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A Glass‐Ceramic (GC) Is A Composite of 
Ceramic Crystals In A Glass Matrix

 Applications
 Thermal shock resistant, low thermal expansion cooktops
 Machinable ceramics
 Low dielectric loss low‐temperature cofired ceramic (LTCC) electronic packaging
 Solid oxide fuel cells (SOFCs) joining

 Advantages
 Improved processability vs. ceramic

 The processability of a glass with the properties of a ceramic

 Improved properties vs. glass
 Higher crack tolerance vs. a glass

 Tunable properties (e.g., CTE from 10‐20 E‐6 in/in/ºC
 Disadvantages

 Process sensitivity

3



Thermal Processing Determines The Glass‐
Ceramic Microstructure And Properties
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Nucleation/Crystallization of: Li3PO4
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Headley & Loehman, “Crystallization of a Glass‐Ceramic by Epitaxial 
Growth”, J Am Ceram Soc, 67 [9] 620‐25 (1984).

Processes like a glass       Properties like a ceramic

Thermal Processing Determines The
Microstructure & Properties Of The Glass‐Ceramic



All Three Silicate Phases Grow Epitaxially On 
The Lithium Orthophosphate

LP ‐ Lithium Orthophosphate (Li3PO4)
CR  ‐ Cristobalite (SiO2)
LS  ‐ Lithium Metasilicate (Li2SiO3)
LS2 ‐ Lithium Disilicate (Li2Si2O3)
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Headley & Loehman, “Crystallization of a Glass‐Ceramic by Epitaxial 
Growth”, J Am Ceram Soc, 67 [9] 620‐25 (1984).

Nucleation & Growth In
Li‐Modified SiO2 Glass

• Li2O Reacts w/P2O5
• Silicate Phases Nucleate & 
Grow On Li3PO4

• t‐T Profile Determines 
Microstructure & Properties

Nucleation & growth affected by:  time & temperature, pressure, chemistry



Controlled Devitrification Produces A 
Uniform Microstructure & Chemistry GC
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Cristobalite
Li2SiO3

Glassy phase with
Li‐silicate phase

The Glass‐Ceramic (GC) Microstructure Is 
Complex

40 m
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Objective: Characterize Li‐Silicate GC 
Processing‐Microstructure‐Property Relations
 Glass Microstructure, Chemistry, & Devitrification 

 Microstructure
 Scanning Electron Microscopy (SEM)

 Chemistry
 Energy Dispersive Spectroscopy (EDS)
 Electron Probe Microanalysis (EPMA)

 Crystallization
 Differential Scanning Calorimetry (DSC)
 High‐Temperature X‐Ray Diffraction (XRD)

 Glass Processing
 Wetting

 Glass‐Ceramic Properties
 Strength

 4‐Point Bend Tests
 Fractography

 Scanning Electron Microscopy (SEM)
 Toughness

 Single Edged V‐Notched Beam (SEVNB)
 Indentation Crack Length
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Interface Microstructure Can Vary 
Significantly From The Bulk Glass‐Ceramic
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GC

SS 20 m



Elemental Maps Show Cr Migration Into And 
P Depletion From The Glass‐Ceramic Interface
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Cr Redox Chemistry Significantly Affects   
The Microstructure At The GC Interface
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Cr Reduces P2O5.
Cr Significantly Changes The 
Viscosity Of The Glass.
Cr solubility depends on PO2.
• Darken & Gurry, Physical Chemistry of Metals, 
McGraw‐Hill, New York, 1953.

• Brow, “Oxidation States of Chromium Dissolved in 
Glass Determined by X‐ray Photoelectron 
Spectroscopy”, J Am Ceram Soc, 70 [6] C129‐131 
(1987).

• Khedim et al. “Redox‐Control Solubility of Chromium 
Oxide in Soda‐Silicate Melts”, J. Am. Ceram. Soc., 91 
[11] 3571–3579 (2008).

• Kido et al. “The effect of viscosity on the kinetics of 
redox reactions in highly viscous silicate liquids,” J 
Chem Phys. 136 [22] (2012). 

Cr

P



Elemental Mapping Shows Cr Migration Into 
And P Depletion From The Glass‐Ceramic

SEM EDS Elemental Map
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Cr2O3 Particles Surrounded By Fine Cr‐Fe 
Crystals Form In The Dense GC Region

10 mSS

GC

Cr2O3 13



A Dense Glass‐Ceramic Region Forms At The 
Stainless Steel Interface

100 m

GC

SS
20 m

GC

SS
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Nucleation & Silicate Crystal Growth Occurs 
On The  Glass (Preform) Surface

100 m

GC

100 m

GC

• Li2Si2O5 Crystals Form/Grow On Glass Surfaces
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Glass Preform Characteristics Affect 
Viscosity And Wetting
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T=986.0°C T=986.9°C T=987.4°C T=987.9°CT=980.2°C T=983.1°C

T=1002.6°C



Glass Chemistry And Properties Change 
With Crystallization Of The Silicate Phases
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Crystal
Product

Glass SiO2
Content Glass 

Viscosity

Cristobalite ↓ ↓
Li2SiO3 ↑ ↑



Differential Scanning Calorimetry (DSC) Shows 
Preform Processing Affects Devitrification
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High Temperature X‐Ray Diffraction (XRD) 
Was Used To Study Glass Devitrification
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The Transformation From An Amorphous 
Glass To A Glass‐Ceramic Is Complex

 Amorphous up to 600oC.
 Li2SiO3 crystallization between 600 and 740oC.
 Li2Si2O5 crystallization at 740oC.
 Li2Si2O5 becomes dominant crystalline phase at 840oC.
 At 980oC, Li2SiO3 disappears and Li2Si2O5 decreases.
 Reorientation of Li2Si2O5 to a preferred (040) at 980oC.
 On cooling to 840oC, Li2Si2O5 re‐crystallization and Cristobalite.
 Cristobalite peak increases on cooling to room temperature.
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Li2Si2O5 In The Glass Preform Does Not 
Completely Melt Before Cooling

25°C  

990°C – 1min scan  

480°C – 6min scan  
480°C – 6min scan  
480°C – 6min scan  
480°C – 6min scan  
480°C – 6min scan  
480°C – 6min scan  

480°C – 6min scan  
480°C – 3min scan  

75°C

• Li2Si2O5, Li3PO4 & Quartz present in all sintered glass preforms.
• Some Cristobalite present in some sintered glass preforms.
• No Cristobalite, more Quartz (High), & some Li4SiO4 in some 

sintered glass preforms.
• Incomplete Li2Si2O5 melting at 990oC.
• Orientation of Li2Si2O5 (040) on cooling.
• Li2Si2O5, quartz, Cristobalite, & glass in GC
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4‐Point Bend Strength Was Corrected To 
Account For The Non‐Ideal GC Bar Geometry
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Glass Bars Were Reflowed In Graphite 
Molds To Produce GC Bend Bars

Flexural Strength of Advanced Ceramics at 
Ambient Temperature  - ASTM C1161 (2008)

4-Point Bend Strength Was Measured 
On The “As-Formed” GC Bars

ଶ

 = Bend Strength
P = Load
F = Corner R Correction Factor
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As‐Formed Glass‐Ceramic Strength Varies 
With Thermal Processing/CTE
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Glass-Ceramic 4-Point Bend Strength 
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S Glass‐Ceramic With A CTE Of 15 Has The 
Highest Strength

Weibull Plot Of Glass-Ceramic Strength
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S Glass‐Ceramic And Glass Strength Are 
Comparable
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Weibull Plot Of Glass-Ceramic Strength Compared To Glass
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Glass‐Ceramic Bend Strength Decreases 
With Increasing Flaw Size

Low Strength High Strength

Fractography of GC S-17 Fracture Surfaces
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Glass‐Ceramic Bend Strength Decreases 
With Increasing Flaw Size

Low Strength High Strength

Fractography of GC S-15 Fracture Surfaces
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GC Fracture Toughness Was Measured Using 
A Single Edged V‐Notched Beam (SEVNB)
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A Sharp Tip Notch (r < 20m) Was Machined Into A Bend Bar



GC Toughness (KIC) & Hardness (HV) Were 
Determined From Vickers Indentation 
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Fracture Toughness: I, Direct 
Crack Measurements,” J Am 
Ceram Soc 64 [9] 633-8 (1981) 
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Glass‐Ceramics Are Tougher Than Glass
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Sample KIC
(MPa·m½)

Vickers 
Hardness 

GPa

Relative 
Humidity 

(%)

Measurement 
Method

Glass (typical) 0.7-0.8 --- ---

GC B-11 1.97 ± 0.05 --- 21 SEVNB

GC B-14 2.76 ± 0.16 --- 21 SEVNB

GC S-13 1.52 ± 0.26 4.61 ± 0.26 --- Indentation

GC S-14 1.79 ± 0.32 4.60 ± 0.17 --- Indentation
GC S-15 1.92 ± 0.22 4.18 ± 0.24 --- Indentation
GC S-17 1.40 ± 0.26 4.41 ± 0.59 --- Indentation



A Higher Toughness Glass‐Ceramic Requires 
A Higher Stress To Crack

Stress Structure/
Properties

Fracture 
Mechanics
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The Glass‐Ceramic Crystal Structure Gets 
Coarser With Increasing CTE
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Cracks Are Observed Throughout
The Glass‐Ceramic Microstructure
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S 13 S 14

S 15 S 17



Glass‐Ceramics Are More Crack Tolerant Than 
Glass Because Of Their Higher Toughness

Summary

 Strength
 GC S Is Comparable to Glass
 Long cracks in microstructure

 GC SB Is Higher Than Glass

 Hardness
 GC S Is Lower Than Glass

 Toughness
 GC Is 2‐3X Glass
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Surface Crystallization May Be Critical For 
GC Processing‐Microstructure‐Properties

Summary
 GC Chemistry

 P Depletion At GC Interface
 Depletion of Li3PO4 heterogeneous nucleation sites at GC interface

 Slight Cr Enrichment At GC Interface
 Decreases glass viscosity

 GC Microstructure In Bulk
 time‐Temp Controlled Nucleation/Growth per Headley & Loehman

 GC Microstructure At Interface
 Cr Redox Chemistry Related

 Dense glass region
 Cr2O3 particles
 Porosity (from gas and/or volume change on crystallization)

 Glass Preform (Processing) Related
 Li2Si2O5 surface crystals affect viscosity and microstructure.
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