SAND2011-0094C

Combinatorial Approximation
Algorithms tfor MAXCUT using
Random Walks

C. Seshadhri (Sandia National Labs, Livermore)

Joint work with
Satyen Kale (Yahoo! Research, Santa Clara)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-
94AL85000

‘ The MAXCUT problem

Cut edge/

Given graph G = (V, E), find a partition (orcut) V=LUR
maximizing number of edges cut i.e.
(i,j))2E suchthati2Landj2R

Fraction of cut edges is MaxCut value

The problem
[Karp ‘72] NP-hard

So aim is to develop
approximation algorithms

Algo is B-approx, if cut given by
algo satisfies:

Algo(G) > 3 MaxCut(G)

(Note that 3 < 1)

The problem
[Karp ‘72] NP-hard

Greedy/LP relaxation give 0.5
approximation

[Goemans-Williamson '95]: SDP
- 0.878.. approximation

[Arora, Kale ‘07]: GW approx alg
implementation in O (m) time

[Trevisan, Soto ‘09] Eigenvalue
approach gives 0.61 approx

Combinatorial Algorithms

No known combinatorial algo with > 0.5 approx

o [VKO7, STTO7] Even LP hierarchies have integrality gap of
0.5

Combinatorial: using graph structure, simple
primitive operations, no matrix algebra

Why combinatorial?

o Reveals more insight into structure of problem
o Less numerical issues

o Likely better running time in practice?

Our results

A really really neat combinatorial algo beating the 0.5
approx factor

o Really. It's neat. Increasing with p

o Forany u > 0, a combinatorial alg running in
O(m + n'->*) time with approx factor = 0.5 + g(u)

Analyze natural combinatorial heuristic via spectral
methods

o Trevisan/Soto analysis used

Basic version of algorithm takes O(n?*®) time for 0.5
+ h(u) approximation

o For faster running time, devise new local graph partitioning
algorithm

A triviality

Suppose MaxCut = 1 (a.k.a bipartite)
Find optimal cut

Look at path fromstov
o If even length, vin L. If odd length, v in R.

Generalize!

Paths from s to v not of same parity

If most paths (of length “roughly” r) are even, v in L.
Else, vin R

How to count this?
o Random walks!

Lazy Random Walks

Random process moving from node to node

At each time step:

o w.p. 0.5: stay at current node
o w.p. 0.5: move to a uniform random neighbor

Parity of walk = parity of length excluding self loops
o Fixed walk length gives different parities

Even and odd walks

ARV

Even walk is one where parity of walk is...umm...even
Odd walk has odd parity

| (Hopeful) heuristic

L
Our result: hope is not misplaced!
Heuristic works!
= Take a random starting vertex s
= Run several random walks of some length r

= If v is hit often:

if #(even walks to v) > #(odd walks to v), vin L
else, vin R

Approximation Algorithm

d: degree of s

Take a random starting vertex s w.p. / d.

Run w random walks of some length r

o w=0(n), r=0O(log n) t: threshold

parameter
-or every vertex v:

f #(even walks to v) - #(odd walks tov) > td,, vin L
fl[...]<td,vinR

Recur on unclassified vertices

That’s 1t!

Theorem: Can choose parameters s.t.
approximation factor > 0.5.

o We call this algorithm Simple

Running time tradeoff: longer walk (larger r)
o Better approx factor

o [#(even walks) - #(odd walks)]/w gets smaller, so larger w
needed to estimate accurately

Better approx factor needs more time

‘ MaxCut and the Largest Figenvalue

= Laplacian of graph

o A = adjacency matrix, i.e. A(i, j) = 1 if {i, j} is an edge, O
otherwise

o Forregular graph, £ =1-A/d

max Z (x; — iL'j)z Vi, z; € {—1,+1}

(i,j)EE
ol Lr = Z (z; — :I:j;)2
(i,j)EE
max o’ Lz rec R"

But that’s just top eigenvector of £!

Trevisan’s Spectral Algorithm

L

A H

> 1

< -t u @
> Descending order

Compute top eigenvector u of Laplacian £

Find threshold t to cut most edges as follows:
classify nodesis.t. u; , tasleft,and u, - —t as right

If no t cuts , 0.5 fraction, output greedy cut and stop

Else, classify using best t and recur on unclassified
nodes

Trevisan’s Spectral Algorithm

Thm [Trevisan ‘09, Soto ‘09]: spectral
algorithm has approx factor 0.6142.

Running time: O’ (mn)
o Computing approx top eiganvector: O'(m)
o Finding best threshold: O'(m)

o # of recursive levels: O(n) Easy sampling
reduction makes all

degrees O(log n)
and hence m =
O'(n)

Main Insight

Random walk heuristic is combinatorial
implementation of spectral algorithm!

Random walk %2 running power method on L

With constant probability, random starting node
IS a good starting vector for power method

Computing eigenvector - sampling to estimate
probabilities accurately

o Combinatorial

The charged random walks

+1or-17

Start with +1 charge as s

Flip sign when we move to neighbor

So walk deposits a unit charge at destination
After r steps, what is expected charge at vertex v?

The charged random walks

Even walk

Odd walk

Even walk contributes positive charge
Odd walks contributes negative charge

Expected charge at v = Pr[even walk] — Pr[odd walk]
o Look familiar?

The electric algorithm

Run w charged random walks of some length r

Compute final charge on each vertex:
If charge on v is very positive, v in L
If charge on v is very negative, vin R

A slightly ditferent viewpoint

Start with charge vector x.
Perform one step of charged

walk
N €T; 1
T —— — T -
’ 2 2d J
(i,j)EE
_ I A Lx
€Tr — —_ — = —_— —
2 2d 2

The power method

1) — (ﬁ) .
2

As r increases, this converges to top eigenvector of
L

Our random walk is implicitly using power method to
compute top eigenvector!

But how fast is convergence?

The starting vector

20 (ﬁ) N
2

We start with uniform random unit vector e,
If top eigenvector is u, number of iterations to

converge is
1
log ()

(es,u)d Projection of e, on u

Random Starting Vertex is Good

Lemma: With constant probability over s,
(es,u) = Q(1/n)

MaxCut
Define x =1,
X has large projection on u. %
By convexity, for many s in L, —7 N\
e, has large projection 1 =

Since |L| > n/2, we are
done.

Putting it together

L R

i < -t z(") = (ﬁ) T
: 2

> Descending order

> 1

Charged random walk from uniform random s
converges to u in O(log n) steps

So threshold cut on final charge is like threshold on
u

But algorithm does not compute final charge vector,
it samples from it

Sampling from charge

) _ (‘3) N
2

X, = Prob[even walk to v] — Prob[odd walk to v]
To estimate x,, need at least 1/x, walks

> Descending order

Lemma: If r = py log n, then

1

(7)
20 > —

n'*¥ walks enough to get large coordinates

The procedure Simple

Take uniform random starting vertex s

Run w random walks of some length r
o w=n" r=plogn

-or every vertex v:
f [#(even walks) - #(odd walks)]/w > t, vin L
fl...]Jlw<t vinR

Recur on unclassified vertices

Running time for Simple

Approx. factor is 0.5 + h(n)

o Longer walks give better approx factor, but need more walks
to estimate probs accurately

work/output ratio for a recursive call
= (total time)/(total nodes classified)

In recursive call, worst case is O(1) classified vertices
o Guaranteed to get at least constant

Each call takes O(n'*+)
o work/output ratio ¥ n'*) O’(n%**) overall time

X

The procedure Balance

Improving Running Time

Bad case: G has many small
connected components

Random walk gets stuck
In small component

Too few nodes classified, so
work/output ratio blows up

Same problem occurs if G has many components
connected to each other by “sparse cuts”

Partitioning

ldea: Use partitioning alg
to disconnect sparse cuts

Recur on obtained pieces

Greedily merge left and right
sides from each recursive call

Greedy merging cuts at least half the edges in the
sparse cuts) degradation in approx factor

Local partitioning

B — @

Perform O(log n) length walks (as in Simple)

[Local partitioning step] If walks are getting “stuck”,
find low conductance set S around s

Run Simple on Gg
o Work/output is ST*H

If walks are not stuck, run Simple(G)

More precisely

Find in O(S) time

Local partitioning: find a sparse cut quickly, if any exist
o Sparse cut: #(edges in cut) < ¢¢#(edges in either side)

[ST '04, ACL ‘06, AL ‘08]: (roughly) can find sparse cut
if walk of length O(log?(n)) gets stuck

Our work: can find sparse cut if walk of length O(log(n))
gets stuck
o Caveat: worse running time than previous work

‘ Our contribution

= We do r-length random walks
= Let p, be prob. of reaching v

= Theorem: There is algorithm with running time O(1/A)
that outputs either:

o Cut of conductance ¢
o Correctly declares that max, p, < A

= In time, we et«/ﬁ sized set of low conductance, or
max p, < 1/4/n

= Proven using Lovasz-Simonovits technique

Benetit of small alpha

X, = Pr[even walk to v] — Pr[odd walk to v]
p, = Pr[even walk to v] + Pr[odd walk to v]

X, Is random var

o +1if walk is even and ends as v
o -1if walk is odd and ends at v

o 0else

E[X\] =X, EXT1=p,
If p, is small, easier to get estimates for x,

Lemma: If max p, < A, work/output of Simple is O(An)

Putting it together

Run partitioning
procedure

Found low cond
set S, [S| < 1/A

max p, <A

Balance at A = 1//n

Work/output =+/n

Remove cut
Run Simple(S)
Recur on remainder

Work/output = |S| < 1/A

Run Simple(G)
Work/output = An

The tinal algorithm

For any u > 0, Balance runs in
O(n'>*#) time with approx factor = 0.5 + g(n)

Beats O(n?) time of eigenvalue approach (but gives
much worse approx factor)

Demonstrates power and insight of combinatorial
viewpoint

‘Running time/ Approx Factor tradeoff

0.58

o
(4]
\l

—— Simple

—— Balance

o
o
e

©
o
o

Approximation Factor
o o o
(4] (4] (3]
N w H

o

(4]

'y
K ‘

o
o

| | | | | |
16 18 2 22 2.4 26 2.3 3
Running time = O(n%)

Conclusions and Open Problems

First combinatorial algorithm to approximate
to > 0.5 factor

Near linear running time?

Better approx factor?

Similar algorithms for ?

Better running time for local partitioning?

Thank youl

Greedy++

fix a walk length /. Count #
even walks and odd walks and classify.

o Perfectly classifies

walks can grow Q/ﬁ \, /\
exponentially with length / \\/

Randomness to the rescue: use
|

‘ RW Heuristic Spectral Algorithm

Assume: Gis d-regular. Then L = | — (1/d)A.

(72)L €,

‘ RW Heuristic Spectral Algorithm

Walk with /1 move stepls and (/-h) self-loop steps

l | \

o (7NN
- h

Ya [#(even) - #(odd)J/w

Starting Vector

Starting vector for power method influences
convergence rate to top eigenvector

Starting from unit vector x,, vector after
iterations of power method is

To ensure

need

‘ Local Partitioning

Thm: [JS ‘89]

2.
%% : 2a.

2Db.

‘ Running time for Balance

w Local partitioning result: forany o = 0, In
O'(1/a.) time can find sparse cut or walk mixes
sufficiently so that work/output - O (an’*+)

s Balancing point: a = n%%* 2, so that
work/output - O (nY-~>* w2)

= Overall running time: O (n' > #/2)

