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Background h) =,

= Equilibrium equations: Mii + Cu + Ku = f

Special Cases

— Statics: Ku = f
— Implicit dynamics: (a;M + a,C + K)u=f, a; >0,a, >0
— Modal analysis: (K —oM)u = AMu, ¢ <0

— Helmholtz: acoustic, structural or structural-acoustic
frequency domain analysis, u = e'“'x, f = e'®'h =
(K + iwC — w*M)x = b
Q: What's so different about Helmholtz problems?




Background h) =,

= Helmholtz problem matrix: A = K + iwC — w*M
= A may be positive definite, indefinite, or singular
= Solvers and theory for Helmholtz problems much less mature
= Naive application of non-Helmholtz solvers can be problematic

= Solution options:
= Sparse direct solvers:
= |mpractical for larger 3D problems - O(n?) operations, O(n*?3) memory
= Multigrid:
= Shifted Laplacian, ...
= Domain Decomposition:
" |terative substructuring (FETI-DPH, BDDC)
= Optimized Schwarz
= Overlapping Schwarz
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Background )

= Solver Basics: Ax = b
= Preconditioner:
= M~1Ax = M~1b (left preconditioning)
= x = M 1y > AM~1y = b (right preconditioning)
= Goals: preconditioned system easier to solve, but not too costly
= Krylov Method:
= Conjugate gradients, GMRES, BiCGSTAB, ...
= Used to solve preconditioned system

= Domain Decomposition Basics:
= Partition domain () into smaller subdomains Q, -+, Qy
= Construct and solve global (coarse) problem(s)
= Construct and solve local problems
= Preconditioner combines local and global solutions




Background h) =,
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 elements partitioned into subdomains

» one or more subdomains assigned to
each processor
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» multilevel extensions straightforward
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* Int. J. Numer. Meth. Engng (2010) 82, 157-183 6




Background h) =,

= Preconditioner Challenges: A = K + iwC — w*M
= Local or global problems may be singular or nearly singular (resonance)
= Potentially very slow convergence of iterative methods

= Artificial Damping:
= Several options exist: absorbing BCs, shifted Laplacian, PML layers, ...

= Qur approach: introduce structural damping*

= Construct preconditioner for damped linear system
((1+iy)K +iwC —w*M)x =b
= Damping factor{ =y /2
A

Connection to shifted Laplacian for C = 0:

C /2 1 |
R (K—a) <1+iy>M>x=b/(1+W)

)
* Roy R. Craig, Jr., Structural Dynamics, Wiley (1981) 101-103
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Fixed Frequency Problems @)

" Problem:solve Ax;,, = by fork=1,---,M
= Example: source identification at fixed frequency
= Approach: reuse Krylov subspaces to accelerate convergence*
= Starting Point: subspaces stored in ®
ming||A®q —rl|l,, A® = QR = Rq =Q"r
= Preconditioner:z;, = M~ !r, n=r — Az, q = R71Q"r,
Z, =®q,z=2,+2z, =M 'r

= Note: Initial correction made so Q¥ b, = 0. Further, we have
after each iteration (A®)"r = 0

* Comput. Methods Appl. Mech. Engrg. (1994) 117, 195-209 o




Fixed Frequency Problems @z,

= Example: acoustic source identification (ka = 15)

Basic Reuse vectors
Total iterations 2399 147
Total solve time | 327 sec 49 sec
Time/iteration 0.13 sec 0.27 sec
Analysis time 5:35 min 1:01 min

Note: Related direct field acoustic test
(DFAT) model with multiple element types
(tets, hexes, shells, beams), non-conforming
structural-acoustic interface, and 32K+
constraint equations solved on 80
Processors.




Variable Frequency Problems [@J:.

* Problem: solve A(wy)x;, = bfork=1,---,M
= Example: frequency sweep
= Approach: reuse previous solutions for initial guess*
= Starting Point:
mingl|A¥q —rll;, AY = QR = Rq = Q"r = xype = YR1Qr
= Preconditioner: Standard M~1, but can be combined with reuse

of Krylov subspaces

= Note: Initial correction made so Q' b,, = 0. Further, we have
after each iteration (AY)"r =0

* Comput. Methods Appl. Mech. Engrg. (1998) 163, 193-204
10




Variable Frequency Problems [@J:.

Example: acoustic source identification for aerospace testing

Acoustic analysis (40-4000 Hz Frequency Sweep, A f = 6.25)
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5 500 —©— GDSW-prevSols(40), 55:11
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—%— GDSW-prevSols(40) single, 49:14
300 — Nonoverlapping, 2:29:39, failed T
—— AMG, 1:37:56
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Higher order elements UL

= Element formulation:

Hl-conforming hierarchical p-FEM shape functions*
" Integrated Legendre polynomials

Internal element variables statically condensed
= vertex, edge and face unknowns remain

= |mplementation:

based on hp3d code from UT Austin (Demkowicz et al.)
Other options possible, but very convenient

Hex8 or Tet4 mesh = internal edge-face-volume data structures =
dial in polynomial degree on the fly

parallel assembly and solution
research code for now

* Finite Elements in Analysis and Design (2010) 474-486
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Higher order elements ) 5.

= Waveguide example:
" sound speed =343, f=3430Hz, A=0.1, ka = 2rt(20)

propagation direction

>

planar absorbing
input air BC

= FE meshes:

= single element along transverse directions
= propagation direction: A/h=10forp=1,A/h=5forp=2, ...
" mimics same total number of dofs in 3D meshes for different p

trapezoidal elements to model non-mesh-aligned wave propagation
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Higher order elements ) 5.

= Linear elements: significant dispersion (phase) & amplitude errors




Higher order elements ) 5.
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Higher order elements

= Preconditioning Strategy

= goal: reduce memory and computations
local solves associated with edges and vertices
global solve for p = 1 sub-block (readily available)
Closely related strategy for Poisson by Schoberl et al.*
Symmetric Gauss-Seidel implementation

edge solves @ @ -edgesolves
(forward) (backward)
vertex solves
@ o vertex solves
(forward)

(backward)

@ slobal (coarse) solve

* IMA Journal of Numerical Analysis (2008) 28, 1-24
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Higher order elements ) 2.

= Laplacian, 3x3x3 hex cube model results:

P iterations cond # memory
ratio

2 6 1.09 0.22

3 5 1.06 0.42

4 6 1.09 0.54

5 6 1.10 0.62

6 7 1.13 0.67

Notes: solver tolerance = 108, memory ratio = ratio of
local factorization memory to matrix storage memory
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Higher order elements ) .

Direct Solver, f =343 Hz, A/h =10
p | iterations init solve memory
time time ratio
2 1 16.3 0.04 3.19
55.7 0.52 3.21
6 1 528 1.5 3.21
Iterative Solver, f = 343 Hz
2 7 1.4 0.32 0.66
’ 8.5 .9 1.19 Absorbing BC, Neumann other
6 ! 79.9 34.3 1.55 5 faces, center point source,
lterative Solver, f = 686, A/h =5 solver tolerance = 10
2 21 1.4 1.7 0.66
20 10.4 17.0 1.19
6 19 81.9 92.7 1.55
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Closing Remarks h) =,

= Domain decomposition solver promising:

= Artificial structural damping to address indefiniteness issues

= Reuse of Krylov subspaces and previous solutions can noticeably
accelerate convergence

= |nexact solvers (e.g. use of single precision) can reduce both solution
times and memory

= Accommodates complex models with multiple element types &
constraints, but not end of story

= Solver for Higher Order Elements:
= Numerical results practically independent of polynomial degree
= Very competitive with direct solvers for A/h not too small
= |nvestigate performance as inexact subdomain solver

= |nvestigate enriched coarse spaces for smaller A/h

Additional memory savings also possible
19
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Variable Frequency Problems [@J:.

Acoustic analysis (40-4000 Hz Frequency Sweep, A f = 6.25)
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Helmholtz Solver Overview

= Background:
= |n final year of research project begun in FY12
= New solver in code base and tested nightly (beta release)
= Additional development and testing ongoing

= Some Details:

= Frequency domain analysis:

— acoustic and coupled structural-acoustic problems
— models with wide variety of element types

— models with large numbers of constraint equations

= |nitial Applications:

— acoustic inverse problems (source identification)

— direct field acoustic test analysis for structural-acoustic model
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