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Background 

 Equilibrium equations: 𝑀𝑢 + 𝐶𝑢 + 𝐾𝑢 = 𝑓 

Special Cases 

‒ Statics: 𝐾𝑢 = 𝑓 

‒ Implicit dynamics: 𝑎1𝑀 + 𝑎2𝐶 + 𝐾 𝑢 = 𝑓 ,    𝑎1 > 0, 𝑎2 > 0 

‒ Modal analysis: 𝐾 − 𝜎𝑀 𝑢 = 𝜆𝑀𝑢,   𝜎 ≤ 0 

‒ Helmholtz: acoustic, structural or structural-acoustic 
frequency domain analysis, 𝑢 = 𝑒𝑖𝜔𝑡𝑥, 𝑓 = 𝑒𝑖𝜔𝑡𝑏 ⇒  

(𝐾 + 𝑖𝜔𝐶 − 𝜔2𝑀)𝑥 = 𝑏 

Q: What’s so different about Helmholtz problems? 
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Background 

 Helmholtz problem matrix: 𝐴 = 𝐾 + 𝑖𝜔𝐶 − 𝜔2𝑀 
 𝐴 may be positive definite, indefinite, or singular 

 Solvers and theory for Helmholtz problems much less mature 

 Naïve application of non-Helmholtz solvers can be problematic 

 Solution options: 
 Sparse direct solvers: 

 Impractical for larger 3D problems - O(n2) operations, O(n4/3) memory 

 Multigrid: 

 Shifted Laplacian, … 

 Domain Decomposition: 

 Iterative substructuring (FETI-DPH, BDDC) 

 Optimized Schwarz 

 Overlapping Schwarz 
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Background 

 Solver Basics: 𝐴𝑥 = 𝑏 
 Preconditioner:  

 𝑀−1𝐴𝑥 = 𝑀−1𝑏 (left preconditioning) 

 𝑥 = 𝑀−1𝑦 ⇒ 𝐴𝑀−1𝑦 = 𝑏 (right preconditioning) 

 Goals: preconditioned system easier to solve, but not too costly 

 Krylov Method: 

 Conjugate gradients, GMRES, BiCGSTAB, … 

 Used to solve preconditioned system 

 Domain Decomposition Basics: 
 Partition domain Ω into smaller subdomains Ω1, ⋯ , Ω𝑁 

 Construct and solve global (coarse) problem(s) 

 Construct and solve local problems 

 Preconditioner combines local and global solutions 
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Background 

 𝑀−1𝑟 =  Φ𝑐(Φ𝑐
𝐻𝐴Φ𝑐)

−1Φ𝑐
𝐻𝑟 +  𝑅𝑖

𝑇(𝑅𝑖
𝑁
𝑖=1 𝐴𝑅𝑖

𝑇)−1𝑅𝑖𝑟 
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• elements partitioned into subdomains 

• one or more subdomains assigned to 

each processor 

• multilevel extensions straightforward 

• local or global problems may be 

solved approximately 

• multiplicative (Gauss-Seidel) variants 

• hybrid overlapping Schwarz/iterative 

substructuring can be very effective* 

* Int. J. Numer. Meth. Engng (2010) 82, 157-183 

global local 



Background 
 Preconditioner Challenges: 𝐴 = 𝐾 + 𝑖𝜔𝐶 − 𝜔2𝑀 

 Local or global problems may be singular or nearly singular (resonance) 

 Potentially very slow convergence of iterative methods 

 Artificial Damping: 
 Several options exist: absorbing BCs, shifted Laplacian, PML layers, … 

 Our approach: introduce structural damping* 

 Construct preconditioner for damped linear system 

1 + 𝑖𝛾 𝐾 + 𝑖𝜔𝐶 − 𝜔2𝑀 𝑥 = 𝑏 

 Damping factor 𝜁 = 𝛾 2  
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 

 /2 
Connection to shifted Laplacian for 𝐶 = 0: 

𝐾 − 𝜔2
1

1 + 𝑖𝛾
𝑀 𝑥 = 𝑏/(1 + 𝑖𝛾) 

* Roy R. Craig, Jr., Structural Dynamics, Wiley (1981) 101-103  



Fixed Frequency Problems 

 Problem: solve 𝐴𝑥𝑘 = 𝑏𝑘  for 𝑘 = 1,⋯ ,M 

 Example: source identification at fixed frequency 

 Approach: reuse Krylov subspaces to accelerate convergence* 

 Starting Point: subspaces stored in Φ 

 𝑚𝑖𝑛𝑞 𝐴Φ𝑞 − 𝑟 2, 𝐴Φ = 𝑄𝑅 ⇒ 𝑅𝑞 = 𝑄𝐻𝑟 

 Preconditioner: 𝑧1 = 𝑀−1𝑟,   𝑟1= 𝑟 − 𝐴𝑧1, 𝑞 = 𝑅−1𝑄𝐻𝑟1, 
𝑧2 = Φ𝑞, 𝑧 = 𝑧1 + 𝑧2 = 𝑀 −1𝑟 

 Note: Initial correction made so 𝑄𝐻𝑏𝑘 = 0. Further, we have 
after each iteration (𝐴Φ)𝐻𝑟 = 0 
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* Comput. Methods Appl. Mech. Engrg. (1994) 117, 195-209 



Fixed Frequency Problems 

 Example: acoustic source identification (ka  15) 
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Basic Reuse vectors 

Total iterations 2399 147 

Total solve time 327 sec 49 sec 

Time/iteration 0.13 sec 0.27 sec 

Analysis time 5:35 min 1:01 min 

Note: Related direct field acoustic test 

(DFAT) model with multiple element types 

(tets, hexes, shells, beams), non-conforming 

structural-acoustic interface, and 32K+ 

constraint equations solved on 80 

processors. 



Variable Frequency Problems 

 Problem: solve 𝐴(𝜔𝑘)𝑥𝑘 = 𝑏 for 𝑘 = 1,⋯ ,M 

 Example: frequency sweep 

 Approach: reuse previous solutions for initial guess* 

 Starting Point: 

 𝑚𝑖𝑛𝑞 𝐴Ψ𝑞 − 𝑟 2, 𝐴Ψ = 𝑄𝑅 ⇒ 𝑅𝑞 = 𝑄𝐻𝑟 ⇒ 𝑥𝑖𝑛𝑖𝑡 = Ψ𝑅−1𝑄𝐻𝑟 

 Preconditioner: Standard 𝑀−1, but can be combined with reuse 
of Krylov subspaces 

 Note: Initial correction made so 𝑄𝐻𝑏𝑘 = 0. Further, we have 
after each iteration (𝐴Ψ)𝐻𝑟 = 0 
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* Comput. Methods Appl. Mech. Engrg. (1998) 163, 193-204 



Variable Frequency Problems 
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Example: acoustic source identification for aerospace testing 



Higher order elements 

 Element formulation: 
 H1-conforming hierarchical p-FEM shape functions* 

 Integrated Legendre polynomials 

 Internal element variables statically condensed 

 vertex, edge and face unknowns remain 

 Implementation: 
 based on hp3d code from UT Austin (Demkowicz et al.) 

 Other options possible, but very convenient 

 Hex8 or Tet4 mesh ⇒ internal edge-face-volume data structures ⇒ 
dial in polynomial degree on the fly 

 parallel assembly and solution 

 research code for now 

 

 

 

 

 

 

 Conventional weight options: 
 Cardinality 

 PDE coefficient (if known) 

 Diagonal stiffness 
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* Finite Elements in Analysis and Design (2010) 474-486 



Higher order elements 

 Waveguide example: 

 sound speed = 343, f = 3430 Hz, = 0.1, ka = 2(20) 

 

 

 

 

 

 FE meshes: 
 single element along transverse directions 

 propagation direction: /h = 10 for p = 1, /h = 5 for p = 2, … 

 mimics same total number of dofs in 3D meshes for different p 

 trapezoidal elements to model non-mesh-aligned wave propagation 
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air 

propagation direction 

absorbing 
BC 

planar 
input 

a = 2 



Higher order elements 

 Linear elements: significant dispersion (phase) & amplitude errors 
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Higher order elements 
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same dof density  in 
propagation direction for 
all p  fair comparison 
for different p. 



Higher order elements 
 Preconditioning Strategy 

 goal: reduce memory and computations 
 local solves associated with edges and vertices 
 global solve for p = 1 sub-block (readily available) 
 Closely related strategy for Poisson by Schoberl et al.* 
 Symmetric Gauss-Seidel implementation 
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* IMA Journal of Numerical Analysis (2008) 28, 1-24 

edge solves 
(forward) 

edge solves 
(backward) 

vertex solves 
(forward) 

vertex solves 
(backward) 

global (coarse) solve 



Higher order elements 
 Laplacian, 3x3x3 hex cube model results: 
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p iterations cond # memory 

ratio 

2 6 1.09 0.22 

3 5 1.06 0.42 

4 6 1.09 0.54 

5 6 1.10 0.62 

6 7 1.13 0.67 

Notes: solver tolerance = 10-8, memory ratio = ratio of 
local factorization memory to matrix storage memory  



Higher order elements 
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Absorbing BC, Neumann other 
5 faces, center point source, 
solver tolerance = 10-8 

Direct Solver, f = 343 Hz, /h = 10 

p iterations init 

time 

solve 

time 

memory 

ratio 

2 1 16.3 0.04 3.19 

4 1 55.7 0.52 3.21 

6 1 528 1.5 3.21 

Iterative Solver, f = 343 Hz 

2 7 1.4 0.32 0.66 

4 7 8.5 5.9 1.19 

6 7 79.9 34.3 1.55 

Iterative Solver, f = 686, /h = 5 

2 21 1.4 1.7 0.66 

4 20 10.4 17.0 1.19 

6 19 81.9 92.7 1.55 



Closing Remarks 
 Domain decomposition solver promising: 

 Artificial structural damping to address indefiniteness issues 
 Reuse of Krylov subspaces and previous solutions can noticeably 

accelerate convergence 
 Inexact solvers (e.g. use of single precision) can reduce both solution 

times and memory 
 Accommodates complex models with multiple element types & 

constraints, but not end of story 

 Solver for Higher Order Elements: 

 Numerical results practically independent of polynomial degree 

 Very competitive with direct solvers for /h not too small  

 Investigate performance as inexact subdomain solver 

 Investigate enriched coarse spaces for smaller /h 

 Additional memory savings also possible 
19 



Extra Slides  
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p = 4 mesh 



Variable Frequency Problems 
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Helmholtz Solver Overview  
 Background:  

 In final year of research project begun in FY12 

 New solver in code base and tested nightly (beta release) 

 Additional development and testing ongoing 

 Some Details: 

 Frequency domain analysis: 
– acoustic and coupled structural-acoustic problems 

– models with wide variety of element types 

– models with large numbers of constraint equations 

 Initial Applications: 
– acoustic inverse problems (source identification) 

– direct field acoustic test analysis for structural-acoustic model 
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