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Maximal Poisson-Disk Sampling

Figure 1: Maximal Poisson-Disk Sampling of a non-convex domain with a hole (left). The associated Grey-shaded disks show that this
Poisson-disk sampling is indeed maximal (right).

Abstract1

We solve the problem of generating a uniform Poisson-disk sam-2

pling that is both maximal and unbiased. The method is based on3

classical dart-throwing with a background grid of square cells for4

efficiency. In the first phase classical dart-throwing covers much5

of the domain. A second phase calculates the connected compo-6

nents of the remaining uncovered voids, and uses their geometry7

to efficiently place unbiased samples that cover them. Our second8

phase converges quickly, overcoming a common difficulty in dart-9

throwing methods. Our algorithm is simple, easy to implement,10

and can handle non-convex domains. The memory and expected11

running time is linear in the output size, the number of points in the12

final sample. Our serial implementation shows this is achieved in13

practice; and we also have a parallel implementation.14
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1 Introduction21

Maximal Poisson-disk sampling distributions are useful in many22

applications. In computer graphics these distribution are desired23

because the randomness avoids aliasing, and they have the blue24

noise property. Blue noise means the inter-sample distances follow25

a certain power law, with high frequencies more common. The lack26

of low frequency noise produces visually pleasing results for ren-27

dering, imaging, and geometry processing [Pharr and Humphreys28

2004]. The bias-free property is crucial also in fracture propaga-29

tion simulations. In this process, a random point cloud is required30

to minimize the effect of the dynamic re-meshing on the direction31

of the crack growth. A maximal distribution improves the qual-32

ity bounds and performance of meshing methods such as Delaunay33

Triangulation [Attali and Boissonnat 2004].34

Poisson-disk sampling is a process that selects a random set of
points, X = {xi}, from a given domain,D in n-dimensional space.
The samples are at least a minimum distance apart, satisfying an
empty disk criterion. In this work we restrict to the uniform case,
where the disk radius, r, is constant regardless of location or iter-
ation. The maximal condition requires that the disks are simulta-
neously closely packed together, in the sense that the sample disks
cover the whole domain. Any sampling process that is maximal
must terminate, since no more points can be added to the sample
set. Bias-free means that the expected number of sample points in-
side any sub-domain is proportional to the area of the subdomain.
This is usually achieved by ensuring that the probability of selecting
a point for the next sample is equal to the probability of selecting
any other point, provided these points are not already inside some
prior sample’s disk.

Bias-free: ∀xi ∈ X,∀Ω ⊂ D : P (xi ∈ Ω) =

∫
Ω

dω, (1a)

Empty disk: ∀xi, xj ∈ X, xi 6= xj : ||xi − xj || ≥ r, (1b)
Maximal: ∀x ∈ D,∃xi ∈ X : ||x− xi|| < r. (1c)

Despite the desirability of this distribution, it has been quite chal-35

lenging for the community to discover an efficient algorithm that36

satisfies all three conditions. For a detailed survey of Poisson sam-37

pling methods see Lagae and Dutre [Lagae and Dutre 2008]. Vir-38

tually all existing methods either solve a relaxed version of the39

problem or require unbounded computational resources. That is,40

the classical dart-throwing [Dippe and Wold 1985; Cook 1986] ap-41

proach is unbiased but the probability of the next candidate point42

satisfying (1b) vanishes as the algorithm progresses, requiring an43

infinite amount of time to become maximal. Tile-based methods44

improve the performance, but sacrifice the bias-free condition. For45

example Wang tiles [Cohen et al. 2003; Lagae and Dutre 2005] re-46

quires a biased Voronoi relaxation step to satisfy the empty-disk47

condition. Penrose tiles [Ostromoukhov et al. 2004; Ostromoukhov48

2007] is another example where each tile has a single sample, but49

Voronoi relaxation is required to reduce sampling artifacts. An-50

other class of methods improves efficiency by computing samples51
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on the fly [Mitchell 1987; Jones 2006; Dunbar and Humpherys52

2006; Bridson 2007]. However, these methods are biased and re-53

quire relatively large storage. Dunar et al. [Dunbar and Humpherys54

2006] proposed a linear-time advancing front method where each55

new sample is picked from a region near to prior samples. Each new56

point has the same distance to its nearest neighbor, which violates57

the bias-free condition. Grid-based methods have emerged recently58

and are very efficient. Wei [Wei 2008] proposed a parallel sampling59

method that employs a sequence of multi-resolution uniform grids60

in the dart throwing process. This method is not bias-free and ter-61

minates without achieving a maximal distribution. To improve the62

ability to reach a maximal distribution, White et al. [White et al.63

2007] uses a tree-based method to capture the remaining void and64

select new samples. The memory requirement of the algorithm has65

been further improved by a similar method proposed by Gamito66

and Maddock [Gamito and Maddock 2009]. However, tree-based67

refinement methods require unbounded memory storage if a maxi-68

mal distribution is desired.69

In this paper, we present a simple, yet very effective algorithm70

to solve the maximal Poisson-disk sampling problem. Our algo-71

rithm inherits many desired properties from Wei’s algorithm [Wei72

2008] such as simplicity and efficient parallel implementation us-73

ing GPUs. Moreover, it generates bias-free maximal distributions74

over non-convex domains while consuming limited resources. To75

our knowledge, this is the first practical algorithm that simultane-76

ously satisfies all the requirements of a maximal Possion-disk sam-77

ple. The sampling process is achieved through two phases. For effi-78

ciencty we use a background grid of square cells covering the whole79

domain. Each cell can accommodate a single sample. In the first80

phase darts are thrown into these cells. The initial darts are unlikely81

to overlap so the algorithm starts very fast, but slows down as more82

darts are placed, so we switch to the second phase. The first phase83

leaves many small empty voids bounded by circles and grid cells.84

These are approximated by convex polygonal voids. During the85

second phase, darts are thrown directly into the voids, with prob-86

ability proportional to the relative areas of the voids, which main-87

tains the bias-free condition. The algorithm is capable of tracking88

the remaining voids in the domain up to round-off error. A max-89

imal distribution is achieved when the domain is completely cov-90

ered, leaving no room for new points to be selected. The serial im-91

plementation of our algorithm is capable of generating one million92

samples from a square domain in less than 10 seconds. Moreover,93

our algorithm is capable of handling non-convex domains which is94

the typical input in many meshing applications.95

HERE WE SHOULD EMPHASIS ON THE PARALLEL96

IMPLEMENTATION CONTRIBUTION AND RESULTS97

......................98

In the rest of this paper, we describe our algorithm in gradual steps.99

In section (2) we go over the various steps of the two-dimension se-100

quential algorithm. The 3d sequential implementation is presented101

in Section (3). Parallel implementation aspects are discussed in102

Section (4). Finally application examples are presented in Section103

(5) to demonstrate the efficiency of the proposed method and the104

quality of the output distributions.105

2 Two dimensional sequential sampling106

Our two phase-algorithm utilizes an active pool of cells to guide107

the dart throwing process. During Phase I, each cell in the active108

pool is square-shaped and can accommodate a single sample. Once109

a dart is thrown successfully into a randomly-selected cell, this cell110

is invalidated and removed from the active pool. An invalid cell is a111

cell that does not have any room for a new sample. If a thrown dart112

violates the empty-disk condition, the associated sample is rejected113

and that trial is considered as a miss. The first phase ends after a114

given number of successive misses, N . At this point, the area the115

remaining void, Ω, is relatively small compared to the total area of116

the domain, D. This fact is implied by the probability of achieving117

N successive misses in Equation 2.118

P (xi=1,2,...,N /∈ Ω) =

(
1.0−

∫
Ω

dω∫
D dω

)N

(2)

The remaining voids at the beginning of Phase II usually consists of119

small regions distributed all-over the domain. We loop over the re-120

maining valid cells and modify their boundaries such that we have121

a better representation of the remaining void inside each cell. This122

process reduces the area of the targeted domain to be almost the123

same as the area of the remaining void. Virtually all the methods124

in the literature have hard time trying to select a point from a small125

void in the domain and this becomes more challenging as the void126

gets smaller. It is quite interesting that this is not the case in our127

method. As the void gets smaller, its linear representation has al-128

most the same area so the chances of inserting a point into that void129

is actually better.130

Our algorithm consists of the following steps:131

1. Generation of a background grid and identifying invalid and132

boundary cells,133

2. Dart throwing procedure via a set of square cells,134

3. Generation of linear representation of the remaining voids,135

4. Dart throwing procedure via a set of polygonal cells.136

2.1 Generation of a background grid137

The input of this algorithm is a set of edges defining the input do-138

main. External boundary edges are oriented in a counter-clock wise139

direction while the edge bounding a hole in the domain are oriented140

in a clock-wise direction. This orientation is crucial for identify-141

ing the interior of the domain. Another constraint is that each edge142

must have a larger length compared to the radius of the output distri-143

bution. Our algorithm can also accommodate point set input, pre-144

scribed sample points, embedded in a bounded domain. We start145

the algorithm by generating a uniform grid covering a bounding146

box of the input domain. Each cell in this grid is identified using147

a single index. The spacing of the uniform grid is given by r√
2

.148

Hence, each cell can only accommodate a single sample. Note that149

storing the coordinate of the grid lower left corner, the spacing as150

well as the number of rows and columns is sufficient to identify151

any cell using its index. This information can be stored using a few152

variables independent of the output distribution. Each cell in that153

uniform grid is associated with two classifications. A valid cell is154

a cell that has room for a new sample to be selected, and a bound-155

ary cell is a cell intersecting one or more of the input edges. These156

two classifications are stored using two boolean arrays to get the157

best performance of the algorithm. Sampling a million points in a158

square takes three million cells, which consumes less than 0.2 MB159

of memory.160

After generating the uniform grid, we identify the boundary cells.161

For simplicity we re-use some of our main-algorithm machinery.162

We generate points uniformly along each edge, and locate the hit163

cell for each point. Some cells might be missed because an edge164

could graze a corner and have a short length inside the cell. These165

missed cells are neighbors of hit cells, and are recovered by check-166

ing the intersection of the edge with the sides of the hit cell, us-167

ing only integer operations. The cells interior to the domain are168
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Figure 2: Phase I of Our algorithm. Boundary cells are first de-
tected (Top), then utilized to identify valid cells (Middle). The first
phase ends leaving few valid cells behind (Bottom).

distinguished from those exterior to the domain using a flood-fill169

algorithm. Exterior cells are invalid by default, and interior cells170

are marked valid. This background grid and flood-fill technique is171

demonstrated using Figure 3.172

For the purposes of simplifying the proofs, we assume that the in-173

tersection of a cell with the domain is connected. If not, we use174

Reiman sheets, duplicating a cell once for each connected compo-175

nent, with the cell containing the appropriate boundary pieces. In176

practice this step is unecessary, and we merely keep track of all the177

connected components the same way we keep track of disconnected178

voids.179

2.2 Dart Throwing using squared-shaped cells180

Since all the cells have the same area, The dart throwing proce-181

dure can be executed by selecting a cell randomly from the active182

pool and then we draw a random sample from the selected cell. If183

this process was not successful i.e. the selected sample violates the184

empty-disk condition, we count that iteration as a miss and throw185

Figure 3: Boundary edges are oriented based on their type (Left).
This orientation governs the propagation of the valid cells signal
(Middle). Some cells may have two propagating directions (Right).

another dart. Note that the empty-disk check is executed in con-186

stant time since we need to test the selected sample against the187

points already inserted in the two layers surrounding the selected188

cell. If the selected cell was a boundary cell, the selected point has189

to be checked against the associated edge to ensure that it lies in190

the domain. If the process was successful, we accept the selected191

sample and invalidate the associated cell. This loop is terminated192

after reaching a given number of successive misses, N . In our im-193

plementation, we set N = 500. At this point we deduce that the194

chance of utilizing the square-shaped cells in inserting more point195

is quite low. Thus we switch to Phase II.196

2.3 Generation of the linear representations of the re-197

maining voids198

For each valid cell we capture each remaining void using a linear199

representation. This linear representation is achieved by the follow-200

ing steps, which are illustrated in Figure 4:201

1. Construct an initial polygon defining the boundaries of the202

valid cell with respect to the domain interior.203

2. Iterate over the neighbor discs and for each disc do the fol-204

lowing:205

(a) Retrieve any corner of the polygon that lies inside that206

disc. If the disc does not contain any polygon corner,207

proceed to the next disc.208

(b) Insert two corners at the intersection of the disc and the209

two polygon edges with endpoints inside the disc210

(c) Delete all the polygon corners and edges that lies inside211

the disc excluding its boundaries.212

(d) Adjust the location of the new polygon corners to ac-213

count for a disc that we already iterated over.214

3. Split the generated polygon iteratively till each polygon con-215

tains one isolated void at most. Note that a cell can contain a216

maximum of three isolated. This step is illustrated in Figure 5.217

Figure 4: Generation of the linear representation of a void en-
trapped between three circles. A polygon is constructed initially
using the cell boundaries. Three boolean subtractions are utilized
to retrieve a better linear representation of that void. During these
linear subtractions the position of the polygon are adjusted to ac-
count for old circles.
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Figure 5: Generation of the linear representations of two void en-
trapped between two circles and a boundary edge. A polygon is
constructed initially using the cell boundaries. It is then modified
to respect the boundaries of the domain. After a polygon is gener-
ated it split into two to cature the isolated voids in this cell.

2.4 Dart Throwing using linear polygonal cells218

This is similar to the previous dart throwing algorithm. However,219

the random selection of a cell from the active pool takes into ac-220

count the relative area between the cells. After selecting a cell, we221

choose a random point from that cell and utilize the background222

grid to check whether the selected point violates the empty-disk223

condition or not. If the process was a success, the cell is removed224

from the pool and the remaining cells are updated keeping the area225

of the cells in the pool very close to the area of the remaining voids.226

This property increases the probability of successful dart throwing227

as the remaining voids get smaller. The algorithm terminates when228

the active pool is empty. In order to have a better performance, we229

implemented this step iteratively, where we just mark a cell to be230

invalid instead of removing it from the selection pool. This elim-231

inates the need to update the relative areas of the remaining valid232

cells since we can select an invalid cell, which will be a miss in that233

case. After a given number of successive misses, we remove all the234

invalid cells from the selection pool and update the relative areas235

of the remaining valid cells. This process continues till we have236

an empty pool which indicates that a maximal distribution has been237

achieved.238

WE NEED TO PROVE THAT THE ALGORITHM WILL AL-239

WAYS CONVERGE ... probabilistic approach !!!240

Figure 6: Three maximal Poisson distributions using a unit square
domain and three different densities. Our serial implementation
is capable of generating 100,000 maximal bias-free Poisson sam-
ples/second.

2.5 Correctness and Linear Complexity241

Let n be the number of darts in the domain after the algorithm ter-242

minates. We first show that we do not have too many cells.243

Theorem 1. The total number of cells intersecting the interior of244

the domain |C| is Θ(n).245

Proof. |C| = Ω(n) because each cell contains at most one dart. For246

the other direction, we charge the empty cells to full cells, those247

containing a dart. For interior cells, every point of every cell is248

covered by at least one disk. The area of each disk is πr2 and each249

cell is r2/2. So the ratio of interior cells to darts is at most 2π. For250

each boundary cell (intersecting the boundary of the domain), pick251

any point of the cell in the interior of the domain. There is at least252

one disk covering that point. That disk is inside some 4× 4 grid of253

cells, so can cover at most 16 boundary cell points.254

Lemma 2. The expected fraction of a boundary cell that is interior255

to the domain is 0.5.256

Proof. The correctness of this lemma relies on several assumptions257

about the domain. We assume r has been chosen so that any cell258

contains at most one vertex, or at most one edge bounding the do-259

main. We assume that the fraction of cells containing domain ver-260

tices is small; if not, then we can add a constant to the probability261

of a miss in Phase I, and we transition early to Phase II where these262

cells are handled well. For any cell containing a boundary edge,263

we assume that which of the two sides is interior to the domain are264

equally likely, so the expected fraction interior is 0.5.265

In the following we assume that cells external to the domain have266

been discarded and we are only generating darts for cells containing267

some portion of the interior of the domain.268

2.5.1 Phase I misses269

Here we prove that the Phase I dart-throwing algorithm is bias free270

and each throw has constant complexity. When Phase I completes,271

the expected fraction of the domain covered by darts is xxx and the272

expected running time is xxx.273

ZZYK274

Let b be the ratio of the number of boundary cells to interior cells.275

b depends on both the geometry of the domain and r.276

The expected area covered by a dart is πr2 − δ, where δ = xxx277

something dependent on b, and the number of successful darts so278

far because darts may overlap279

TODO:280

Likelihood of a dart miss in Phase I.281

If the dart is in a boundary cell, the expectation of it falling outside282

the domain is 0.5.283

First consider a dart in an interior cell, where all 21 of its template284

neighbors are interior as well.285

The expected fraction of misses is286

TODO: Bound the total number of misses to the number of succes-287

sive misses.288

2.5.2 void convexity and complexity289

For the purposes of assigning a disk center to a unique square,290

squares are considered open on their minimal extremes, as in Fig-291

ure 7. We call such squares half-open squares.292

Figure 7: Left. Any r-disk intersecting the central half-open square
is assigned to a unique square within this template. Center. Any
such r-disk induces an r/2-disk entirely inside this region. Right. 8
disks may overlap a square forming a single remainder region.
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Lemma 3 (Civilization[Meier and et al. ] template). r-disks that293

intersect a half-open square are assigned to one of 21 squares, up294

to two squares away, within a 5× 5 grid of squares with the corner295

squares removed, as in Figure 7.296

Proof. Only these squares have points that are less than r away297

from the center square. The corner squares of the 5 × 5 grid have298

a corner point that is exactly distance r from a corner point of the299

center square, but any r-disk centered at one of these corners is300

either assigned to a closer square within the template, or the disk301

intersects the closed but not half-open central square.302

This shows that checking if a dart is in any disk is a constant time303

operation, that any void is bounded by a constant number of disks,304

and that any square contains a constant number of voids. The305

bounds provided by Lemma 3 may be tightened by using area, an-306

gle, and distance arguments. For linearity in Phase II, it remains to307

show that a constant fraction of each polygonal void is outside any308

circle.309

Lemma 4 (disks in square by area). No more than 15 r-disks can310

intersect a square.311

Proof. An empty-disk system of r-disks induces a system of non-312

intersecting r/2-disks with the same centers but half radius. Any313

r-disk overlapping the square has its r/2 disk completely within314

distance 3r/4 of the square. The region that is at most distance315

3d/4 from a square has area just under 5.77r2. Each r/2-disk cov-316

ers a disjoint subset of this reagion, of area πr2/4. Hence at most317

15 = b5.77r2/(πr2/4)c disks can ”fit” close enough to the square318

to intersect it.319

For voids we will improve the 15-disk bound to 9. Figure 7 is a320

construction showing that 8 disks can bound a void.321

A void Vr is one connected component of the non-empty intersec-322

tion of a square, together with the closed complement of some d-323

disks. Vr is an arc-gon. A polygonal void Vp is the convex hull324

of Vr . For convenience in the proofs, we retain flat vertices v of325

Vr as vertices of Vp when the angle of Vp at v is 180◦. Note that326

Vr is closed and bounded, and Vp is an outer approximation to Vr .327

The polygonal angle at a vertex y of Vr will mean the interior an-328

gle between segments xy and yz where x, y, and z are consecutive329

vertices of Vr . xy denotes the line seqment between x and y and330

|xy| denotes the straight-line distance between x and y.331

Our next series of lemmas shows that all the vertices of Vr appear332

as vertices of Vp, and we bound the size and shape of voids. For333

simplicity we assume that a square is completely interior to the do-334

main. At the end we relax this assumption and note that the changes335

to the results are slight.336

Lemma 5 (kites). The angle subtended by a chord xy is twice the337

angle α between the circles tangent at x and the chord. And α =338

arcsin (|xy|/2r).339

Proof. Similar triangles; see Figure 8.340

Theorem 6 (convex corners). The polygonal angle at a vertex of341

Vr is at most 180◦.342

Proof. See Figure 8. We have two cases. In the first case vertex y is343

at the intersection of a circle C and square edge e. At worst x and z344

are also on e, in which case the angle is 180◦. In the second case y345

is at the intersection of two circles Cx and Cz . The angle between346

the tangents of Cx and the line between the points of intersection347

between the two circles is at most 60◦, achieved when cx lies on348

Cz . The angle between the tangent of Cx at y and the chord xy is349

Figure 8: Left, some chord-angle identities. Right, an upper bound
on chord lengths implies an upper bound on polygonal angles. Bot-
tom, only one circle bounding a void can intersect a square side
twice.

arcsin(|xy|/4r) from Lemma 5. Since the chord must lie inside the350

square, |xy| ≤ r, and this angle is at most 30◦. The angles between351

the circles-intersection line and yz is also at most 90◦, so the sum352

of these angles is ≤ 180◦. (This second case might be tightened to353

150◦, since not both chords can be of length r.)354

Corollary 7 (naturally convex). All vertices of Vr are on the bound-355

ary of Vp. Boundary edes of Vp are chords of circles and sub-356

segments of square sides.357

Corollary 8 (one arc). A circle contributes at most one arc to Vr .358

Proof. The exterior (relative to the circle) polygonal angle between359

any three points on a circle is reflex, which implies any polygon360

containing three points of a circle would have a reflex angle some-361

where. Since Vp is convex and has no reflex angles, at most two of362

its vertices can lie on any one circle.363

Lemma 9 (convex centers). The centers of circles bounding Vr364

must be in convex position.365

Proof. Note any the circle center is outside Vr , else the square366

would be covered by that circle. Suppose that three circles Cx, Cy,367

and Cz touch Vr , but that y is not in convex position, meaning that368

for some point p of Vr on Cy , ∠zyp + ∠pyx > 180◦. Assume Cy369

intersects both of the other circles. Consider the arc of Cy between370

the intersection points that touches Vr , and assume it is shorter than371

half the circle perimeter. (This arc is unique by Corollary 8.) Then372

the arc’s chord is longer than r, the diagonal of the square. Hence373

the other two circles are too far away from one another to both in-374

tersect Vr . If the three circles do not intersect, or the arc is longer375

than half the circle perimiter, then the other two circles are even376

farther away. See Figure 8.377

Lemma 10 (10 arc sides). Less than 10 circles bound Vr .378

Proof. We show that for r-disks bounding Vr , the distance between379

the centers of the two farthest-apart circles cx and cy must be > 3r,380

so not both can overlap a square with diagonal r. By symettry and381
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Lemma 9 the closest cx and cy can be is if all circles are arranged382

on a regular n-gon, with side length r. By Lemma 5 the circum-383

scribed circle C for this n-gon has radius R = r/(2 sin(180/n)).384

For n ≥ 10, we have R > 1.6r. For even n, the two farthest385

apart disk centers are diametrically opposed on C. For odd n,386

they are slightly closer; ∠cxccy = 180(1 − 1/n) and |cxcy| =387

2R sin(∠cxccy/2) = r sin(90(1 − 1/n))/ sin(180/n). This last388

is monotonically increasing with n, and for n ≥ 11 is > 3.5r.389

Perhaps a stronger argument could show that 9 is impossible. In390

any event, we have a construction in Figure 7 which shows that 8 is391

possible. That construction may be modified by moving some of the392

circles outward, exposing some of the square sides to be included393

in the void Vr . Indeed, four of the circles may be positioned so that394

each intersects one of the square sides twice, with both intersection395

points forming flat vertices of Vr .396

Lemma 11 (8 square sides). The square contributes at most 8 sides397

to Vr , and only 4 if flat sides are ignored.398

Proof. Any circle intersecting a side exactly once (and non-399

tangent) contains one of the corners of the square, and so does not400

increase the number of subsegments of the side bounding Vr . See401

Figure 8. There can only be one circle that intersects one of the402

four sides twice or is tangent to it as follows. Consider the points of403

outer tangency for a supporting line to two d-disks not containing404

each others centers. The tangent points are at same distance from405

each other as the disk centers are from each other, which is at least406

d. Hence any line through these disks has farthest points of intersec-407

tion > d apart. The length of the side of a square is d/
√

2 < d.408

Putting the prior lemmas together we have the following theorem.409

Theorem 12 (few arc-gon sides). The number of sides of Vr is at410

most 17, and at most 13 if flat sides are removed. Figure 9 realizes411

a void with 16 sides, and Figure 9 shows a void with 12 non-flat412

sides.413

The preceeding considered only squares that did not contain the414

boundary of the input domain, but most of the proofs only relied415

on squares being contained in a circle of radius r/2. For bound-416

ary squares, we note that they may have at most two edges of the417

input domain (sharing a common vertex), and their seqments on418

the boundary of Vr are of length < r, so that the number of sides419

increases by at most 2.420

2.5.3 area ratio of arc-void to polygonal-void421

We now consider the shape of the voids, specifically the ratio of422

the area of Vr to Vp, since that determines the expected number of423

dart-misses in Phase II.424

Theorem 13. The ratio of the area of Vr to the area of Vp is at least425

a constant. THE CONSTANT IS UNKNOWN AND THE PROOF426

WOULD NOT PRODUCE A TIGHT BOUND, BUT IT IS A START.427

MAYBE A NON-LINEAR BOUND IS POSSIBLE AS THE AREA428

GETS SMALLER.429

Proof. Consider the circles defining the boundary of a void. We in-430

clude circles intersecting a square side twice, because those circles431

affect the valid area for placing a dart. Consider the Vornoi cells of432

the circle centers; actually consider the weighted Vornoi region of433

the circles [Edelsbrunner and Shah 1992]. Assume for now that the434

remainder region is bounded entirely by r-circles, and truncate the435

Voronoi cells at the polygonal void Vp.436

For any circle C, its Voronoi cell will contain the circle chord on the437

polygon boundary χ, the arc-boundary s, and a part of the interior438

of Vr . The reasons are as follows. Let V C be the cicles trunctated439

Figure 9: Left, a void with 16 sides. Right, a void with 12 nonflat
sides.

Voronoi cell, and V Sext its partition outside C, and V Sint its part440

inside C. Recall from Lemma 9 the circle centers are in convex441

position and can be considered in order around the boundary of442

the void. Since only the consecutive circles around the void may443

overlap with C (else the void would not be connected), the chord444

is not inside any other circle so it is in V C. Also, the Voronoi445

line of equal distances between C and a non-consecutive circle lies446

strictly outside C. Since by Lemma 10 there are at most a constant447

number of circles (¡10), there are a constant number of straight sides448

bounding V C. All of these bounding sides lie outside V Sext as449

well. At worst these sides approach tangency with C, and form450

a 9-sided polygonal outer approximation to the arc. Since the arc451

s has constant curvature, the area of V Sext is at least a constant452

fraction of V Sint. We do not work out the exact constant because453

this bound is not very tight; for example much fewer than 9 circles454

can be packed close enough to be nearly tangent with C.455

Now relax the assumption that the remainder region is bounded en-456

tirely by circles. Treat the lines supporting the square sides or do-457

main boundary as infinite-radius circles centered at infinity, and all458

the arguments of the prior paragraph still hold. The area ratio bound459

constant can be reproduced by assigning the Voronoi regions of the460

infinite-radius circles to the closest r-circle, since for the infinite-461

radius circles the arc-gon and polygon are identical.462
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2.5.4 number of voids per cell463

We now consider the number of voids that may appear within a464

square. Since at most a constant number of circles intersect a465

square, combinatorics implies the number of voids is constant, but466

that bound is very weak, so we improve it here.467

We call two voids adjacent if they each have a vertex axy and bxy468

that is the intersection of the same pair of circles Cx and Cy . Those469

circles are called consecutive. We first consider three sided remain-470

der regions, and label their features as in Figure 10.471

Figure 10: Top, labeling of a three-sided void. If Cx and Cz are
tangent, then txz = axz = bxz coincide. Middle, the 3-sided void
with smallest distance between an adjacent pair of voids. Bottom,
the 3-sided void with smallest distance between the second-closest
pair of adjacent voids.

If we keep the distance between two pairs of circles constant and472

vary the third by moving one of the circle centers, we observe the473

following inverse relationships about the distances between pairs of474

circle centers and pairs of void vertices.475

Lemma 14 (circle void distances). If axy , ayz and axz are in the
same cell, then

|axyaxz| ↑, |axyayz| ↓, |axzayz| ↓ ⇐⇒ |cycz| ↑

|axzayz| ↑, |axzaxy| ↓, |ayzaxy| ↓ ⇐⇒ |cxcy| ↑

|axyayz| ↑, |axyaxz| ↓, |ayzaxz| ↓ ⇐⇒ |cxcz| ↑

Proof. By symettry it suffices to show the first two relationships.476

First, if Cx is tangent to both Cy and Cz then |axyaxz| = |cycz|/2477

by similar triangles. Otherwise, |txytxz| = |cycz|/2 by similar478

triangles. By Lemma 9 ∠txycxtxz is less than 180◦, so |txytxz| ↑479

⇐⇒ |axyaxz| ↑. Second, we wish to show |axyayz| ↓ ⇐⇒480

|cycz| ↑. By similar triagles |txytyz| = |cxcz|/2 = constant. Also481

by Lemma 5 |ayztyz| ↓ ⇐⇒ |cycz| ↑. The requirement that482

both axy and ayz are in the cell bounds the chord length to r so483

by Lemma 5 ∠axycyayz ≤ 120◦; in particular this angle is non-484

reflex which extends |ayztyz| ↓ ⇐⇒ |cycz| ↑ to |ayzayz| ↓ ⇐⇒485

|cycz|.486

Figure 11: The configuration minimizing the distance to an adja-
cent void for two voids simultaneously. The circle centers form a
parallelogram, with vertices from four voids along the diagonal of
a square. Only three voids can fit strictly inside a cell.

Lemma 15. For three sided voids, the distance between consec-487

utive adjacent voids is at least r/2. For other voids, the distance488

between consecutive adjacent voids is at least r.489

Proof. Consider moving the center cy of circle Cy while keeping490

all other circles of the void fixed, and keeping Cy overlapping with491

the same two circles. Using Lemma 14, first varying |cycx| then492

|cycz| shows that the minimum |axyayz| is achieved when Cy is493

tangent to its consecutive circles. Similar triangles shows that this494

distance is half the distance between the consecutive circle centers,495

|cxcz|. For three sided voids, |cxcz| ≥ r/2, and for all others496

|cxcz| ≥ r. See Figure 10.497

Corollary 16. For a void with four or more sides, only two adja-498

cent voids can be in the same cell as the void, and only one strictly499

inside.500

Proof. The square diagonal is r, so only one pair of points at dis-501

tance r can be placed inside it.502

Theorem 17. For a three-sided void, only two adjacent voids can503

be strictly inside the same cell.504

Proof. We consider the configuration minimizing the second-505

closest pair of adjacent regions, and show that this distance is large.506

WLOG |axyaxz| ≤ |axzayz| ≤ |ayzaxy|. We seek to show the507

first inequality is equality by contradiction. Suppose the first in-508

equality is strict. Then Lemma 14 shows that increasing |cycz| in-509

creases |axzayz| and decreases |axzayz| and |axyayz|, a contradic-510

tion to the configuration being optimal. So |axyaxz| = |axzayz| ≤511

|ayzaxy|. Again Lemma 14 shows that increasing |cxcz| will de-512

crease both |axzaxy| and |axzayz|, so the optimal configuration has513

maximal |cxcz|, or |cxcz| = 2r. Hence all the disks are at distance514

2r from one another, and each of the three adjacent cell verticex515

pairs are distance r apart; see Figure 10. Since the square only has516

diagonal lenght r, not all three of these vertices can fit.517

Lemma 18. NEED SOMETHING ABOUT ONLY NEEDING TO518

CONSDIER POINTS OF CIRCLE INTERSECTION, THEY ARE519

CLOSEST TO THE FIRST VOID.520

Lemma 19. NEED SOMETHING ABOUT ONLY NEEDING TO521

CONSIDER ADJACENT VOIDS. ¡something about only needing to522

consider adjacent voids¿ If an adjacent void is not in the same cell,523
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the... If voids are in the same cell, then two of them are adjacent.524

non-adjacent voids are farther apart than adjacent ones...525

Theorem 20. A cell can contain at most three voids.526

Proof. Consider one of the voids in a cell. If it has four or more527

sides, then Corollary 16 shows that only one more can fit - NEED528

TO SHOW THAT NON-ADJACENT SIDES ARE EVEN FAR-529

THER APART. Figure 11 shows two three-sided voids, each with530

two tangent pairs of circles and one maximally overlaped pair of531

circles. The circle centers form a parallelogram with side lengths532

r and 2r. Center the square at the point of tangency between the533

opposite circles; the other two points of tangency are distance r/2534

from this center tangency. See Figure 11. By Lemma 15 any other535

arrangement has adjacent voids farther apart from the center point,536

so cannot fit in the square. Hence four voids strictly interior to the537

square is impossible. By moving the square off-center it can contain538

three voids in its interior.539
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