

A Parallel Helmholtz Solver for Acoustics and Structural Acoustics

Clark R. Dohrmann

and

Timothy F. Walsh

Fall Meeting of the Acoustical Society of America

San Francisco, California

December 2-6, 2013

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- **Background**
 - Problem statement
 - Some challenges
 - Solver basics
- **Approach & Examples**
 - Structural damping
 - Solution reuse, inexact solvers
 - Fixed & variable frequency problems
- **Higher Order Elements**
 - Preconditioning strategy
 - Numerical results
- **Closing Remarks**

Background

- **Equilibrium equations:** $M\ddot{u} + C\dot{u} + Ku = f$

Special Cases

- **Statics:** $Ku = f$
- **Implicit dynamics:** $(a_1M + a_2C + K)u = \hat{f}, \quad a_1 > 0, a_2 > 0$
- **Modal analysis:** $(K - \sigma M)u = \lambda Mu, \quad \sigma \leq 0$
- **Helmholtz: acoustic, structural or structural-acoustic frequency domain analysis,** $u = e^{i\omega t}x, \quad f = e^{i\omega t}b \Rightarrow$
$$(K + i\omega C - \omega^2 M)x = b$$

Q: What's so different about Helmholtz problems?

Background

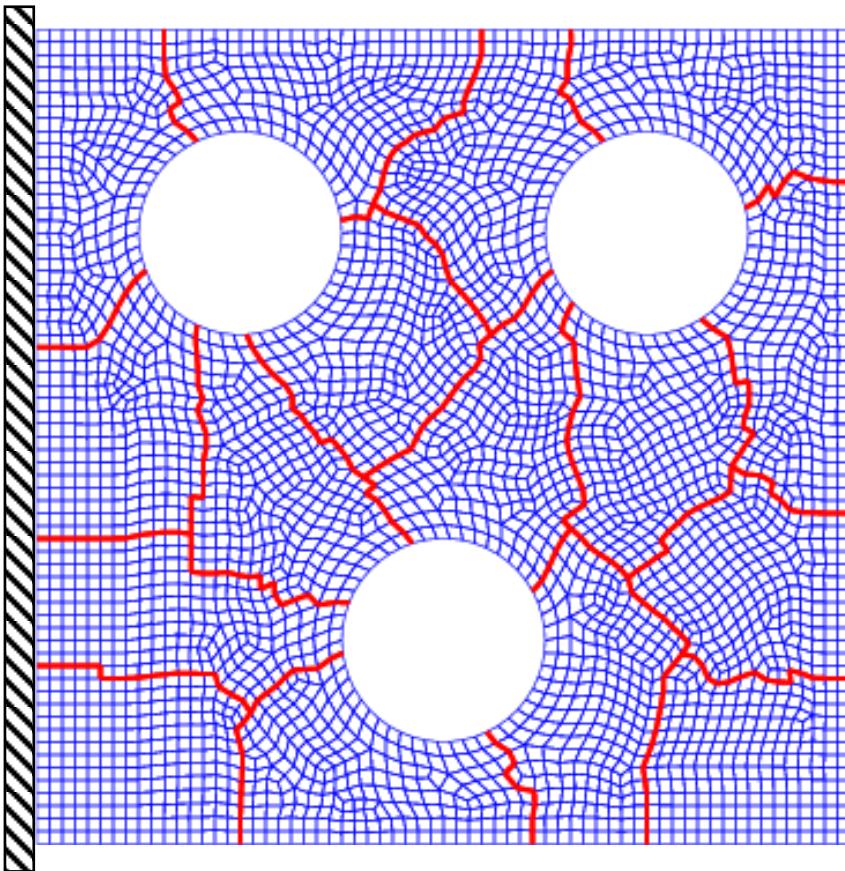
- **Helmholtz problem matrix:** $A = K + i\omega C - \omega^2 M$
 - A may be positive definite, indefinite, or singular
 - Solvers and theory for Helmholtz problems much less mature
 - Naïve application of non-Helmholtz solvers can be problematic
- **Solution options:**
 - Sparse direct solvers:
 - Impractical for larger 3D problems - $O(n^2)$ operations, $O(n^{4/3})$ memory
 - Multigrid:
 - Shifted Laplacian, ...
 - Domain Decomposition:
 - Iterative substructuring (FETI-DPH, BDDC)
 - Optimized Schwarz
 - **Overlapping Schwarz**

Background

- **Solver Basics: $Ax = b$**
 - Preconditioner:
 - $M^{-1}Ax = M^{-1}b$ (left preconditioning)
 - $x = M^{-1}y \Rightarrow AM^{-1}y = b$ (right preconditioning)
 - Goals: preconditioned system easier to solve, but not too costly
 - Krylov Method:
 - Conjugate gradients, GMRES, BiCGSTAB, ...
 - Used to solve preconditioned system
- **Domain Decomposition Basics:**
 - Partition domain Ω into smaller subdomains $\Omega_1, \dots, \Omega_N$
 - Construct and solve global (coarse) problem(s)
 - Construct and solve local problems
 - Preconditioner combines local and global solutions

Background

- $$M^{-1}r = \underbrace{\Phi_c(\Phi_c^H A \Phi_c)^{-1} \Phi_c^H r}_{\text{global}} + \underbrace{\sum_{i=1}^N R_i^T (R_i A R_i^T)^{-1} R_i r}_{\text{local}}$$



- elements partitioned into subdomains
- one or more subdomains assigned to each processor
- multilevel extensions straightforward
- local or global problems may be solved approximately
- multiplicative (Gauss-Seidel) variants
- hybrid overlapping Schwarz/iterative substructuring can be very effective*

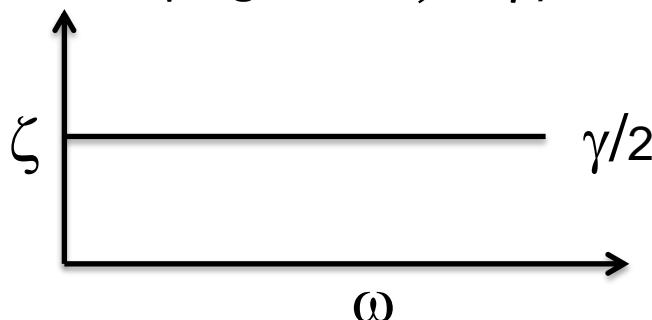
* Int. J. Numer. Meth. Engng (2010) 82, 157-183

Background

- **Preconditioner Challenges:** $A = K + i\omega C - \omega^2 M$
 - Local or global problems may be singular or nearly singular (resonance)
 - Potentially very slow convergence of iterative methods
- **Artificial Damping:**
 - Several options exist: absorbing BCs, shifted Laplacian, PML layers, ...
 - Our approach: introduce structural damping*
 - Construct preconditioner for damped linear system

$$((1 + i\gamma)K + i\omega C - \omega^2 M)x = b$$

- Damping factor $\zeta = \gamma/2$



Connection to shifted Laplacian for $C = 0$:

$$\left(K - \omega^2 \left(\frac{1}{1 + i\gamma} \right) M \right) x = b / (1 + i\gamma)$$

* Roy R. Craig, Jr., Structural Dynamics, Wiley (1981) 101-103

Fixed Frequency Problems

- **Problem:** solve $Ax_k = b_k$ for $k = 1, \dots, M$
- **Example:** source identification at fixed frequency
- **Approach:** reuse Krylov subspaces to accelerate convergence*
- **Starting Point:** subspaces stored in Φ

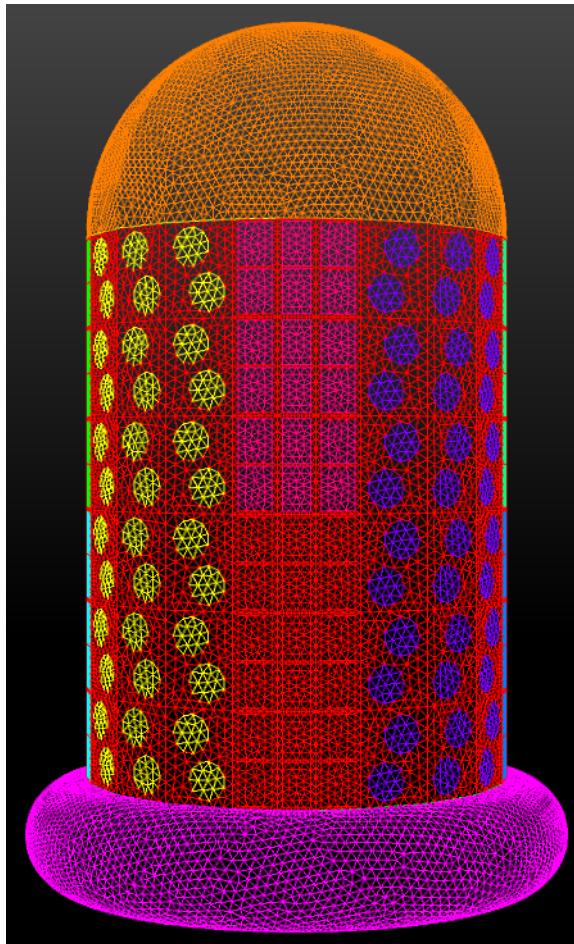
$$\min_q \|A\Phi q - r\|_2, \quad A\Phi = QR \Rightarrow Rq = Q^H r$$

- **Preconditioner:** $z_1 = M^{-1}r$, $r_1 = r - Az_1$, $q = R^{-1}Q^H r_1$,
 $z_2 = \Phi q$, $z = z_1 + z_2 = \widehat{M}^{-1}r$
- **Note:** Initial correction made so $Q^H b_k = 0$. Further, we have after each iteration $(A\Phi)^H r = 0$

* Comput. Methods Appl. Mech. Engrg. (1994) 117, 195-209

Fixed Frequency Problems

- **Example:** acoustic source identification ($ka \approx 15$)



	Basic	Reuse vectors
Total iterations	2399	147
Total solve time	327 sec	49 sec
Time/iteration	0.13 sec	0.27 sec
Analysis time	5:35 min	1:01 min

Note: Related direct field acoustic test (DFAT) model with multiple element types (tets, hexes, shells, beams), non-conforming structural-acoustic interface, and 32K+ constraint equations solved on 80 processors.

Variable Frequency Problems

- **Problem:** solve $A(\omega_k)x_k = b$ for $k = 1, \dots, M$
- **Example:** frequency sweep
- **Approach:** reuse previous solutions for initial guess*
- **Starting Point:**

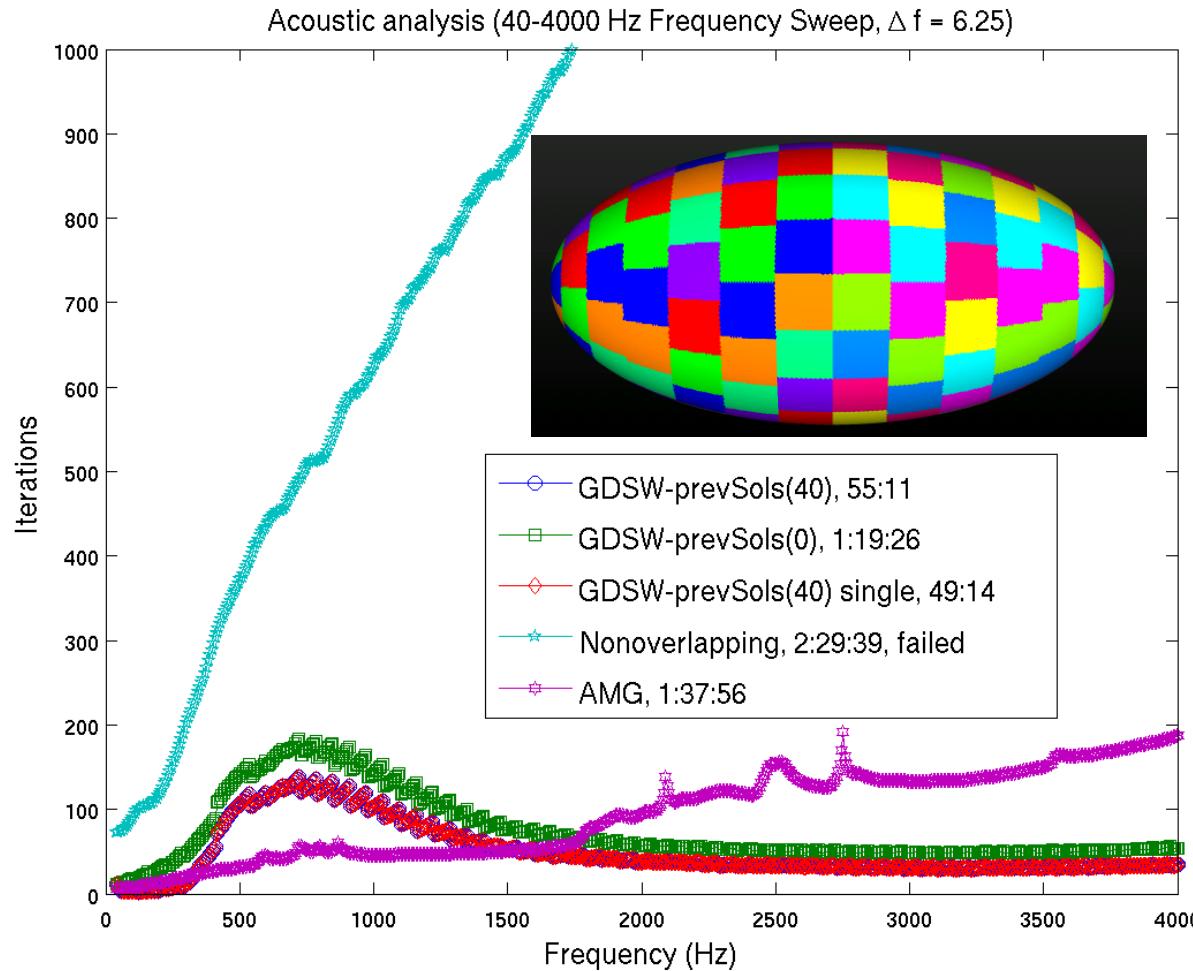
$$\min_q \|A\Psi q - r\|_2, \quad A\Psi = QR \Rightarrow Rq = Q^H r \Rightarrow x_{init} = \Psi R^{-1} Q^H r$$

- **Preconditioner:** Standard M^{-1} , but can be combined with reuse of Krylov subspaces
- **Note:** Initial correction made so $Q^H b_k = 0$. Further, we have after each iteration $(A\Psi)^H r = 0$

* Comput. Methods Appl. Mech. Engrg. (1998) 163, 193-204

Variable Frequency Problems

Example: acoustic source identification for aerospace testing



Higher order elements

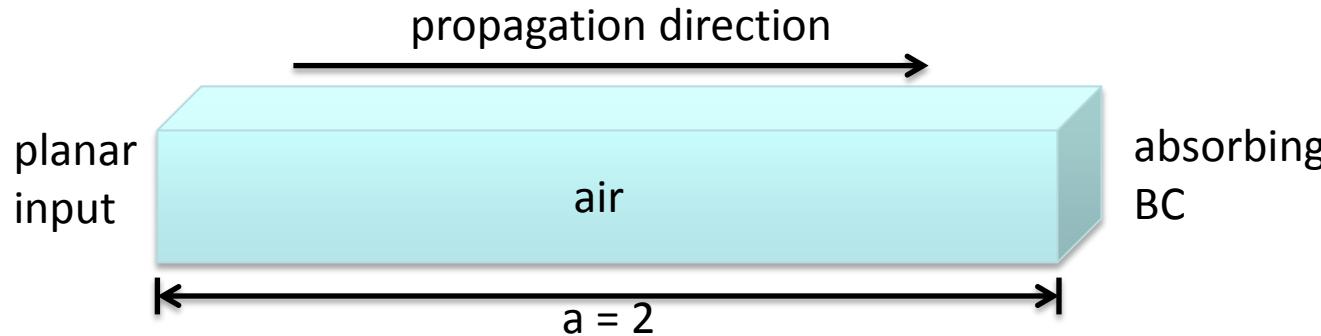
- Element formulation:
 - H^1 -conforming hierarchical p-FEM shape functions*
 - Integrated Legendre polynomials
 - Internal element variables statically condensed
 - vertex, edge and face unknowns remain
- Implementation:
 - based on hp3d code from UT Austin (Demkowicz et al.)
 - Other options possible, but very convenient
 - Hex8 or Tet4 mesh \Rightarrow internal edge-face-volume data structures \Rightarrow dial in polynomial degree on the fly
 - parallel assembly and solution
 - research code for now

* Finite Elements in Analysis and Design (2010) 474-486

Higher order elements

- Waveguide example:

- sound speed = 343, $f = 3430$ Hz, $\lambda = 0.1$, $ka = 2\pi(20)$

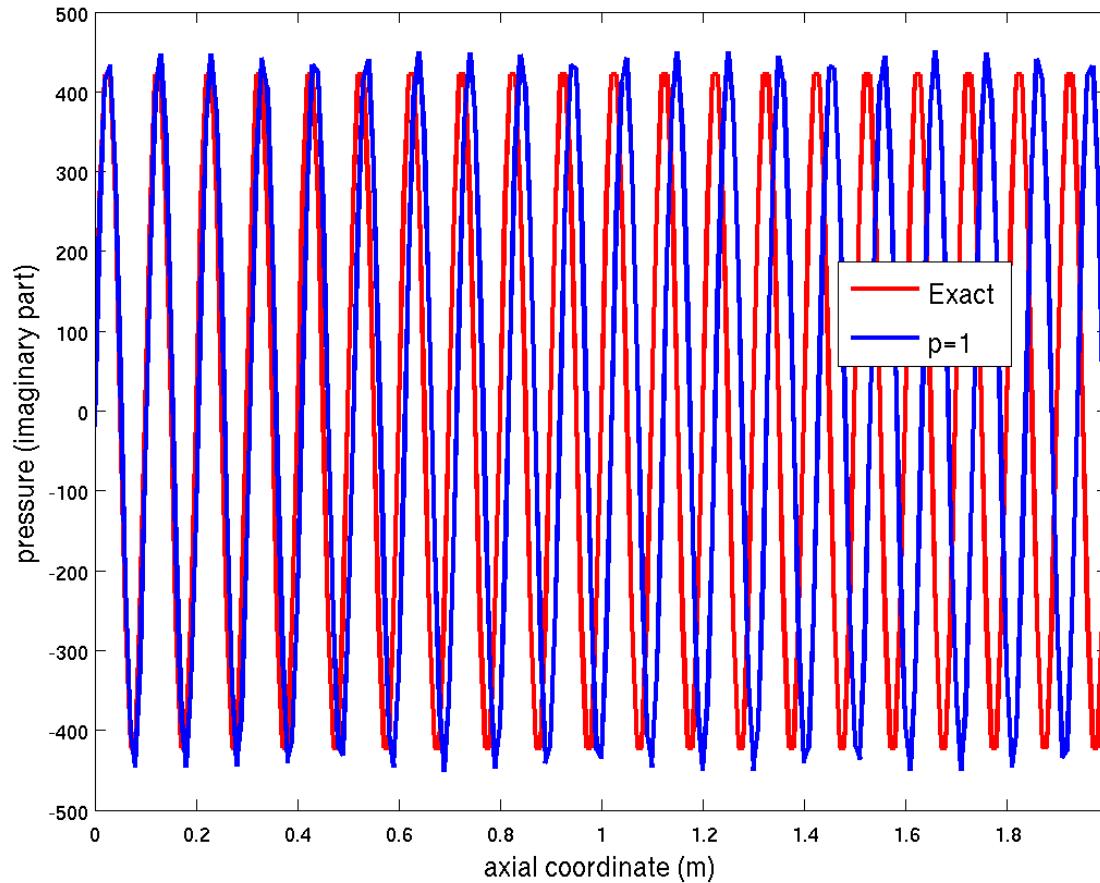


- FE meshes:

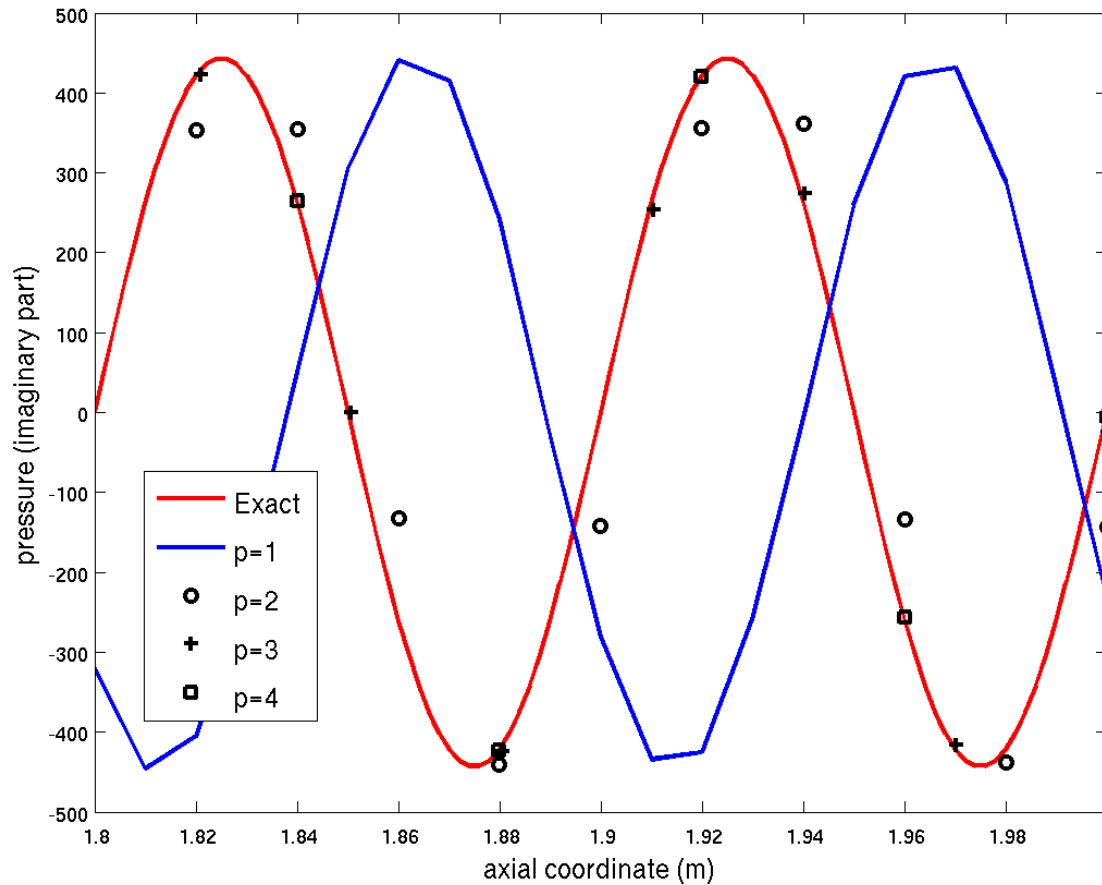
- single element along transverse directions
 - propagation direction: $\lambda/h = 10$ for $p = 1$, $\lambda/h = 5$ for $p = 2$, ...
 - mimics same total number of dofs in 3D meshes for different p
 - trapezoidal elements to model non-mesh-aligned wave propagation

Higher order elements

- Linear elements: significant dispersion (phase) & amplitude errors



Higher order elements

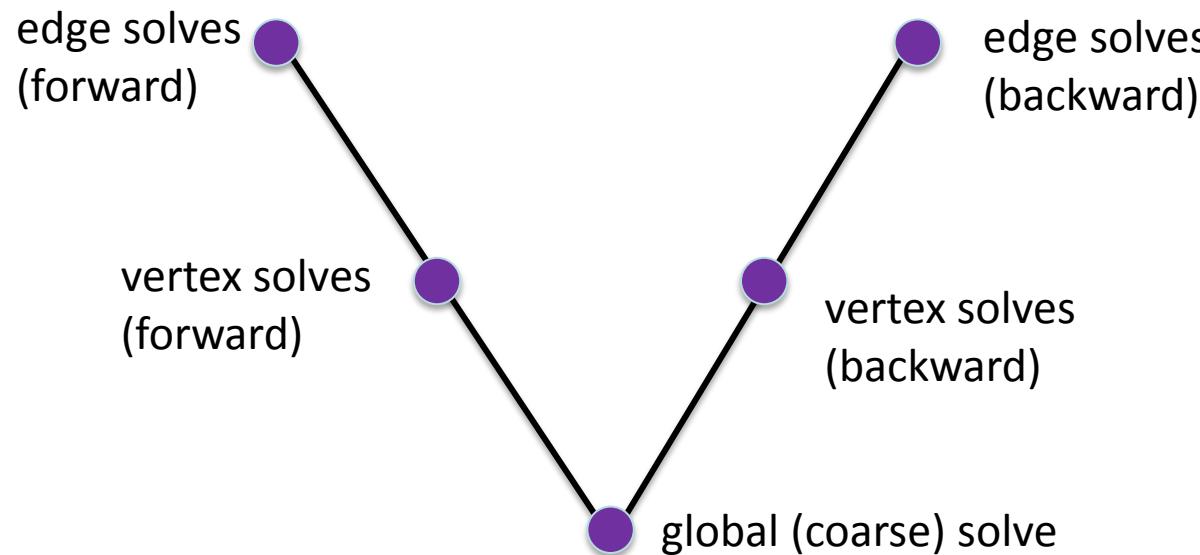


same dof density in propagation direction for all $p \Rightarrow$ fair comparison for different p .

$$\frac{|\phi - \phi_{hp}|}{|\phi_{hp}|} \leq A(p) \left[\left(\frac{hk}{2p} \right)^p + Ck \left(\frac{hk}{2p} \right)^{2p} \right]$$

Higher order elements

- Preconditioning Strategy
 - goal: reduce memory and computations
 - local solves associated with edges and vertices
 - global solve for $p = 1$ sub-block (readily available)
 - Closely related strategy for Poisson by Schoberl et al.*
 - Symmetric Gauss-Seidel implementation



* IMA Journal of Numerical Analysis (2008) 28, 1-24

Higher order elements

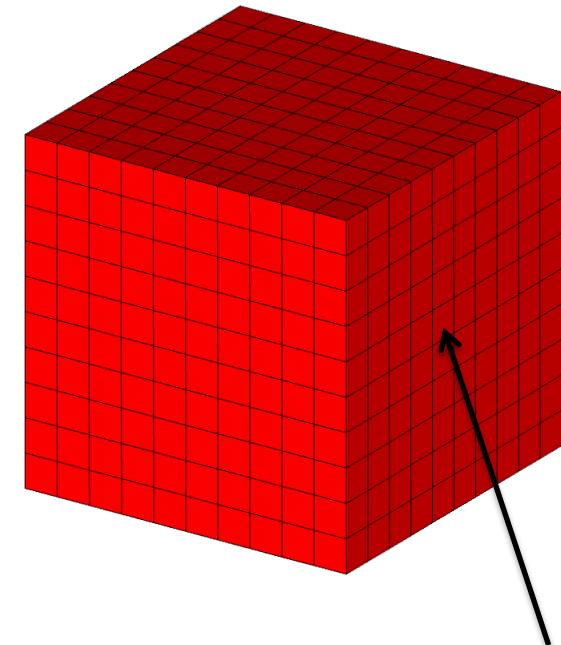
- Laplacian, 3x3x3 hex cube model results:

p	iterations	cond #	memory ratio
2	6	1.09	0.22
3	5	1.06	0.42
4	6	1.09	0.54
5	6	1.10	0.62
6	7	1.13	0.67

Notes: solver tolerance = 10^{-8} , memory ratio = ratio of local factorization memory to matrix storage memory

Higher order elements

Direct Solver, $f = 343$ Hz, $\lambda/h = 10$				
p	iterations	init time	solve time	memory ratio
2	1	16.3	0.04	3.19
4	1	55.7	0.52	3.21
6	1	528	1.5	3.21
Iterative Solver, $f = 343$ Hz				
p	iterations	init time	solve time	memory ratio
2	7	1.4	0.32	0.66
4	7	8.5	5.9	1.19
6	7	79.9	34.3	1.55
Iterative Solver, $f = 686$, $\lambda/h = 5$				
p	iterations	init time	solve time	memory ratio
2	21	1.4	1.7	0.66
4	20	10.4	17.0	1.19
6	19	81.9	92.7	1.55



Absorbing BC, Neumann other 5 faces, center point source, solver tolerance = 10^{-8}

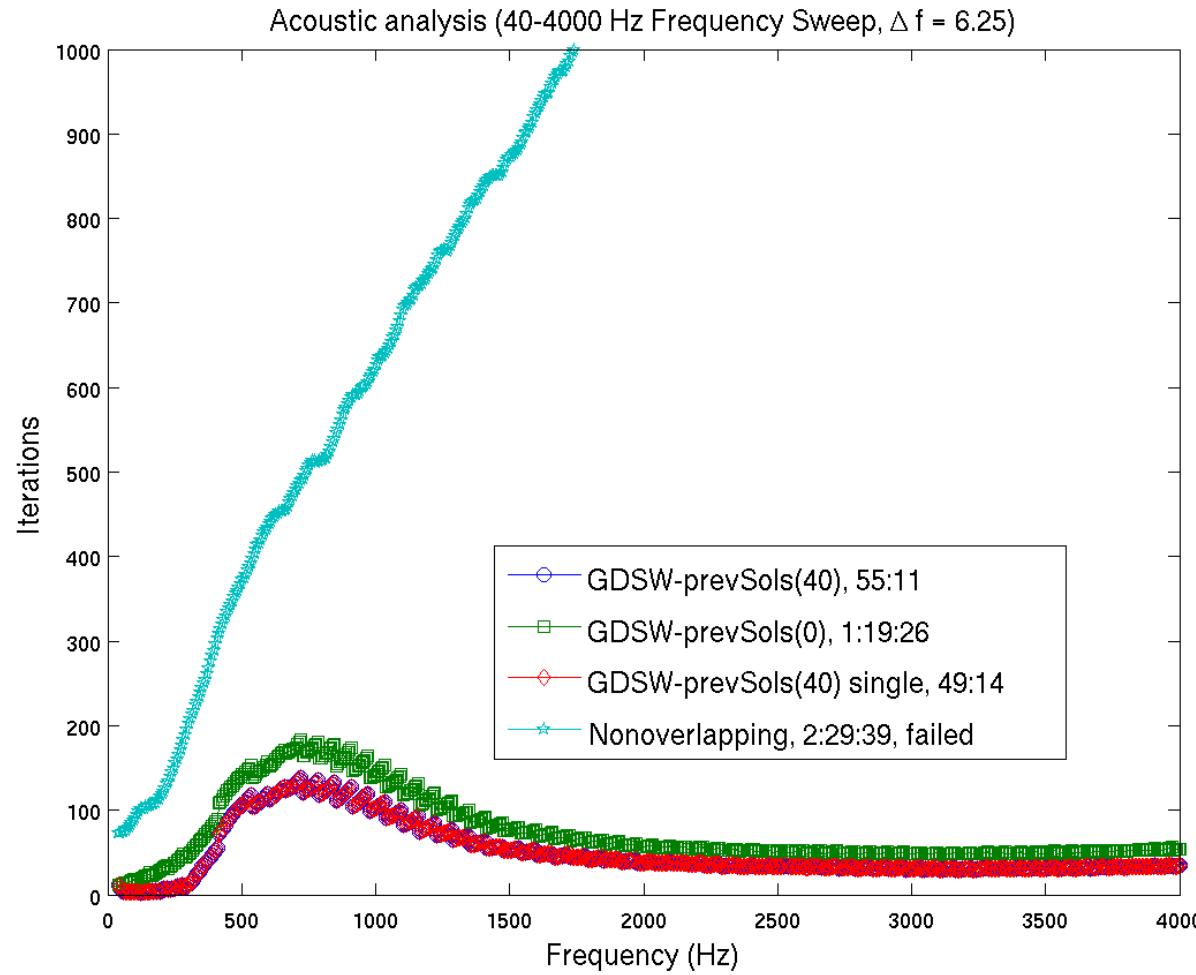
Closing Remarks

- **Domain decomposition solver promising:**
 - Artificial structural damping to address indefiniteness issues
 - Reuse of Krylov subspaces and previous solutions can noticeably accelerate convergence
 - Inexact solvers (e.g. use of single precision) can reduce both solution times and memory
 - Accommodates complex models with multiple element types & constraints, but not end of story
- **Solver for Higher Order Elements:**
 - Numerical results practically independent of polynomial degree
 - Very competitive with direct solvers for λ/h not too small
 - Investigate performance as inexact subdomain solver
 - Investigate enriched coarse spaces for smaller λ/h
 - Additional memory savings also possible

Extra Slides

$p = 4$ mesh

Variable Frequency Problems



Helmholtz Solver Overview

- **Background:**

- In final year of research project begun in FY12
- New solver in code base and tested nightly (beta release)
- Additional development and testing ongoing

- **Some Details:**

- Frequency domain analysis:
 - acoustic and coupled structural-acoustic problems
 - models with wide variety of element types
 - models with large numbers of constraint equations
- Initial Applications:
 - acoustic inverse problems (source identification)
 - direct field acoustic test analysis for structural-acoustic model