
C. Seshadhri (Sandia National Labs, Livermore)

Joint work with

Satyen Kale (Yahoo! Research, Santa Clara)

Combinatorial Approximation
Algorithms for MAXCUT using
Random Walks

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-
94AL85000

SAND2011-0094C

The MAXCUT problem

Given graph G = (V, E), find a partition (or cut) V = L U R
maximizing number of edges cut i.e.
(i, j) 2 E such that i 2 L and j 2 R

Fraction of cut edges is MaxCut value

G

L R

Cut edge

The MAXCUT problem

 [Karp ‘72] NP-hard

 So aim is to develop
approximation algorithms

 Algo is β-approx, if cut given by
algo satisfies:

Algo(G) > β MaxCut(G)

(Note that β < 1)

The MAXCUT problem

 [Karp ‘72] NP-hard

 Greedy/LP relaxation give 0.5
approximation

 [Goemans-Williamson ’95]: SDP
 0.878.. approximation

 [Arora, Kale ‘07]: GW approx alg
implementation in O*(m) time

 [Trevisan, Soto ‘09] Eigenvalue
approach gives 0.61 approx

Combinatorial Algorithms

 No known combinatorial algo with > 0.5 approx

 [VK07, STT07] Even LP hierarchies have integrality gap of
0.5

 Combinatorial: using graph structure, simple
primitive operations, no matrix algebra

 Why combinatorial?

 Reveals more insight into structure of problem

 Less numerical issues

 Likely better running time in practice?

Our results

 A really really neat combinatorial algo beating the 0.5
approx factor
 Really. It’s neat.
 For any  > 0, a combinatorial alg running in
O(m + n1.5 + ) time with approx factor = 0.5 + g()

 Analyze natural combinatorial heuristic via spectral
methods
 Trevisan/Soto analysis used

 Basic version of algorithm takes O(n2 + ) time for 0.5
+ h() approximation
 For faster running time, devise new local graph partitioning

algorithm

Increasing with 

A triviality

 Suppose MaxCut = 1 (a.k.a bipartite)

 Find optimal cut

 Look at path from s to v

 If even length, v in L. If odd length, v in R.

s

s

L R

Generalize!

 Paths from s to v not of same parity

 If most paths (of length “roughly” r) are even, v in L.
Else, v in R

 How to count this?

 Random walks!

s

s

v

L R

Lazy Random Walks

 Random process moving from node to node

 At each time step:
 w.p. 0.5: stay at current node
 w.p. 0.5: move to a uniform random neighbor

 Parity of walk = parity of length excluding self loops
 Fixed walk length gives different parities

Even and odd walks

 Even walk is one where parity of walk is…umm…even

 Odd walk has odd parity

(Hopeful) heuristic

 Take a random starting vertex s

 Run several random walks of some length r

 If v is hit often:

if #(even walks to v) > #(odd walks to v), v in L

else, v in R

s v

Our result: hope is not misplaced!
Heuristic works!

Approximation Algorithm

 Take a random starting vertex s w.p. / ds

 Run w random walks of some length r

 w = O(n), r = O(log n)

 For every vertex v:

If #(even walks to v) - #(odd walks to v) > tdv, v in L

If […] < tdv, v in R

 Recur on unclassified vertices

t: threshold
parameter

ds: degree of s

That’s it!

 Theorem: Can choose parameters s.t.
approximation factor > 0.5.

 We call this algorithm Simple

 Running time tradeoff: longer walk (larger r)

 Better approx factor

 [#(even walks) - #(odd walks)]/w gets smaller, so larger w
needed to estimate accurately

 Better approx factor needs more time

MaxCut and the Largest Eigenvalue

 Laplacian of graph

 A = adjacency matrix, i.e. A(i, j) = 1 if {i, j} is an edge, 0
otherwise

 For regular graph, L = I – A/d

But that’s just top eigenvector of L!

Trevisan’s Spectral Algorithm

 Compute top eigenvector u of Laplacian L

 Find threshold t to cut most edges as follows:

classify nodes i s.t. ui ¸ t as left, and ui · –t as right

 If no t cuts ¸ 0.5 fraction, output greedy cut and stop

 Else, classify using best t and recur on unclassified
nodes

u

Descending order

> t < -t

L R

Trevisan’s Spectral Algorithm

 Thm [Trevisan ‘09, Soto ‘09]: spectral
algorithm has approx factor 0.6142.

 Running time: O*(mn)

 Computing approx top eigenvector: O*(m)

 Finding best threshold: O*(m)

 # of recursive levels: O(n) Easy sampling
reduction makes all
degrees O(log n)
and hence m =

O*(n)

Main Insight

 Random walk heuristic is combinatorial
implementation of spectral algorithm!

 Random walk ¼ running power method on L

 With constant probability, random starting node
is a good starting vector for power method

 Computing eigenvector  sampling to estimate
probabilities accurately
 Combinatorial

The charged random walks

 Start with +1 charge as s

 Flip sign when we move to neighbor

 So walk deposits a unit charge at destination

 After r steps, what is expected charge at vertex v?

+1 -1

+1

ss

v+1 or -1?

The charged random walks

 Even walk contributes positive charge

 Odd walks contributes negative charge

 Expected charge at v = Pr[even walk] – Pr[odd walk]
 Look familiar?

s v

Even walk

+

_
Odd walk

The electric algorithm

 Run w charged random walks of some length r

 Compute final charge on each vertex:

If charge on v is very positive, v in L

If charge on v is very negative, v in R

s

+1
-1

-1

0

A slightly different viewpoint

 Start with charge vector x.
Perform one step of charged
walk

½

1/2d

After r steps of walk:

The power method

 As r increases, this converges to top eigenvector of
L

 Our random walk is implicitly using power method to
compute top eigenvector!

 But how fast is convergence?

The starting vector

 We start with uniform random unit vector es

 If top eigenvector is u, number of iterations to
converge is

s

Projection of es on u

Random Starting Vertex is Good

Lemma: With constant probability over s,

Define x = 1L

MaxCut

x has large projection on u.
0

1
1

1

1
1

0

0
0

0

By convexity, for many s in L,
es has large projection

Since |L| > n/2, we are
done.

L R

Putting it together

 Charged random walk from uniform random s
converges to u in O(log n) steps

 So threshold cut on final charge is like threshold on
u

 But algorithm does not compute final charge vector,
it samples from it

Descending order

> t < -t

L R

Sampling from charge

 xv = Prob[even walk to v] – Prob[odd walk to v]

 To estimate xv, need at least 1/xv walks

 Lemma: If r = μ log n, then

Descending order

 n1+μ walks enough to get large coordinates

The procedure Simple

 Take uniform random starting vertex s

 Run w random walks of some length r

 w = n1+μ, r = μ log n

 For every vertex v:

If [#(even walks) - #(odd walks)]/w > t, v in L

If […]/w < t, v in R

 Recur on unclassified vertices

Running time for Simple

 Approx. factor is 0.5 + h()
 Longer walks give better approx factor, but need more walks

to estimate probs accurately

 work/output ratio for a recursive call

= (total time)/(total nodes classified)

 In recursive call, worst case is O(1) classified vertices

 Guaranteed to get at least constant

 Each call takes O(n1+)

 work/output ratio ¼ n1+) O*(n2+) overall time

The procedure Balance

Improving Running Time

Bad case: G has many small
connected components

Random walk gets stuck
in small component

Too few nodes classified, so
work/output ratio blows up

Same problem occurs if G has many components
connected to each other by “sparse cuts’’

Partitioning

Idea: Use partitioning alg
to disconnect sparse cuts

Recur on obtained pieces

Greedily merge left and right
sides from each recursive call

Greedy merging cuts at least half the edges in the
sparse cuts) degradation in approx factor

Balance

Local partitioning

 Perform O(log n) length walks (as in Simple)

 [Local partitioning step] If walks are getting “stuck”,
find low conductance set S around s

 Run Simple on GS

 Work/output is S1+μ

 If walks are not stuck, run Simple(G)

s

S

More precisely

 Local partitioning: find a sparse cut quickly, if any exist
 Sparse cut: #(edges in cut) < ¢#(edges in either side)

 [ST ’04, ACL ‘06, AL ‘08]: (roughly) can find sparse cut
if walk of length O(log2(n)) gets stuck

 Our work: can find sparse cut if walk of length O(log(n))
gets stuck
 Caveat: worse running time than previous work

s

Find in O(S) time

S

Our contribution

 We do r-length random walks

 Let pv be prob. of reaching v

 Theorem: There is algorithm with running time O(1/λ)
that outputs either:

 Cut of conductance ϕ

 Correctly declares that maxv pv < λ

 In time, we get sized set of low conductance, or
max pv < 1/

 Proven using Lovasz-Simonovits technique

n
n

Benefit of small alpha

 xv = Pr[even walk to v] – Pr[odd walk to v]

 pv = Pr[even walk to v] + Pr[odd walk to v]

 Xv is random var

 +1 if walk is even and ends as v

 -1 if walk is odd and ends at v

 0 else

 E[Xv] = xv E[] = pv

 If pv is small, easier to get estimates for xv

 Lemma: If max pv < λ, work/output of Simple is O(λn)

s v

+

_

2
vX

Putting it together

G

Run partitioning
procedure

S

Found low cond
set S, |S| < 1/λ

Remove cut
Run Simple(S)
Recur on remainder

Work/output = |S| < 1/λ

max pv < λ

G

Run Simple(G)
Work/output = λn

Balance at λ = 1/

Work/output =

n

n

The final algorithm

 For any  > 0, Balance runs in

O(n1.5+) time with approx factor = 0.5 + g()

 Beats O(n2) time of eigenvalue approach (but gives
much worse approx factor)

 Demonstrates power and insight of combinatorial
viewpoint

Running time/Approx Factor tradeoff

Conclusions and Open Problems

 First combinatorial algorithm to approximate
MaxCut to > 0.5 factor

 Open problems:

 Near linear running time?

 Better approx factor?

 Similar algorithms for MaxCSP?

 Better running time for local partitioning?

Thank you!

Greedy++

 Natural extension: fix a walk length l. Count #
even walks and odd walks and classify.

 Perfectly classifies bipartite graphs

 Trouble: # walks can grow

exponentially with length l

 Randomness to the rescue: use random
walks!

RW Heuristic ´ Spectral Algorithm

Assume: G is d-regular. Then L = I – (1/d)A.

Apply power method to (½)L with starting vector ei

RW Heuristic ´ Spectral Algorithm

Prob of (l -h)
self-loop

steps

Prob of h
move steps

Parity of
walk

Walk with h move steps and (l-h) self-loop steps

Coordinate j

Choice of
self-loop

steps

¼ [#(even walks) - #(odd walks)]/w

Starting Vector

 Starting vector for power method influences
convergence rate to top eigenvector

 Starting from unit vector x0, vector after k
iterations of power method is xk = Lkx0/kLkx0k

 To ensure xk
TLxk ¸ (1-) max

need

max = max
eigenvalue
x0

H =
projection of x0

on subspace of
top
eigenvectors

Local Partitioning

Thm: [JS ‘89] If a random walk from target vertex
gets stuck, there must be a sparse cut close by

1. Run several random walks
from target vertex

2. For each length up to l:
2a. Sort vertices in

decreasing order of
hitting frequency

2b. Check each prefix of
for sparse cut

Running time for Balance

 Local partitioning result: for any  > 0, in
O*(1/) time can find sparse cut or walk mixes
sufficiently so that work/output · O*(n1 + )

 Balancing point:  = n0.5 + /2, so that
work/output · O*(n0.5+ /2)

 Overall running time: O*(n1.5+ /2)

 Approx factor = 0.5 + h’()

