application of active learning to
real-world problems is in its infancy

Relatively small number of papers employing active learning in
cyber security settings



Datasets

Lack of publically available datasets relevant to cyber security

Many papers present analyses on the KDD-CUP’99 dataset,
which has known issues:

High redundancy hinders generalization.
Not sufficiently challenging as even the worst model attained
86% accuracy
Many attacks appearing in the dataset are no longer relevant.



Aladin: Active Learning of Anomalies to Detect Intrusions

Real-world application of active learning to network traffic
classification, anomaly detection, and malware detection.

Queries for labels to discover new categories and improve
accuracy.

Results:

Reduced the number of queries required to attain acceptable
accuracy and coverage.
Discovered new trojan missed by rule-based methods



Detecting Adversarial Advertisements in the Wild

Used active learning to discover real-world, adversarial
advertisements (e.g., counterfeit goods)

Only needed a few dozen queries to build accurate
one-vs-good models



Data Collection - Feature Extraction

An alert in the SEIM contains both metadata and the raw
alert text.

The metadata contains information about where the alert
came from, when it was created, etc.

Named-entity recognition (NER) is used to extract, e.g.,
filenames and URLs

Latent Dirichlet Allocation used to extract topic-based
features.

Used NER output as vocabulary to build model



Data Collection - Implicit Label Extraction

Explicit labels obtained from active learning queries.

Implicit labels based on alert life-cycle.

Augment explicit labels
Allow us to build models before obtaining any explicit labels
(i.e., bootstrapping)
Sample implicit labels: False Positive, Promoted False Positive,
Promoted, and Incident
Mapped all labels to Closed or Promoted to allow binary
classification



Tested Models

Linear methods

Linear Support Vector Machine (SVM)
Logistic Regression
Linear Discriminant Analysis (LDA)
Näıve Bayes

Non-linear methods

SVM with Radial Basis Function (RBF) Kernel
k-Nearest Neighbors (kNN)
Quadratic Discriminant Analysis (QDA)
Multilayer Perceptron (MLP)
Random Forest



Active Learning

Only small percentage of data is labeled in many real-world
applications.

Obtaining labels can be costly in time and effort, generally
requiring human annotator.

Active learning tries to maximize utility of labeled data.

Learner can match or beat the performance obtained via
passive learning with less training data if it can choose the
data from which it learns.



Example

(a) Toy Dataset (b) Passive Learning

(c) Active Learning (d) Full Learning

Figure: Passive vs. Active Learning on a Toy Dataset.



Query Frameworks

These are common settings in which active learning is applied.

Query Synthesis
Learner allowed to query any point in input space
Synthesized points may be nonsensical (e.g., digit recognition)

Selective Sampling
Instances arrive sequentially.
Learner chooses to query or discard.
Typically only applicable to streaming settings

Pool-based Sampling
Set of labeled instances and pool of unlabeled instances
Learner allowed to look at all instances in unlabeled pool to
select optimal query
Most common framework in practical settings



Query Strategies

A query strategy identifies the points to label.

Random Sampling
No info about input space or model used to select instances
(passive)
Baseline for comparison (not a type of active learning)
Sometimes outperforms active learning

Uncertainty Sampling
Selects instances the model is least certain how to classify
Getting labels for least confident points may yield more info
Involves estimating distance to decision boundary
Initial model trained on little data. May bias sampling.

Other Strategies
Hypothesis-space search
Expected error or variance reduction
Exploiting structure in data



Types of Uncertainty Sampling

Least Confident
Queries instance whose predicted output is least confident

Query Instance ← argmax
x

[
1− Pθ(ŷ |x)

]
Margin

Margin is difference between two most likely predictions.
Queries instance with smallest margin

Query Instance ← argmax
x

[
Pθ(ŷ2|x)− Pθ(ŷ1|x)

]
Entropy

Entropy is a measure of average information content.
Queries instance with highest entropy

Query Instance ← argmax
x

[
−
∑

y Pθ(y |x)log
(
Pθ(y |x)

)]



Experimental Results

8905 alerts

1436 promoted (approximately 16%)

scikit-learn used for all models except MLP (PyBrain)



Baseline Performance

Used class-averaged accuracy (CAA) as evaluation metric

Can mitigate effects of class skew

3 runs of 10-fold stratified cross-validation

Best model: random forest using 100 base decision trees

Wilcoxon signed-rank test with α = 0.05 confirmed statistical
significance



Baseline Performance

Method average CAA (SD)
L

in
ea

r
LDA 0.774 (0.019)

Näıve Bayes 0.684 (0.016)

Linear SVM 0.585 (0.015)

Logistic Regression 0.556 (0.014)

N
on

lin
ea

r

Random Forest 0.814 (0.020)

QDA 0.753 (0.074)

MLP 0.560 (0.021)

SVM w/ RBF 0.516 (0.007)

kNN 0.457 (0.014)



Active Learning Performance

Pool-based sampling

Variation on 10-fold stratified cross-validation

10% of data in training folds used to build initial model
Active learning strategies sample from remaining 90%.
Per iteration of active learning

Query 50 instances.
Retrain model and evaluate against test fold.

Repeat 10x for every fold.

Plot on next page shows average over 100 iterations. (10
folds x 10 initial models)



Active Learning Performance
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Approaches baseline performance using only 30% of the data



Deployment to Enterprise Security

Integrate ranking model into SEIM to automatically prioritize
alerts for analysts

Batch processing (perform at off-peak times)

Rebuild model using all labeled alerts.
Relabel open alerts.
Periodically revisit closed alerts.

Near real-time (processing new and modified alerts)

Extract features.
Predict label.
Insert into prioritized alert list.

Query interface for SEIM
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