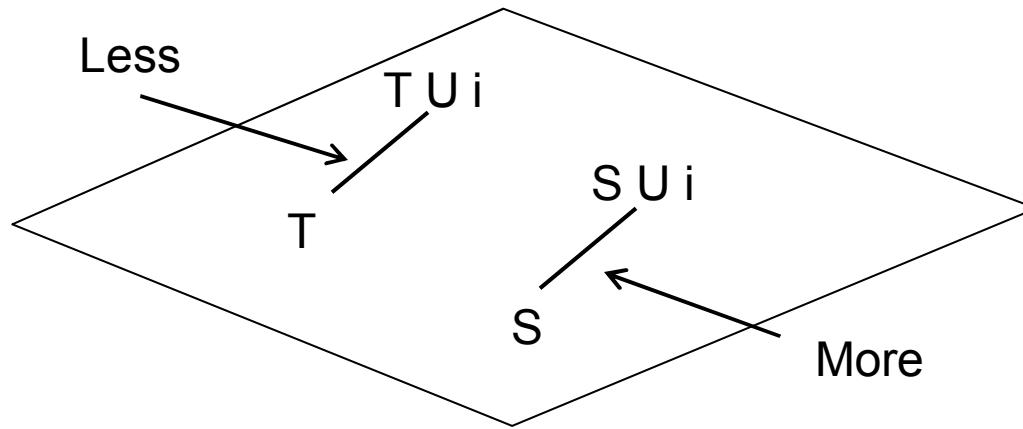


Is submodularity testable?

C. Seshadhri (Sandia National Labs, Livermore)

Joint work with
Jan Vondrak (IBM Almaden)

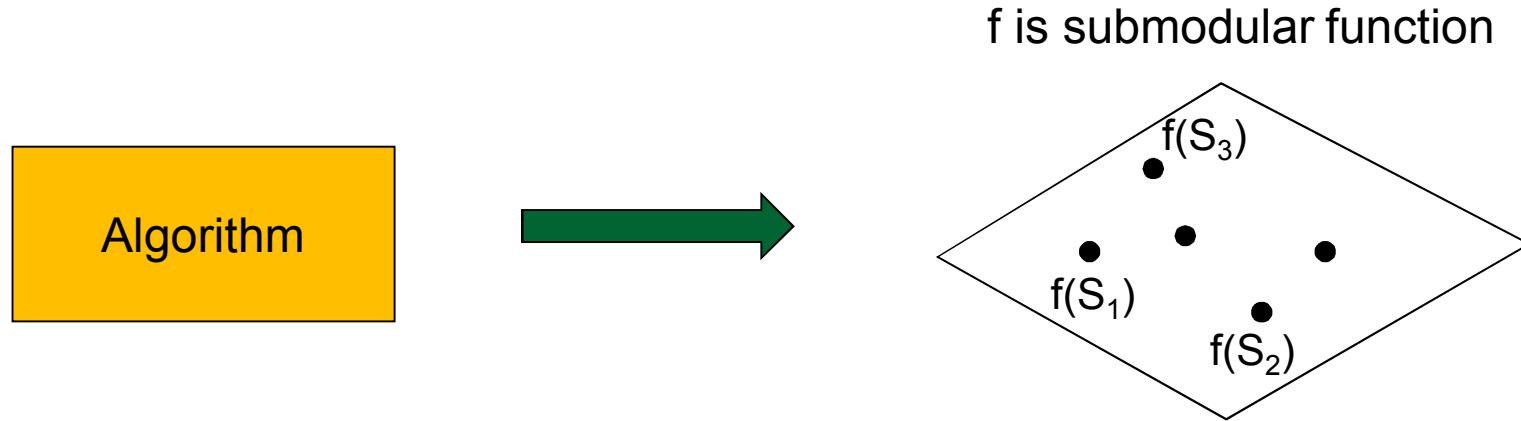
Submodularity



- $f: \{0,1\}^n \rightarrow \mathbb{R}$ (domain is subset of universe $[n]$)
$$f(S \cup T) + f(S \cap T) \leq f(S) + f(T)$$
- Monotonicity (decreasing) of marginal utilities
For $S \subseteq T$, i not in S, T
$$f(T \cup i) - f(T) \leq f(S \cup i) - f(S)$$

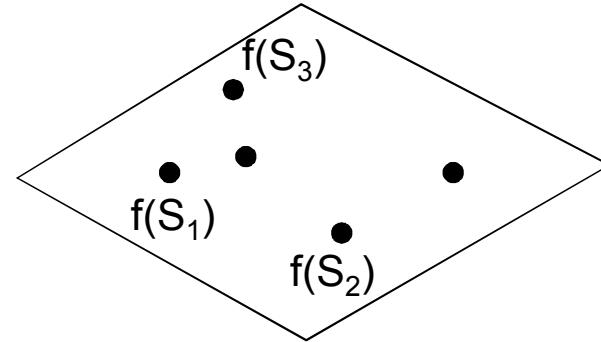
Use of submodularity

- Submodularity comes up a LOT
 - Combinatorial optimization, modelling utilities...
- Host of algorithms that use submodular functions
 - Maximization, minimization, etc.



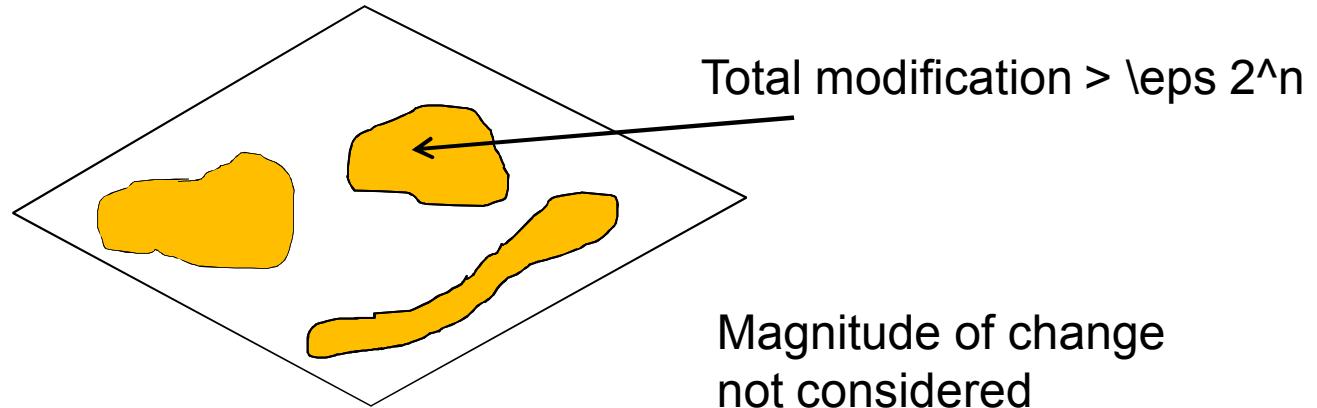
Everyone is sublinear!

f is submodular function



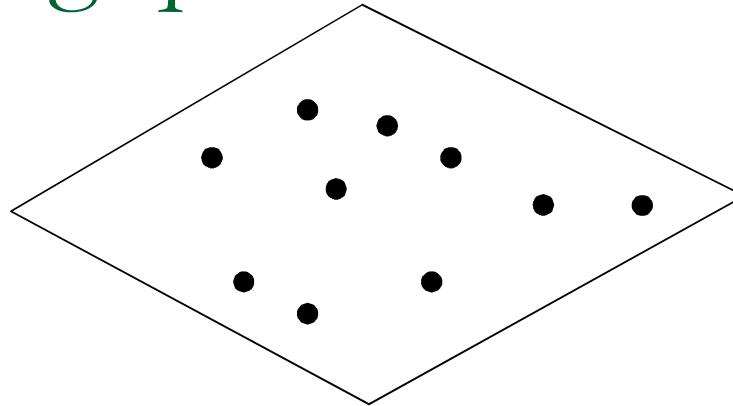
- Domain of f is $\{0,1\}^n$
- Algorithms run in $\text{poly}(n)$ time
 - This is sublinear in the “size” of f , which is 2^n
- Let’s study submodularity from sublinear algorithms perspective

Distance to submodularity



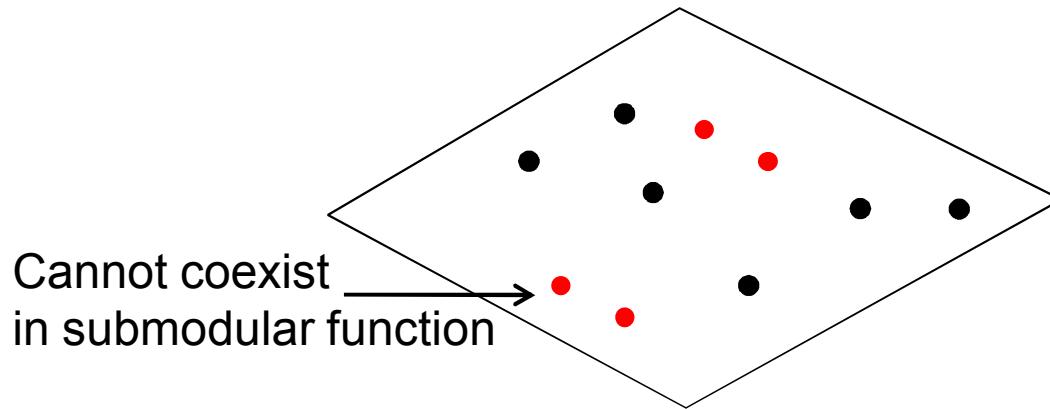
- f is ϵ -far from being submodular if:
 f has to be modified at an ϵ -fraction ($\epsilon 2^n$) of domain to make f submodular
- We're looking at Hamming distance
$$\text{dist}(f,g) = (\# S, \text{ s.t. } f(S) \neq g(S)) / 2^n$$
- distance of f to submodularity
$$\min_{\{g \text{ submod}\}} \text{dist}(f,g)$$

The testing question



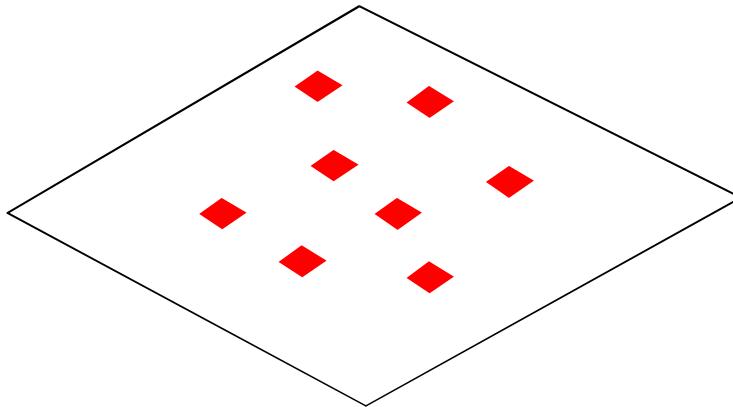
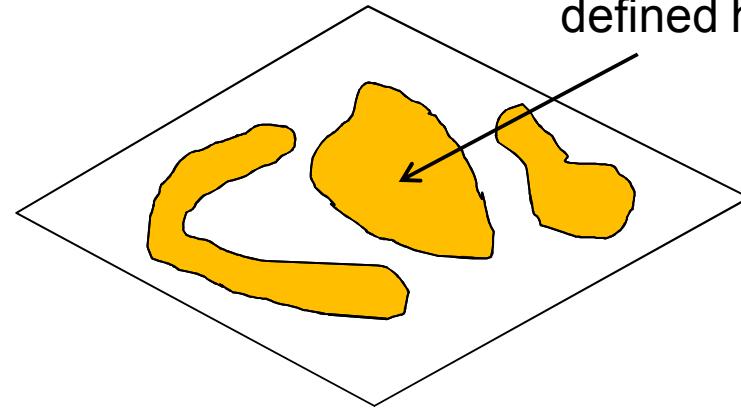
- Is there a property tester for submodularity?
 - Studied by [Parnas-Ron-Rubinfeld 04] over grids
- Given f that is ϵ -far from submodular, is there a $(n/\epsilon)^{O(1)}$ procedure that certifies f is not submodular?
 - Procedure is randomized
 - One-sided testers more interesting here

The testing question



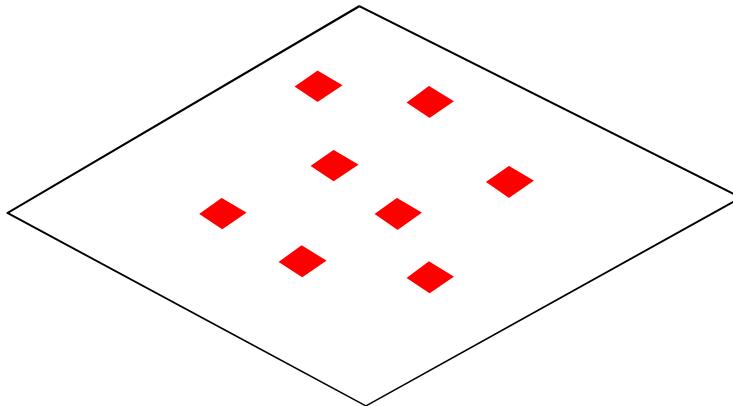
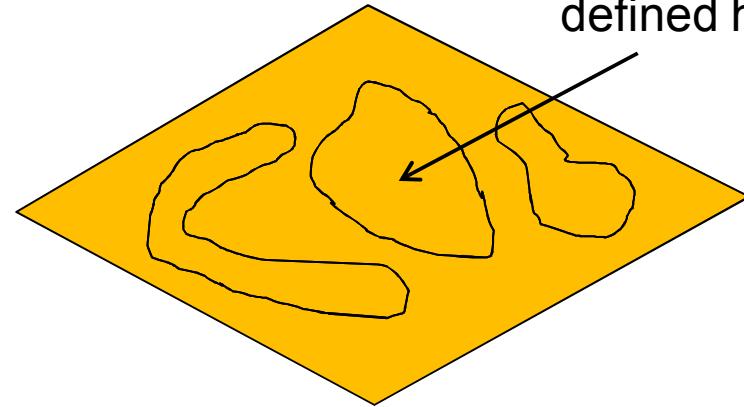
- Is there a property tester for submodularity?
- Given f that is ϵ -far from submodular, is there a $(n/\epsilon)^{O(1)}$ procedure that certifies f is not submodular?
 - Procedure is randomized
 - One-sided testers more interesting here

Structural questions



- How do local violations to submodularity relate to distance?
 - Does ϵ -far mean many violations?
- When can partial function be completed?
 - Fill in remaining values to get a submodular function

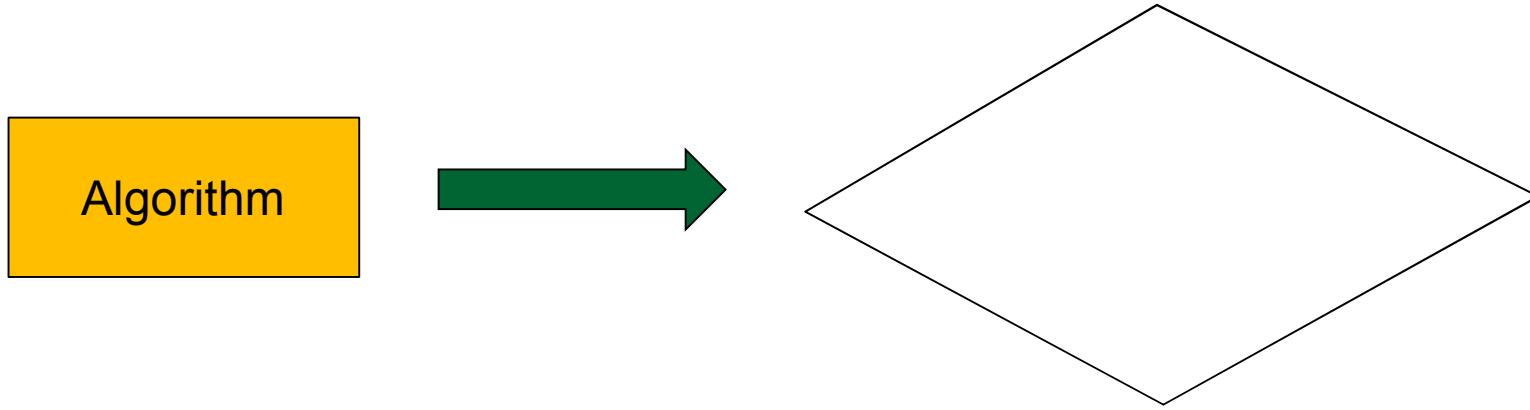
Structural questions



- How do local violations to submodularity relate to distance?
 - Does ϵ -far mean many violations?

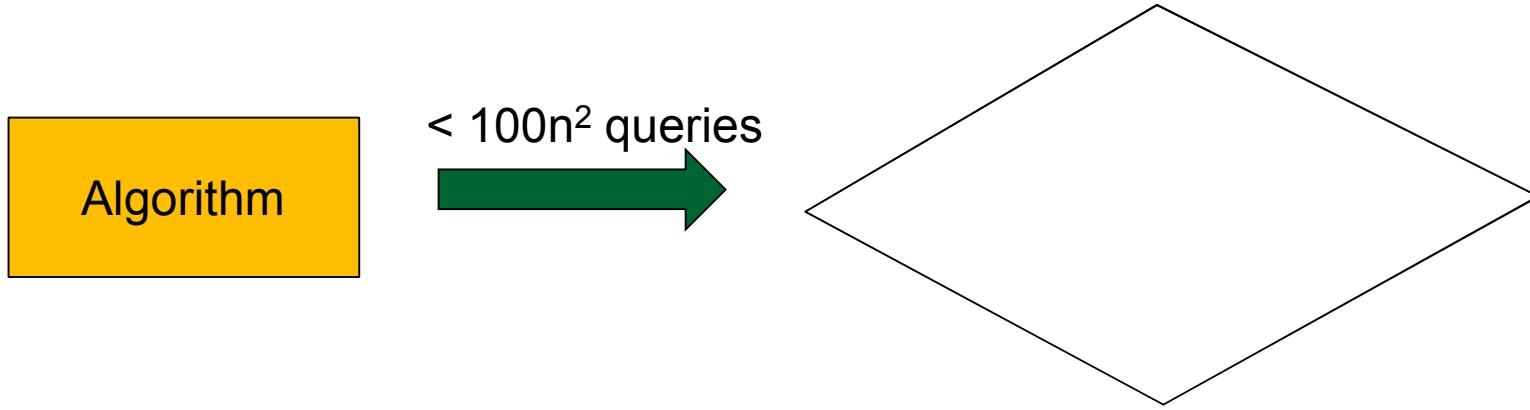
- When can partial function be completed?
 - Fill in remaining values to get a submodular function

Some motivation...?



- All algorithms on submodular functions are sublinear
- If submodularity not testable, then how can these algorithms use submodularity?
 - Suppose $(n/\epsilon)^2$ lower bound for testing

Some motivation...?



- If submodularity not testable, then how can these algorithms use submodularity?
 - Suppose $(n/\epsilon)^2$ lower bound for testing
- How does this algorithm use submodularity?
 - Could get fooled by f that is $1/10$ -far from submodular

Some motivation...?

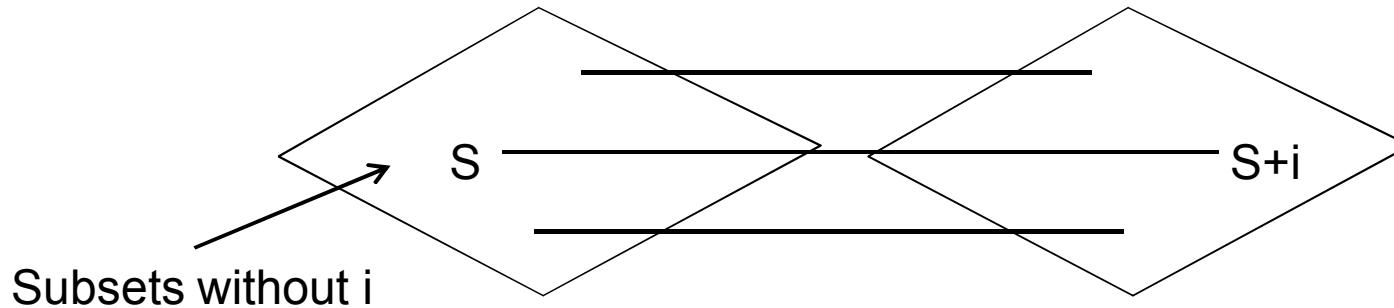
Algorithm

Testing submodularity
intimately related to the
“use” of submodularity

The “sublinear lens” might
shed light on structure of
submodularity

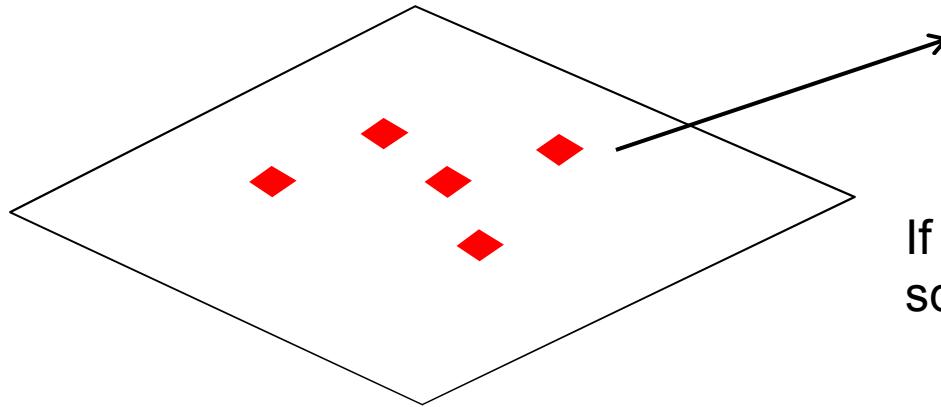
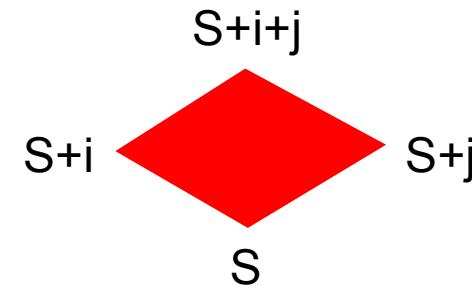
- If submodularity is used in an algorithm
 - Suppose (n, m) is submodular
- How does this algorithm use submodularity?
 - Could get fooled by a set that is 1/10-far from submodular

The basic tester



- $f_i(S)$ is defined as $f(S \cup i) - f(S)$
 - Marginal utility functions, for each i
 - Domain for f_i is $\{0,1\}^{\{n-1\}}$
- f is submodular iff all f_i are monotone decreasing
 - So use the monotonicity tester for each f_i

The squares tester



If $f(S+i+j) - f(S+j) > f(S+i) - f(S)$
squares is a violation

- Take small uniform sample of squares
 - Check submodularity constraint on each squares
- Density of violated squares = (# violated sq)/ (total sq)
- If dist to submod is ϵ , what is density of violated squares?

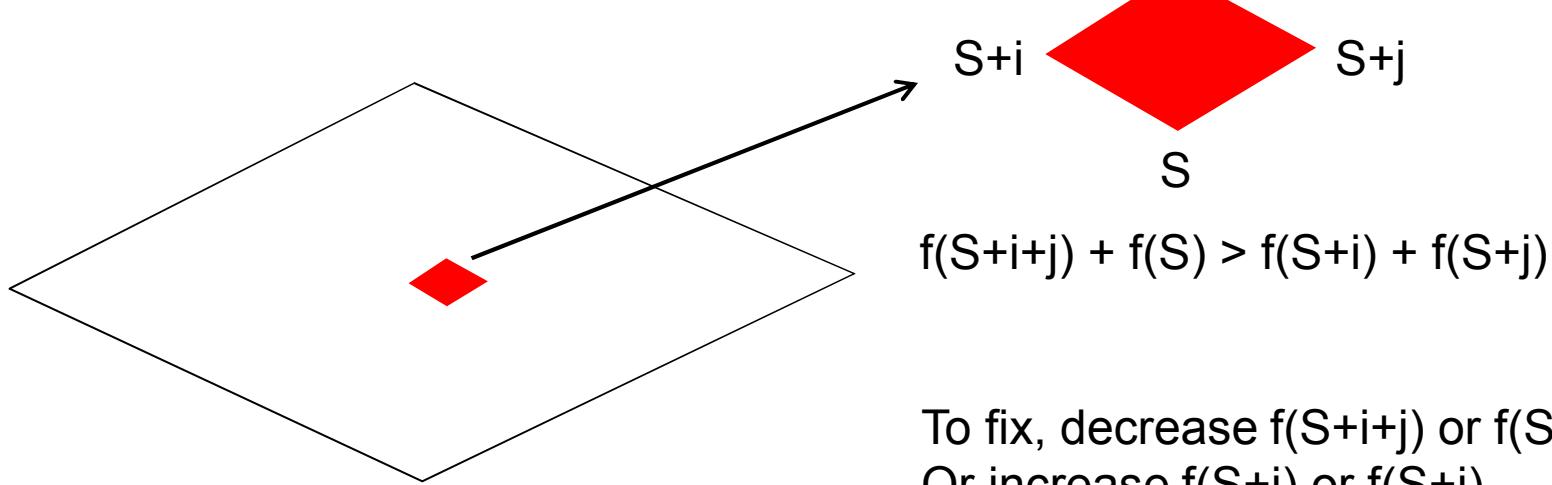
Results

- If f is ϵ -far from submodular
 - Violated squares density $> \epsilon$
 - There is sublinear tester for submodularity ($o(2^n)$).
- [Surprise 1] For any $\epsilon > 2^{-n/10}$, there is an f such that
 - Violated squares density $< \epsilon^{4.8}$
- Testing monotonicity reduces to testing submodularity

What Surprise 1 means

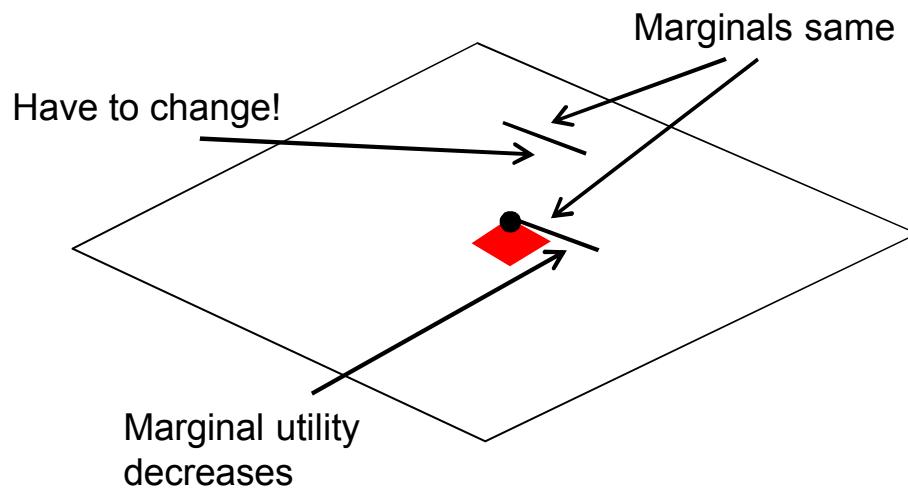
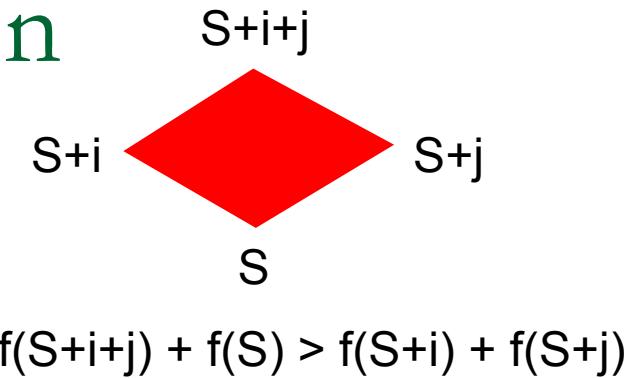
- [Surprise 1] For any $\epsilon > 2^{-n/10}$, there is an f such that
Violated squares density $< \epsilon^{4.8}$
- For monotonicity, violated edges $> \epsilon/n^2$
- Major difference between testing both
- Distance of f to submodularity is “large”, but all f_i are “close” to being monotone
 - Marginal utility functions, for each i : $f_i(S)$ is defined as $f(S \cup i) - f(S)$

The basic construction



- There is f s.t.: f has ONE violated square, but to make f submodular $2^{\{n/2\}}$ values must be changed

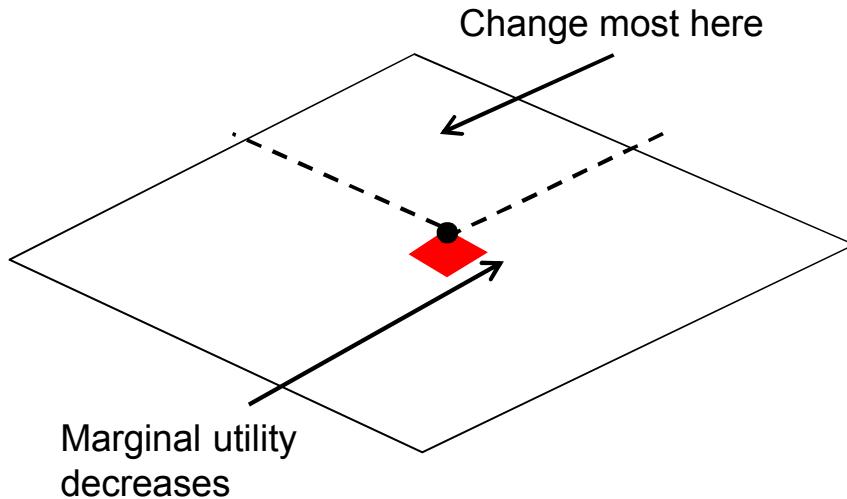
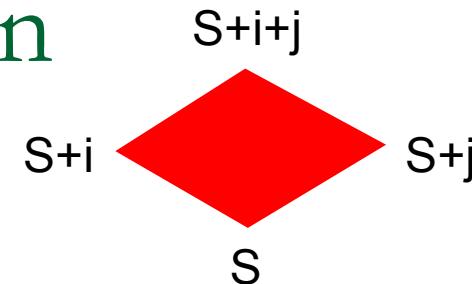
The basic construction



To fix, decrease $f(S+i+j)$ or $f(S)$
Or increase $f(S+i)$ or $f(S+j)$

- There is f s.t.: f has ONE violated square, but to make f submodular $2^{\{n/2\}}$ values must be changed

The basic construction



$$f(S+i+j) + f(S) > f(S+i) + f(S+j)$$

To fix, decrease $f(S+i+j)$ or $f(S)$
Or increase $f(S+i)$ or $f(S+j)$

- There is f s.t.: f has ONE violated square, but to make f submodular $2^{\lfloor n/2 \rfloor}$ values must be changed
- Plant a single violated square in middle, with most marginal values same

The function

$$f(S) = d(S, T)$$

$T \bullet$

$S+e2$

$$f(S) = 1-|S|$$

$S+e1+e2$

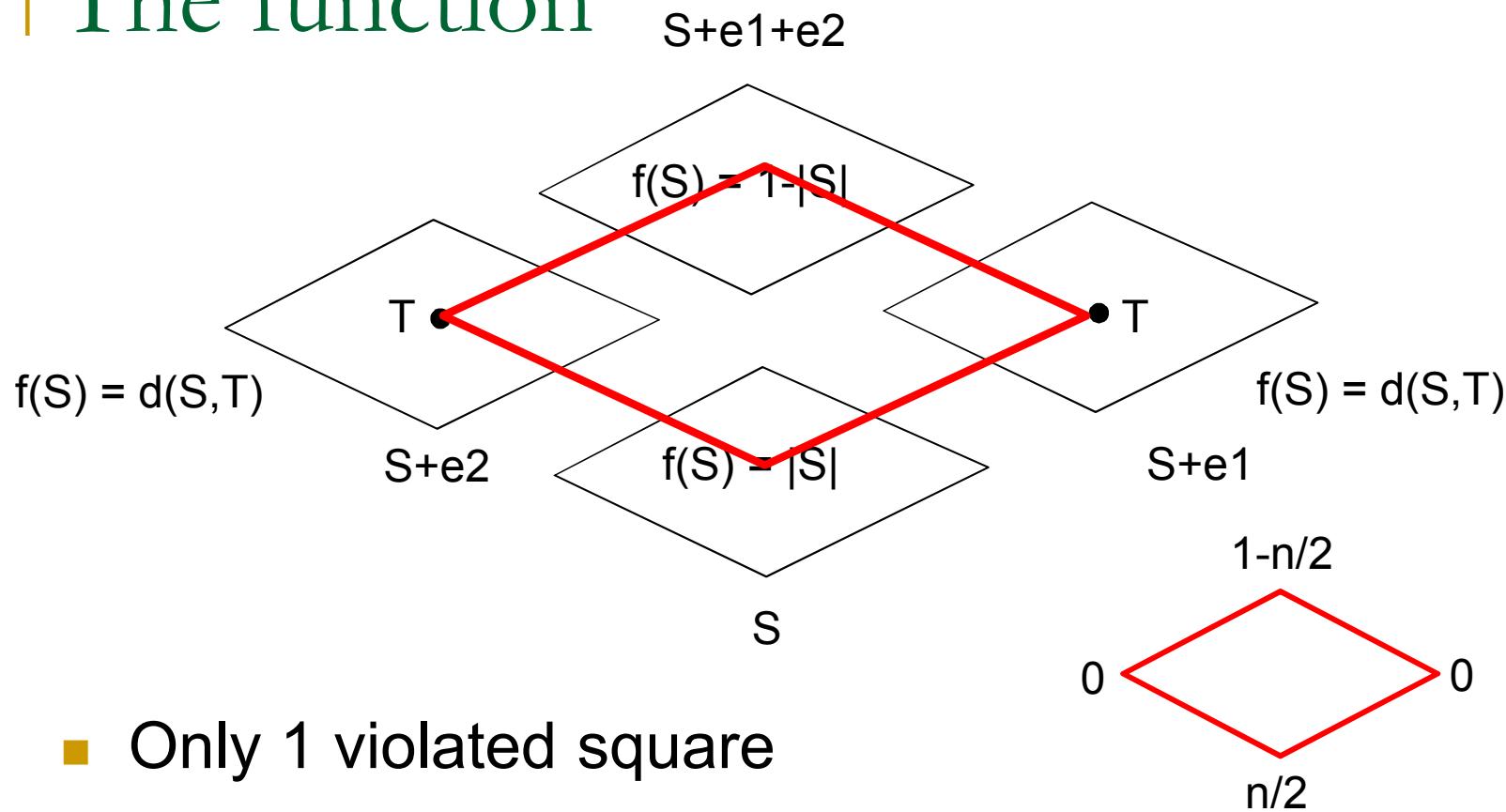
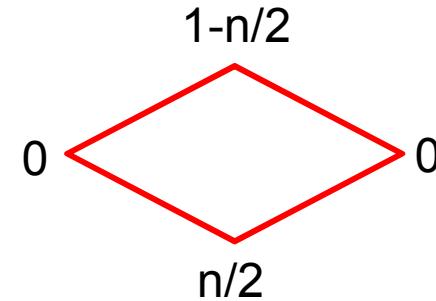
$$f(S) = |S|$$

S

\bullet

$S+e1$

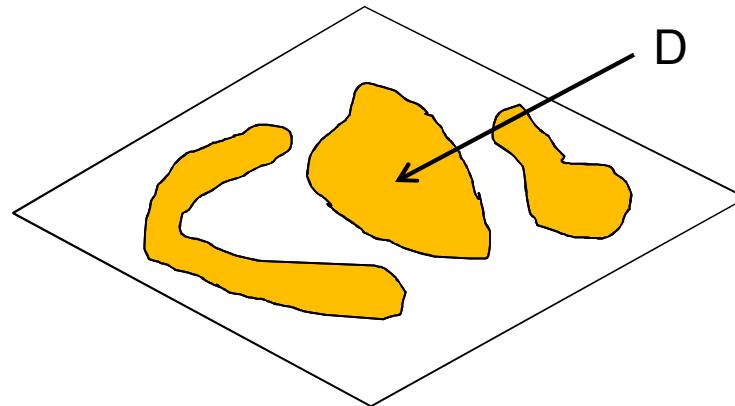
The function



Generalize

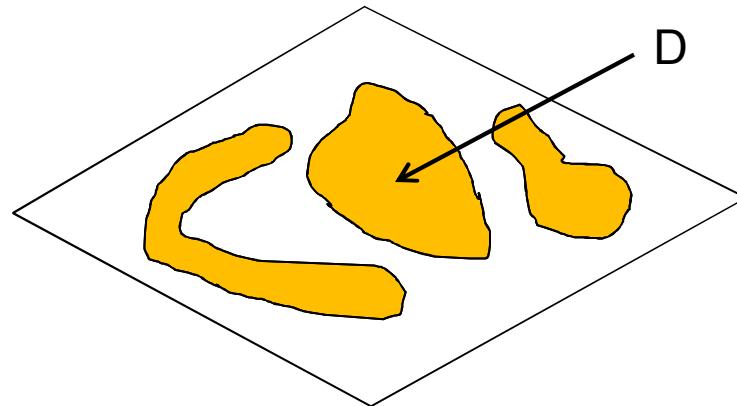
- Few violated squares
 - Have to change many values to make submodular
- Connection between lattice structure and submodular functions
 - Paste together many linear functions over hypercubes to ensure most marginal values same
- Density of violated squares $< \text{eps}^{4.8}$

Extendable functions



- f is defined on some subset D of domain
- Can we fill in rest of the values to get submodular function?
 - If yes, f is submodular-extendable
- If not, is there small certificate of that fact?

Contrast: monotonicity



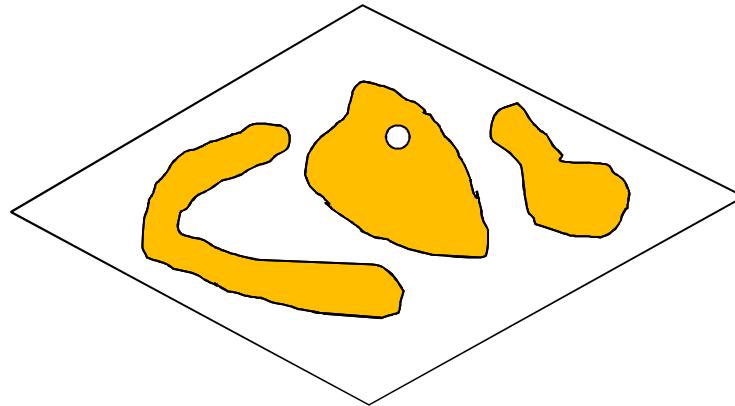
- f is monotone if for S subset T , $f(S) \leq f(T)$
- f is monotone-extendable, if for all defined S subset T , $f(S) \leq f(T)$
- If f not monotone-extendable, there is certificate of size 2 (S subset T , $f(S) > f(T)$)

Extendability in general

- Element of property testing proofs
 - Minimally modifying an input that passes tester to satisfy property
- Monotonicity tester works because certificates are so small
 - Happens for many other properties
- Is there analog for submodularity?

Maybe if f not extendable, there are defined $S, T, S \cup T, S \setminus T$
s.t.

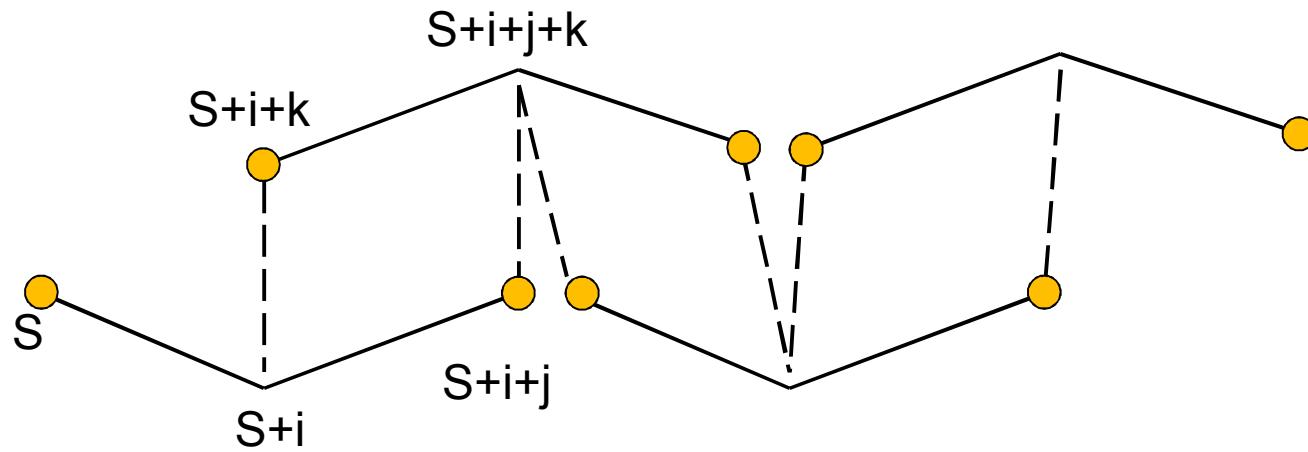
No!



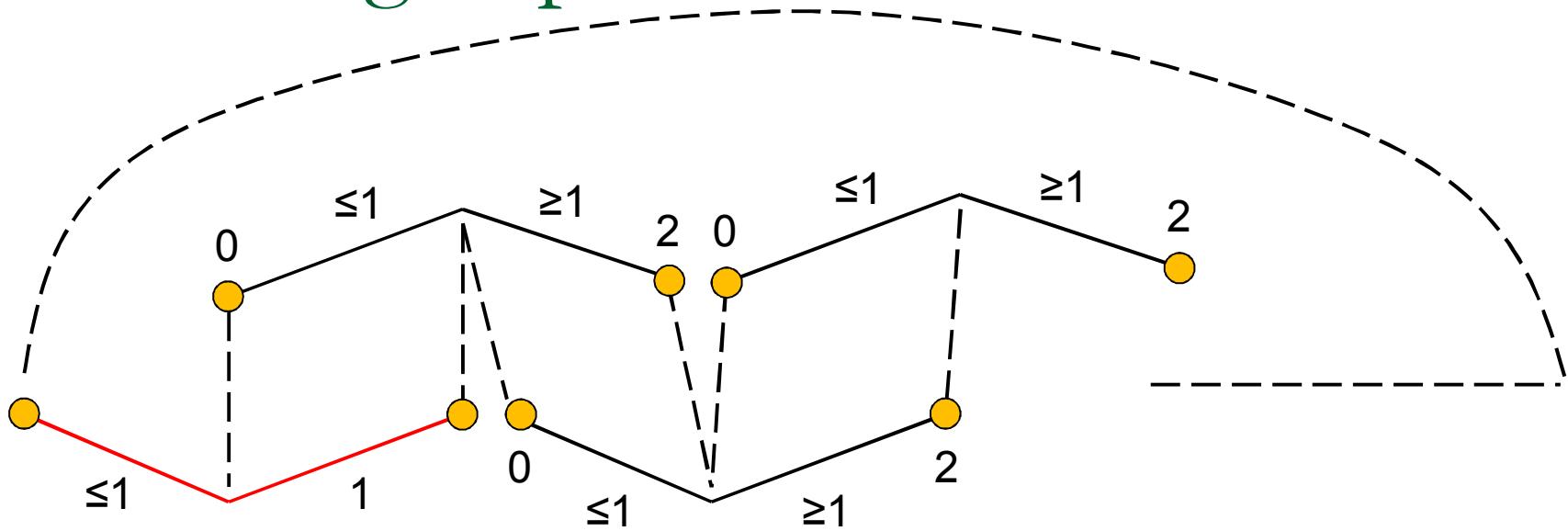
Not extendable
Extendable!

- f is defined on $2^{\{n/4\}}$ domain points
- f is not submodular-extendable
- But remove ANY defined point, f becomes extendable
- No small certificates!
 - Bad news for property testing...?

A small glimpse



A small glimpse



- Long unsatisfied cycle of linear inequalities
 - Break anywhere, and satisfy at ease!

So...

- Study of testing submodularity
 - Surprisingly different from monotonicity
 - Relation between violated squares and distance
 - Testing seems to be a difficult question. We don't know the answer. Help!
- Restricted versions
 - When marginals are 0-1: rank function of matroid
 - Testing whether a set system is matroid
- We don't have good understanding of structure in submodular functions