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Maximal Poisson-Disk Sampling

Figure 1: Maximal Poisson-Disk Sampling of a non-convex domain with a hole (left). The associated Grey-shaded disks show that this

Poisson-disk sampling is indeed maximal (right).

Abstract

We solve the problem of generating a uniform Poisson-disk sam-
pling that is both maximal and unbiased. The method is based on
classical dart-throwing with a background grid of square cells for
efficiency. In the first phase classical dart-throwing covers much
of the domain. A second phase calculates the connected compo-
nents of the remaining uncovered voids, and uses their geometry
to efficiently place unbiased samples that cover them. Our second
phase converges quickly, overcoming a common difficulty in dart-
throwing methods. Our algorithm is simple, easy to implement,
and can handle non-convex domains. The memory and expected
running time is linear in the output size, the number of points in the
final sample. Our serial implementation shows this is achieved in
practice; and we also have a parallel implementation.

CR Categories: 1.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling; F.2.2
[Theory of Computation]: Analysis of Algorithms and Problem
Complexity—Nonnumerical Algorithms and Problems

Keywords: poisson disk, maximal, provable convergence, linear
complexity, sampling, blue noise

1 Introduction

Maximal Poisson-disk sampling distributions are useful in many
applications. In computer graphics these distribution are desired
because the randomness avoids aliasing, and they have the blue
noise property. Blue noise means the inter-sample distances follow
a certain power law, with high frequencies more common. The lack
of low frequency noise produces visually pleasing results for ren-
dering, imaging, and geometry processing [Pharr and Humphreys
2004]. The bias-free property is crucial also in fracture propaga-
tion simulations. In this process, a random point cloud is required
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to minimize the effect of the dynamic re-meshing on the direction
of the crack growth. A maximal distribution improves the qual-
ity bounds and performance of meshing methods such as Delaunay
Triangulation [Attali and Boissonnat 2004].

Poisson-disk sampling is a process that selects a random set of
points, X = {;}, from a given domain, D in n-dimensional space.
The samples are at least a minimum distance apart, satisfying an
empty disk criterion. In this work we restrict to the uniform case,
where the disk radius, r, is constant regardless of location or iter-
ation. The maximal condition requires that the disks are simulta-
neously closely packed together, in the sense that the sample disks
cover the whole domain. Any sampling process that is maximal
must terminate, since no more points can be added to the sample
set. Bias-free means that the expected number of sample points in-
side any sub-domain is proportional to the area of the subdomain.
This is usually achieved by ensuring that the probability of selecting
a point for the next sample is equal to the probability of selecting
any other point, provided these points are not already inside some
prior sample’s disk.

Bias-free: Va, € X,VQCD:P(x; €Q) = / dw, (la)
Q

(1b)
(o)

Empty disk: Vi, z; € X,z # xj : ||as — z4]| > 7,

Maximal: Ve € D,3x; € X : ||z — x| < 1.

Despite the desirability of this distribution, it has been quite chal-
lenging for the community to discover an efficient algorithm that
satisfies all three conditions. For a detailed survey of Poisson sam-
pling methods see Lagae and Dutre [Lagae and Dutre 2008]. Vir-
tually all existing methods either solve a relaxed version of the
problem or require unbounded computational resources. That is,
the classical dart-throwing [Dippe and Wold 1985; Cook 1986] ap-
proach is unbiased but the probability of the next candidate point
satisfying (1b) vanishes as the algorithm progresses, requiring an
infinite amount of time to become maximal. Tile-based methods
improve the performance, but sacrifice the bias-free condition. For
example Wang tiles [Cohen et al. 2003; Lagae and Dutre 2005] re-
quires a biased Voronoi relaxation step to satisfy the empty-disk
condition. Penrose tiles [Ostromoukhov et al. 2004; Ostromoukhov
2007] is another example where each tile has a single sample, but
Voronoi relaxation is required to reduce sampling artifacts. An-
other class of methods improves efficiency by computing samples
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on the fly [Mitchell 1987; Jones 2006; Dunbar and Humpherys
2006; Bridson 2007]. However, these methods are biased and re-
quire relatively large storage. Dunar et al. [Dunbar and Humpherys
2006] proposed a linear-time advancing front method where each
new sample is picked from a region near to prior samples. Each new
point has the same distance to its nearest neighbor, which violates
the bias-free condition. Grid-based methods have emerged recently
and are very efficient. Wei [Wei 2008] proposed a parallel sampling
method that employs a sequence of multi-resolution uniform grids
in the dart throwing process. This method is not bias-free and ter-
minates without achieving a maximal distribution. To improve the
ability to reach a maximal distribution, White et al. [White et al.
2007] uses a tree-based method to capture the remaining void and
select new samples. The memory requirement of the algorithm has
been further improved by a similar method proposed by Gamito
and Maddock [Gamito and Maddock 2009]. However, tree-based
refinement methods require unbounded memory storage if a maxi-
mal distribution is desired.

In this paper, we present a simple, yet very effective algorithm
to solve the maximal Poisson-disk sampling problem. Our algo-
rithm inherits many desired properties from Wei’s algorithm [Wei
2008] such as simplicity and efficient parallel implementation us-
ing GPUs. Moreover, it generates bias-free maximal distributions
over non-convex domains while consuming limited resources. To
our knowledge, this is the first practical algorithm that simultane-
ously satisfies all the requirements of a maximal Possion-disk sam-
ple. The sampling process is achieved through two phases. For effi-
ciencty we use a background grid of square cells covering the whole
domain. Each cell can accommodate a single sample. In the first
phase darts are thrown into these cells. The initial darts are unlikely
to overlap so the algorithm starts very fast, but slows down as more
darts are placed, so we switch to the second phase. The first phase
leaves many small empty voids bounded by circles and grid cells.
These are approximated by convex polygonal voids. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. The algorithm is capable of tracking
the remaining voids in the domain up to round-oft error. A max-
imal distribution is achieved when the domain is completely cov-
ered, leaving no room for new points to be selected. The serial im-
plementation of our algorithm is capable of generating one million
samples from a square domain in less than 10 seconds. Moreover,
our algorithm is capable of handling non-convex domains which is
the typical input in many meshing applications.

HERE WE SHOULD EMPHASIS ON THE PARALLEL
IMPLEMENTATION CONTRIBUTION AND RESULTS

In the rest of this paper, we describe our algorithm in gradual steps.
In section (2) we go over the various steps of the two-dimension se-
quential algorithm. The 3d sequential implementation is presented
in Section (3). Parallel implementation aspects are discussed in
Section (4). Finally application examples are presented in Section
(5) to demonstrate the efficiency of the proposed method and the
quality of the output distributions.

2 Two dimensional sequential sampling

Our two phase-algorithm utilizes an active pool of cells to guide
the dart throwing process. During Phase I, each cell in the active
pool is square-shaped and can accommodate a single sample. Once
a dart is thrown successfully into a randomly-selected cell, this cell
is invalidated and removed from the active pool. An invalid cell is a
cell that does not have any room for a new sample. If a thrown dart
violates the empty-disk condition, the associated sample is rejected
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and that trial is considered as a miss. The first phase ends after a
given number of successive misses, /N. At this point, the area the
remaining void, €2, is relatively small compared to the total area of
the domain, D. This fact is implied by the probability of achieving
N successive misses in Equation 2.

N

P(zi=1,2,.. Q)=11.0-
(#iz12.8 € ) (o s

The remaining voids at the beginning of Phase II usually consists of
small regions distributed all-over the domain. We loop over the re-
maining valid cells and modify their boundaries such that we have
a better representation of the remaining void inside each cell. This
process reduces the area of the targeted domain to be almost the
same as the area of the remaining void. Virtually all the methods
in the literature have hard time trying to select a point from a small
void in the domain and this becomes more challenging as the void
gets smaller. It is quite interesting that this is not the case in our
method. As the void gets smaller, its linear representation has al-
most the same area so the chances of inserting a point into that void
is actually better.

Our algorithm consists of the following steps:

1. Generation of a background grid and identifying invalid and
boundary cells,

2. Dart throwing procedure via a set of square cells,
3. Generation of linear representation of the remaining voids,

4. Dart throwing procedure via a set of polygonal cells.

2.1 Generation of a background grid

The input of this algorithm is a set of edges defining the input do-
main. External boundary edges are oriented in a counter-clock wise
direction while the edge bounding a hole in the domain are oriented
in a clock-wise direction. This orientation is crucial for identify-
ing the interior of the domain. Another constraint is that each edge
must have a larger length compared to the radius of the output distri-
bution. Our algorithm can also accommodate point set input, pre-
scribed sample points, embedded in a bounded domain. We start
the algorithm by generating a uniform grid covering a bounding
box of the input domain. Each cell in this grid is identified using
a single index. The spacing of the uniform grid is given by %
Hence, each cell can only accommodate a single sample. Note that
storing the coordinate of the grid lower left corner, the spacing as
well as the number of rows and columns is sufficient to identify
any cell using its index. This information can be stored using a few
variables independent of the output distribution. Each cell in that
uniform grid is associated with two classifications. A valid cell is
a cell that has room for a new sample to be selected, and a bound-
ary cell is a cell intersecting one or more of the input edges. These
two classifications are stored using two boolean arrays to get the
best performance of the algorithm. Sampling a million points in a
square takes three million cells, which consumes less than 0.2 MB
of memory.

After generating the uniform grid, we identify the boundary cells.
For simplicity we re-use some of our main-algorithm machinery.
We generate points uniformly along each edge, and locate the hit
cell for each point. Some cells might be missed because an edge
could graze a corner and have a short length inside the cell. These
missed cells are neighbors of hit cells, and are recovered by check-
ing the intersection of the edge with the sides of the hit cell, us-
ing only integer operations. The cells interior to the domain are
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Figure 2: Phase I of Our algorithm. Boundary cells are first de-
tected (Top), then utilized to identify valid cells (Middle). The first
phase ends leaving few valid cells behind (Bottom).

distinguished from those exterior to the domain using a flood-fill
algorithm. Exterior cells are invalid by default, and interior cells
are marked valid. This background grid and flood-fill technique is
demonstrated using Figure 3.

For the purposes of simplifying the proofs, we assume that the in-
tersection of a cell with the domain is connected. If not, we use
Reiman sheets, duplicating a cell once for each connected compo-
nent, with the cell containing the appropriate boundary pieces. In
practice this step is unecessary, and we merely keep track of all the
connected components the same way we keep track of disconnected
voids.

2.2 Dart Throwing using squared-shaped cells

Since all the cells have the same area, The dart throwing proce-
dure can be executed by selecting a cell randomly from the active
pool and then we draw a random sample from the selected cell. If
this process was not successful i.e. the selected sample violates the
empty-disk condition, we count that iteration as a miss and throw
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Figure 3: Boundary edges are oriented based on their type (Left).
This orientation governs the propagation of the valid cells signal
(Middle). Some cells may have two propagating directions (Right).

another dart. Note that the empty-disk check is executed in con-
stant time since we need to test the selected sample against the
points already inserted in the two layers surrounding the selected
cell. If the selected cell was a boundary cell, the selected point has
to be checked against the associated edge to ensure that it lies in
the domain. If the process was successful, we accept the selected
sample and invalidate the associated cell. This loop is terminated
after reaching a given number of successive misses, /N. In our im-
plementation, we set N = 500. At this point we deduce that the
chance of utilizing the square-shaped cells in inserting more point
is quite low. Thus we switch to Phase II.

2.3 Generation of the linear representations of the re-
maining voids

For each valid cell we capture each remaining void using a linear
representation. This linear representation is achieved by the follow-
ing steps, which are illustrated in Figure 4:

1. Construct an initial polygon defining the boundaries of the
valid cell with respect to the domain interior.

2. Iterate over the neighbor discs and for each disc do the fol-
lowing:

(a) Retrieve any corner of the polygon that lies inside that
disc. If the disc does not contain any polygon corner,
proceed to the next disc.

(b) Insert two corners at the intersection of the disc and the
two polygon edges with endpoints inside the disc

(c) Delete all the polygon corners and edges that lies inside
the disc excluding its boundaries.

(d) Adjust the location of the new polygon corners to ac-
count for a disc that we already iterated over.

3. Split the generated polygon iteratively till each polygon con-
tains one isolated void at most. Note that a cell can contain a
maximum of three isolated. This step is illustrated in Figure 5.

Figure 4: Generation of the linear representation of a void en-
trapped between three circles. A polygon is constructed initially
using the cell boundaries. Three boolean subtractions are utilized
to retrieve a better linear representation of that void. During these
linear subtractions the position of the polygon are adjusted to ac-
count for old circles.
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nav

Figure 5: Generation of the linear representations of two void en-
trapped between two circles and a boundary edge. A polygon is
constructed initially using the cell boundaries. It is then modified
to respect the boundaries of the domain. After a polygon is gener-
ated it split into two to cature the isolated voids in this cell.

2.4 Dart Throwing using linear polygonal cells

This is similar to the previous dart throwing algorithm. However,
the random selection of a cell from the active pool takes into ac-
count the relative area between the cells. After selecting a cell, we
choose a random point from that cell and utilize the background
grid to check whether the selected point violates the empty-disk
condition or not. If the process was a success, the cell is removed
from the pool and the remaining cells are updated keeping the area
of the cells in the pool very close to the area of the remaining voids.
This property increases the probability of successful dart throwing
as the remaining voids get smaller. The algorithm terminates when
the active pool is empty. In order to have a better performance, we
implemented this step iteratively, where we just mark a cell to be
invalid instead of removing it from the selection pool. This elim-
inates the need to update the relative areas of the remaining valid
cells since we can select an invalid cell, which will be a miss in that
case. After a given number of successive misses, we remove all the
invalid cells from the selection pool and update the relative areas
of the remaining valid cells. This process continues till we have
an empty pool which indicates that a maximal distribution has been
achieved.

WE NEED TO PROVE THAT THE ALGORITHM WILL AL-
WAYS CONVERGE ... probabilistic approach !!!

Figure 6: Three maximal Poisson distributions using a unit square
domain and three different densities. Our serial implementation
is capable of generating 100,000 maximal bias-free Poisson sam-
ples/second.

2.5 Correctness and Linear Complexity

Let n be the number of darts in the domain after the algorithm ter-
minates. We first show that we do not have too many cells.
Theorem 1. The total number of cells intersecting the interior of
the domain |C| is ©(n).

Proof. |C| = Q(n) because each cell contains at most one dart. For
the other direction, we charge the empty cells to full cells, those
containing a dart. For interior cells, every point of every cell is
covered by at least one disk. The area of each disk is 772 and each
cell is 72 /2. So the ratio of interior cells to darts is at most 27. For
each boundary cell (intersecting the boundary of the domain), pick
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any point of the cell in the interior of the domain. There is at least
one disk covering that point. That disk is inside some 4 x 4 grid of
cells, so can cover at most 16 boundary cell points. O

Lemma 2. The expected fraction of a boundary cell that is interior
to the domain is 0.5.

Proof. The correctness of this lemma relies on several assumptions
about the domain. We assume r has been chosen so that any cell
contains at most one vertex, or at most one edge bounding the do-
main. We assume that the fraction of cells containing domain ver-
tices is small; if not, then we can add a constant to the probability
of a miss in Phase I, and we transition early to Phase II where these
cells are handled well. For any cell containing a boundary edge,
we assume that which of the two sides is interior to the domain are
equally likely, so the expected fraction interior is 0.5. O

In the following we assume that cells external to the domain have
been discarded and we are only generating darts for cells containing
some portion of the interior of the domain.

2.5.1 Phase | misses

Here we prove that the Phase I dart-throwing algorithm is bias free
and each throw has constant complexity. When Phase I completes,
the expected fraction of the domain covered by darts is xxx and the
expected running time is XxXx.

Z7ZYK

Let b be the ratio of the number of boundary cells to interior cells.
b depends on both the geometry of the domain and 7.

The expected area covered by a dart is 7% — §, where § = xxx
something dependent on b, and the number of successful darts so
far because darts may overlap

TODO:
Likelihood of a dart miss in Phase 1.

If the dart is in a boundary cell, the expectation of it falling outside
the domain is 0.5.

First consider a dart in an interior cell, where all 21 of its template
neighbors are interior as well.

The expected fraction of misses is
TODO: Bound the total number of misses to the number of succes-
sive misses.

2.5.2 void convexity and complexity

For the purposes of assigning a disk center to a unique square,
squares are considered open on their minimal extremes, as in Fig-
ure 7. We call such squares half-open squares.

Figure 7: Left. Any r-disk intersecting the central half-open square
is assigned to a unique square within this template. Center. Any
such r-disk induces an r /2-disk entirely inside this region. Right. 8
disks may overlap a square forming a single remainder region.
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Lemma 3 (Civilization[Meier and et al. ] template). r-disks that
intersect a half-open square are assigned to one of 21 squares, up
to two squares away, within a 5 X 5 grid of squares with the corner
squares removed, as in Figure 7.

Proof. Only these squares have points that are less than r away
from the center square. The corner squares of the 5 X 5 grid have
a corner point that is exactly distance r from a corner point of the
center square, but any r-disk centered at one of these corners is
either assigned to a closer square within the template, or the disk
intersects the closed but not half-open central square. O

This shows that checking if a dart is in any disk is a constant time
operation, that any void is bounded by a constant number of disks,
and that any square contains a constant number of voids. The
bounds provided by Lemma 3 may be tightened by using area, an-
gle, and distance arguments. For linearity in Phase II, it remains to
show that a constant fraction of each polygonal void is outside any
circle.

Lemma 4 (disks in square by area). No more than 15 r-disks can
intersect a square.

Proof. An empty-disk system of r-disks induces a system of non-
intersecting r /2-disks with the same centers but half radius. Any
r-disk overlapping the square has its r/2 disk completely within
distance 3r/4 of the square. The region that is at most distance
3d/4 from a square has area just under 5.77r2. Each r /2-disk cov-
ers a disjoint subset of this reagion, of area 7 /4. Hence at most
15 = |5.77r2/(wr? /4) | disks can "fit” close enough to the square
to intersect it. O

For voids we will improve the 15-disk bound to 9. Figure 7 is a
construction showing that 8 disks can bound a void.

A void V. is one connected component of the non-empty intersec-
tion of a square, together with the closed complement of some d-
disks. Vi is an arc-gon. A polygonal void V), is the convex hull
of V... For convenience in the proofs, we retain flar vertices v of
V- as vertices of V,, when the angle of V,, at v is 180°. Note that
V. is closed and bounded, and V/, is an outer approximation to V;..
The polygonal angle at a vertex y of V;. will mean the interior an-
gle between segments Ty and yz where x, y, and z are consecutive
vertices of V.. Ty denotes the line seqment between x and y and
|zy| denotes the straight-line distance between x and y.

Our next series of lemmas shows that all the vertices of V. appear
as vertices of V},, and we bound the size and shape of voids. For
simplicity we assume that a square is completely interior to the do-
main. At the end we relax this assumption and note that the changes
to the results are slight.

Lemma 5 (kites). The angle subtended by a chord Ty is twice the
angle o between the circles tangent at x and the chord. And o =
arcsin (|zy|/2r).

Proof. Similar triangles; see Figure 8. O

Theorem 6 (convex corners). The polygonal angle at a vertex of
Vi, is at most 180°.

Proof. See Figure 8. We have two cases. In the first case vertex y is
at the intersection of a circle C' and square edge e. At worst « and z
are also on e, in which case the angle is 180°. In the second case y
is at the intersection of two circles C and C. The angle between
the tangents of C, and the line between the points of intersection
between the two circles is at most 60°, achieved when ¢, lies on
C.. The angle between the tangent of C,, at y and the chord 7y is
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Figure 8: Left, some chord-angle identities. Right, an upper bound
on chord lengths implies an upper bound on polygonal angles. Bot-
tom, only one circle bounding a void can intersect a square side
twice.

arcsin(|zy|/4r) from Lemma 5. Since the chord must lie inside the
square, |zy| < r, and this angle is at most 30°. The angles between
the circles-intersection line and gz is also at most 90°, so the sum
of these angles is < 180°. (This second case might be tightened to
150°, since not both chords can be of length r.) O

Corollary 7 (naturally convex). All vertices of V;. are on the bound-
ary of Vp. Boundary edes of V,, are chords of circles and sub-
segments of square sides.

Corollary 8 (one arc). A circle contributes at most one arc to V;.

Proof. The exterior (relative to the circle) polygonal angle between
any three points on a circle is reflex, which implies any polygon
containing three points of a circle would have a reflex angle some-
where. Since V), is convex and has no reflex angles, at most two of
its vertices can lie on any one circle. O

Lemma 9 (convex centers). The centers of circles bounding V,
must be in convex position.

Proof. Note any the circle center is outside V;., else the square
would be covered by that circle. Suppose that three circles Cy, Cy,
and C touch V., but that y is not in convex position, meaning that
for some point p of V;. on Cy, Lzyp + Lpyzx > 180°. Assume Cy
intersects both of the other circles. Consider the arc of C, between
the intersection points that touches V., and assume it is shorter than
half the circle perimeter. (This arc is unique by Corollary 8.) Then
the arc’s chord is longer than r, the diagonal of the square. Hence
the other two circles are too far away from one another to both in-
tersect V;.. If the three circles do not intersect, or the arc is longer
than half the circle perimiter, then the other two circles are even
farther away. See Figure 8. O

Lemma 10 (10 arc sides). Less than 10 circles bound V..
Proof. We show that for r-disks bounding V., the distance between

the centers of the two farthest-apart circles ¢, and c, must be > 3r,
so not both can overlap a square with diagonal r. By symettry and
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Lemma 9 the closest ¢, and ¢, can be is if all circles are arranged
on a regular n-gon, with side length . By Lemma 5 the circum-
scribed circle C' for this n-gon has radius R = r/(2sin(180/n)).
For n > 10, we have R > 1.6r. For even n, the two farthest
apart disk centers are diametrically opposed on C. For odd n,
they are slightly closer; Zczcey, = 180(1 — 1/n) and |cpcy| =
2Rsin(Zcgcey/2) = rsin(90(1 — 1/n))/sin(180/n). This last
is monotonically increasing with n, and forn > 11is > 3.5r. O

Perhaps a stronger argument could show that 9 is impossible. In
any event, we have a construction in Figure 7 which shows that 8 is
possible. That construction may be modified by moving some of the
circles outward, exposing some of the square sides to be included
in the void V;.. Indeed, four of the circles may be positioned so that
each intersects one of the square sides twice, with both intersection
points forming flat vertices of V..

Lemma 11 (8 square sides). The square contributes at most 8 sides
to V., and only 4 if flat sides are ignored.

Proof. Any circle intersecting a side exactly once (and non-
tangent) contains one of the corners of the square, and so does not
increase the number of subsegments of the side bounding V.. See
Figure 8. There can only be one circle that intersects one of the
four sides twice or is tangent to it as follows. Consider the points of
outer tangency for a supporting line to two d-disks not containing
each others centers. The tangent points are at same distance from
each other as the disk centers are from each other, which is at least
d. Hence any line through these disks has farthest points of intersec-
tion > d apart. The length of the side of a squareis d/v/2 < d. O

Putting the prior lemmas together we have the following theorem.
Theorem 12 (few arc-gon sides). The number of sides of V. is at
most 17, and at most 13 if flat sides are removed. Figure 9 realizes
a void with 16 sides, and Figure 9 shows a void with 12 non-flat
sides.

The preceeding considered only squares that did not contain the
boundary of the input domain, but most of the proofs only relied
on squares being contained in a circle of radius r/2. For bound-
ary squares, we note that they may have at most two edges of the
input domain (sharing a common vertex), and their seqments on
the boundary of V,. are of length < r, so that the number of sides
increases by at most 2.

2.5.3 area ratio of arc-void to polygonal-void

We now consider the shape of the voids, specifically the ratio of
the area of V. to V},, since that determines the expected number of
dart-misses in Phase II.

Theorem 13. The ratio of the area of V. to the area of V,, is at least
a constant. THE CONSTANT IS UNKNOWN AND THE PROOF
WOULD NOT PRODUCE A TIGHT BOUND, BUT IT IS A START.
MAYBE A NON-LINEAR BOUND IS POSSIBLE AS THE AREA
GETS SMALLER.

Proof. Consider the circles defining the boundary of a void. We in-
clude circles intersecting a square side twice, because those circles
affect the valid area for placing a dart. Consider the Vornoi cells of
the circle centers; actually consider the weighted Vornoi region of
the circles [Edelsbrunner and Shah 1992]. Assume for now that the
remainder region is bounded entirely by r-circles, and truncate the
Voronoi cells at the polygonal void V.

For any circle C, its Voronoi cell will contain the circle chord on the
polygon boundary x, the arc-boundary s, and a part of the interior
of V,.. The reasons are as follows. Let V' C be the cicles trunctated
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Figure 9: Left, a void with 16 sides. Right, a void with 12 nonflat
sides.

Voronoi cell, and V'S¢ its partition outside C, and V' .S;,,; its part
inside C. Recall from Lemma 9 the circle centers are in convex
position and can be considered in order around the boundary of
the void. Since only the consecutive circles around the void may
overlap with C' (else the void would not be connected), the chord
is not inside any other circle so it is in VC. Also, the Voronoi
line of equal distances between C' and a non-consecutive circle lies
strictly outside C'. Since by Lemma 10 there are at most a constant
number of circles (j10), there are a constant number of straight sides
bounding VC. All of these bounding sides lie outside V' S¢x: as
well. At worst these sides approach tangency with C, and form
a 9-sided polygonal outer approximation to the arc. Since the arc
s has constant curvature, the area of V'S¢, is at least a constant
fraction of V'.S;,:. We do not work out the exact constant because
this bound is not very tight; for example much fewer than 9 circles
can be packed close enough to be nearly tangent with C'.

Now relax the assumption that the remainder region is bounded en-
tirely by circles. Treat the lines supporting the square sides or do-
main boundary as infinite-radius circles centered at infinity, and all
the arguments of the prior paragraph still hold. The area ratio bound
constant can be reproduced by assigning the Voronoi regions of the
infinite-radius circles to the closest r-circle, since for the infinite-
radius circles the arc-gon and polygon are identical. O
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2.5.4 number of voids per cell

We now consider the number of voids that may appear within a
square. Since at most a constant number of circles intersect a
square, combinatorics implies the number of voids is constant, but
that bound is very weak, so we improve it here.

We call two voids adjacent if they each have a vertex az, and by,
that is the intersection of the same pair of circles C,. and C. Those
circles are called consecutive. We first consider three sided remain-
der regions, and label their features as in Figure 10.

Figure 10: Top, labeling of a three-sided void. If Cy, and C, are
tangent, then ty, = Qg, = by, coincide. Middle, the 3-sided void
with smallest distance between an adjacent pair of voids. Bottom,
the 3-sided void with smallest distance between the second-closest
pair of adjacent voids.

If we keep the distance between two pairs of circles constant and
vary the third by moving one of the circle centers, we observe the
following inverse relationships about the distances between pairs of
circle centers and pairs of void vertices.

Lemma 14 (circle void distances). If azy, ay. and a.. are in the
same cell, then

|axyaacz‘ T, |a:tyayz| L |axzayz| | <= |Cycz‘ T

|azzayz] 1, |azzaoy] 1, [ayzaey| | <= |eacy| 1

‘awyayz‘ T, |a':tya:cz| J«a ‘ayzaaczl l — ‘Cxcz| T

Proof. By symettry it suffices to show the first two relationships.
First, if C; is tangent to both Cy, and C', then |azyaq:| = |cycz|/2
by similar triangles. Otherwise, |tzytz-| = |cyc:|/2 by similar
triangles. By Lemma 9 Lty cyts. is less than 180°, s0 [toytsz| 1
<= |azyac-| T. Second, we wish to show |azyay.| | <=
|eyez| 1. By similar triagles [tzyty.| = |cscz|/2 = constant. Also
by Lemma 5 |ay.ty.| | <= |cyc.| 1. The requirement that
both as, and a,. are in the cell bounds the chord length to r so
by Lemma 5 Zagycyay. < 120°; in particular this angle is non-
reflex which extends |ay.ty.| | <= |cyc:| T 10 |ay.ay:| | <
leye|.
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Figure 11: The configuration minimizing the distance to an adja-
cent void for two voids simultaneously. The circle centers form a
parallelogram, with vertices from four voids along the diagonal of
a square. Only three voids can fit strictly inside a cell.

Lemma 15. For three sided voids, the distance between consec-
utive adjacent voids is at least r /2. For other voids, the distance
between consecutive adjacent voids is at least r.

Proof. Consider moving the center ¢, of circle C, while keeping
all other circles of the void fixed, and keeping C'y overlapping with
the same two circles. Using Lemma 14, first varying |cycz| then
|eycz| shows that the minimum |azyay | is achieved when Cj, is
tangent to its consecutive circles. Similar triangles shows that this
distance is half the distance between the consecutive circle centers,
|czc:|. For three sided voids, |czc.| > r/2, and for all others
|czcz| > r. See Figure 10. O

Corollary 16. For a void with four or more sides, only two adja-
cent voids can be in the same cell as the void, and only one strictly
inside.

Proof. The square diagonal is 7, so only one pair of points at dis-
tance 7 can be placed inside it. O

Theorem 17. For a three-sided void, only two adjacent voids can
be strictly inside the same cell.

Proof. We consider the configuration minimizing the second-
closest pair of adjacent regions, and show that this distance is large.
WLOG |aytsz| < |az20yz] < |ayzazy|. We seek to show the
first inequality is equality by contradiction. Suppose the first in-
equality is strict. Then Lemma 14 shows that increasing |cyc.| in-
creases |az-ay- | and decreases |ag-ay-| and |agyay:|, a contradic-
tion to the configuration being optimal. S0 |agyaez| = |azzay:| <
|ayzazy|. Again Lemma 14 shows that increasing |cic.| will de-
crease both |az.azy| and |az-ay-|, so the optimal configuration has
maximal |cgc.|, or |czcz| = 2r. Hence all the disks are at distance
2r from one another, and each of the three adjacent cell verticex
pairs are distance r apart; see Figure 10. Since the square only has
diagonal lenght r, not all three of these vertices can fit. O

Lemma 18. NEED SOMETHING ABOUT ONLY NEEDING TO
CONSDIER POINTS OF CIRCLE INTERSECTION, THEY ARE
CLOSEST TO THE FIRST VOID.

Lemma 19. NEED SOMETHING ABOUT ONLY NEEDING TO
CONSIDER ADJACENT VOIDS. jsomething about only needing to
consider adjacent voids; If an adjacent void is not in the same cell,
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the... If voids are in the same cell, then two of them are adjacent.
non-adjacent voids are farther apart than adjacent ones...
Theorem 20. A cell can contain at most three voids.

Proof. Consider one of the voids in a cell. If it has four or more
sides, then Corollary 16 shows that only one more can fit - NEED
TO SHOW THAT NON-ADJACENT SIDES ARE EVEN FAR-
THER APART. Figure 11 shows two three-sided voids, each with
two tangent pairs of circles and one maximally overlaped pair of
circles. The circle centers form a parallelogram with side lengths
r and 2r. Center the square at the point of tangency between the
opposite circles; the other two points of tangency are distance /2
from this center tangency. See Figure 11. By Lemma 15 any other
arrangement has adjacent voids farther apart from the center point,
so cannot fit in the square. Hence four voids strictly interior to the
square is impossible. By moving the square off-center it can contain
three voids in its interior. O
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