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The MAXCUT problem

Given graph G = (V, E), find a partition (or cut) V = L U R 
maximizing number of edges cut i.e. 
(i, j) 2 E such that i 2 L and j 2 R

Fraction of cut edges is MaxCut value

G

L R

Cut edge



The MAXCUT problem

 [Karp ‘72] NP-hard

 So aim is to develop 
approximation algorithms

 Algo is β-approx, if cut given by 
algo satisfies:

Algo(G) > β MaxCut(G)

(Note that β < 1)



The MAXCUT problem

 [Karp ‘72] NP-hard

 Greedy/LP relaxation give 0.5 
approximation

 [Goemans-Williamson ’95]: SDP 
 0.878.. approximation

 [Arora, Kale ‘07]: GW approx alg
implementation  in O*(m) time

 [Trevisan, Soto ‘09] Eigenvalue
approach gives 0.61 approx



Combinatorial Algorithms

 No known combinatorial algo with > 0.5 approx

 [VK07, STT07] Even LP hierarchies have integrality gap of 
0.5

 Combinatorial: using graph structure, simple 
primitive operations, no matrix algebra

 Why combinatorial?

 Reveals more insight into structure of problem

 Less numerical issues

 Likely better running time in practice?



Our results

 A really really neat combinatorial algo beating the 0.5 
approx factor
 Really. It’s neat.
 For any  > 0, a combinatorial alg running in 
O(m + n1.5 + ) time with approx factor = 0.5 + g()

 Analyze natural combinatorial heuristic via spectral
methods
 Trevisan/Soto analysis used

 Basic version of algorithm takes O(n2 + ) time for 0.5 
+ h() approximation
 For faster running time, devise new local graph partitioning 

algorithm

Increasing with 



A triviality

 Suppose MaxCut = 1 (a.k.a bipartite)

 Find optimal cut

 Look at path from s to v

 If even length, v in L. If odd length, v in R.

s

s

L R



Generalize!

 Paths from s to v not of same parity

 If most paths (of length “roughly” r) are even, v in L. 
Else, v in R

 How to count this?

 Random walks!

s

s

v

L R



Lazy Random Walks

 Random process moving from node to node

 At each time step:
 w.p. 0.5: stay at current node
 w.p. 0.5: move to a uniform random neighbor 

 Parity of walk = parity of length excluding self loops
 Fixed walk length gives different parities 



Even and odd walks

 Even walk is one where parity of walk is…umm…even

 Odd walk has odd parity



(Hopeful) heuristic

 Take a random starting vertex s

 Run several random walks of some length r

 If v is hit often:  

if #(even walks to v) > #(odd walks to v), v in L

else, v in R

s v

Our result: hope is not misplaced!
Heuristic works!



Approximation Algorithm

 Take a random starting vertex s w.p. / ds

 Run w random walks of some length r

 w = O(n), r = O(log n)

 For every vertex v:  

If #(even walks to v) - #(odd walks to v) >  tdv, v in L

If […] < tdv, v in R

 Recur on unclassified vertices

t: threshold 
parameter

ds: degree of s



That’s it!

 Theorem: Can choose parameters s.t. 
approximation factor > 0.5.

 We call this algorithm Simple

 Running time tradeoff: longer walk (larger r)

 Better approx factor

 [#(even walks) - #(odd walks)]/w gets smaller, so larger w 
needed to estimate accurately

 Better approx factor needs more time



MaxCut and the Largest Eigenvalue

 Laplacian of graph

 A =  adjacency matrix, i.e. A(i, j) = 1 if {i, j} is an edge, 0 
otherwise

 For regular graph, L = I – A/d

But that’s just top eigenvector of L!



Trevisan’s Spectral Algorithm 

 Compute top eigenvector u of Laplacian L

 Find  threshold t to cut most edges as follows:

classify nodes i s.t. ui ¸ t as left, and ui · –t as right

 If no t cuts ¸ 0.5 fraction, output greedy cut and stop

 Else, classify using best t and recur on unclassified 
nodes

u

Descending order

> t < -t

L R



Trevisan’s Spectral Algorithm

 Thm [Trevisan ‘09, Soto ‘09]: spectral 
algorithm has approx factor 0.6142.

 Running time: O*(mn)

 Computing approx top eigenvector: O*(m)

 Finding best threshold: O*(m)

 # of recursive levels: O(n) Easy sampling 
reduction makes all 
degrees O(log n) 
and hence m = 

O*(n)



Main Insight

 Random walk heuristic is combinatorial 
implementation of spectral algorithm!

 Random walk ¼ running power method on L

 With constant probability, random starting node 
is a good starting vector for power method

 Computing eigenvector  sampling to estimate 
probabilities accurately
 Combinatorial



The charged random walks 

 Start with +1 charge as s

 Flip sign when we move to neighbor

 So walk deposits a unit charge at destination

 After r steps, what is expected charge at vertex v?

+1 -1

+1

ss

v+1 or -1?



The charged random walks 

 Even walk contributes positive charge

 Odd walks contributes negative charge

 Expected charge at v = Pr[even walk] – Pr[odd walk]
 Look familiar?

s v

Even walk

+

_
Odd walk



The electric algorithm

 Run w charged random walks of some length r

 Compute final charge on each vertex:  

If charge on v is very positive, v in L

If charge on v is very negative, v in R

s

+1
-1

-1

0



A slightly different viewpoint

 Start with charge vector x. 
Perform one step of charged 
walk

½ 

1/2d 

After r steps of walk:



The power method

 As r increases, this converges to top eigenvector of 
L

 Our random walk is implicitly using power method to 
compute top eigenvector!

 But how fast is convergence?



The starting vector

 We start with uniform random unit vector es

 If top eigenvector is u, number of iterations to 
converge is

s

Projection of es on u



Random Starting Vertex is Good

Lemma: With constant probability over s,  

Define x = 1L

MaxCut

x has large projection on u.
0

1
1

1

1
1

0

0
0

0

By convexity, for many s in L, 
es has large projection

Since |L| > n/2, we are 
done.

L R



Putting it together

 Charged random walk from uniform random s 
converges to u in O(log n) steps

 So threshold cut on final charge is like threshold on 
u

 But algorithm does not compute final charge vector, 
it samples from it

Descending order

> t < -t

L R



Sampling from charge

 xv = Prob[even walk to v] – Prob[odd walk to v]

 To estimate xv, need at least 1/xv walks

 Lemma: If r = μ log n, then 

Descending order

 n1+μ walks enough to get large coordinates



The procedure Simple

 Take uniform random starting vertex s

 Run w random walks of some length r

 w = n1+μ, r = μ log n

 For every vertex v:  

If [#(even walks) - #(odd walks)]/w >  t, v in L

If […]/w < t, v in R

 Recur on unclassified vertices



Running time for Simple

 Approx. factor is 0.5 + h()
 Longer walks give better approx factor, but need more walks  

to estimate probs accurately

 work/output ratio for a recursive call

= (total time)/(total nodes classified)

 In recursive call, worst case is O(1) classified vertices

 Guaranteed to get at least constant

 Each call takes O(n1+)

 work/output ratio ¼ n1+ ) O*(n2+) overall time



The procedure Balance



Improving Running Time

Bad case: G has many small 
connected components

Random walk gets stuck
in small component

Too few nodes classified, so 
work/output ratio blows up

Same problem occurs if G has many components 
connected to each other by “sparse cuts’’



Partitioning

Idea: Use partitioning alg
to disconnect sparse cuts

Recur on obtained pieces

Greedily merge left and right
sides from each recursive call

Greedy merging cuts at least half the edges in the 
sparse cuts ) degradation in approx factor

Balance



Local partitioning

 Perform O(log n) length walks (as in Simple)

 [Local partitioning step] If walks are getting “stuck”, 
find low conductance set S around s

 Run Simple on GS

 Work/output is S1+μ

 If walks are not stuck, run Simple(G)

s

S



More precisely

 Local partitioning: find a sparse cut quickly, if any exist
 Sparse cut: #(edges in cut) < ¢#(edges in either side)

 [ST ’04, ACL ‘06, AL ‘08]: (roughly) can find sparse cut 
if walk of length O(log2(n)) gets stuck

 Our work: can find sparse cut if walk of length O(log(n)) 
gets stuck
 Caveat: worse running time than previous work

s

Find in O(S) time

S



Our contribution

 We do r-length random walks

 Let pv be prob. of reaching v

 Theorem: There is algorithm with running time O(1/λ) 
that outputs either:

 Cut of conductance ϕ

 Correctly declares that maxv pv < λ

 In  time, we get       sized set of low conductance, or 
max pv < 1/

 Proven using Lovasz-Simonovits technique

n
n



Benefit of small alpha

 xv = Pr[even walk to v] – Pr[odd walk to v]

 pv = Pr[even walk to v] + Pr[odd walk to v]

 Xv is random var

 +1 if walk is even and ends as v

 -1 if walk is odd and ends at v

 0 else

 E[Xv] = xv E[    ] = pv

 If pv is small, easier to get estimates for xv

 Lemma: If max pv < λ, work/output of Simple is O(λn)

s v

+

_

2
vX



Putting it together

G

Run partitioning
procedure

S

Found low cond
set S, |S| < 1/λ

Remove cut
Run Simple(S)
Recur on remainder

Work/output = |S| < 1/λ

max pv < λ

G

Run Simple(G)
Work/output = λn

Balance at λ = 1/

Work/output = 

n

n



The final algorithm

 For any  > 0, Balance runs in 

O(n1.5+) time with approx factor = 0.5 + g()

 Beats O(n2) time of eigenvalue approach (but gives 
much worse approx factor)

 Demonstrates power and insight of combinatorial 
viewpoint



Running time/Approx Factor tradeoff



Conclusions and Open Problems

 First combinatorial algorithm to approximate 
MaxCut to > 0.5 factor

 Open problems:

 Near linear running time?

 Better approx factor?

 Similar algorithms for MaxCSP?

 Better running time for local partitioning?



Thank you!



Greedy++

 Natural extension: fix a walk length l. Count # 
even walks and odd walks and classify.

 Perfectly classifies bipartite graphs

 Trouble: # walks can grow 

exponentially with length l

 Randomness to the rescue: use random 
walks!



RW Heuristic ´ Spectral Algorithm

Assume: G is d-regular. Then L = I – (1/d)A.

Apply power method to (½)L with starting vector ei



RW Heuristic ´ Spectral Algorithm

Prob of (l -h)
self-loop 

steps

Prob of h
move steps

Parity of 
walk

Walk with h move steps and (l-h) self-loop steps

Coordinate j

Choice of 
self-loop 

steps

¼ [#(even walks) - #(odd walks)]/w



Starting Vector

 Starting vector for power method influences 
convergence rate to top eigenvector

 Starting from unit vector x0, vector after k
iterations of power method is xk =  Lkx0/kLkx0k

 To ensure  xk
TLxk ¸ (1-) max  

need 

max  = max 
eigenvalue
x0

H =  
projection of x0

on subspace of 
top 
eigenvectors



Local Partitioning

Thm: [JS ‘89] If a random walk from target vertex
gets stuck, there must be a sparse cut close by

1. Run several random walks 
from target vertex

2. For each length up to l:
2a. Sort vertices in 

decreasing order of 
hitting frequency

2b. Check each prefix of
for sparse cut



Running time for Balance

 Local partitioning result: for any  > 0, in 
O*(1/) time can find sparse cut or walk mixes 
sufficiently so that work/output · O*(n1 +  )

 Balancing point:  = n0.5 + /2, so that 
work/output · O*(n0.5+ /2)

 Overall running time: O*(n1.5+ /2)

 Approx factor = 0.5 + h’()


