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Outline

= Defining Verification (Code vs Calculation)
= What is difficult about verification

= The (less than completely obvious) connections of
verification and numerical analysis

= New methods for numerical analysis of under-
resolved calculations

= Putting this together with methodology for
calculation verification
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What verification means in numerical analysis!

“For the numerical analyst there are two kinds
of truth; the truth you can prove and the truth
you see when you compute.”

— Ami Harten

Corollary: when proof and computing-
provide the same truth, you actually
have something!
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Let’ s define verification first to make sure
we are on the same page. *

= Verification is used to do a couple of things:

¢ Provide evidence that the code is correct and correctly
Implemented

¢ Produce an estimate of numerical error, and evidence that
the mesh is adequate.

= Two types of verification are relevant here:

¢ Code verification: the proof that the code is correctly
Implemented

¢ Calculation (solution) verification: the estimate of
numerical error and implicitly, discretization adequacy.
¢ Software verification is important, but off topic.

*| am adopting the common separation of verification and validation,

&% i.e., Validation is comparison with experimental data.
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Verification and numerical analysis are
intimately and completely linked.

= The results that verification must produce are defined by
the formal analysis of the methods being verified.

= The numerical analysis results are typically (always)
defined in the asymptotic range of convergence for a
method.

¢ This range is reached as the discretization parameter (i.e.,
mesh, time step, angle, etc.) becomes “small” i.e.,
asymptotically “close to zero”.

= Practically, the asymptotic range is rarely achieved by
verification practitioners or simulations.

= Hence verification is not generally practiced where it is
formally valid!
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This is the way validation is typically
presented.

This is what you’ Il see in most Journals.
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Here is a notion of how a “converged”
solution might be described.

This is the usually called mesh sensitivity, this is rather flimsy evidence
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Here is a notion of how a “converged”
solution might be described.

With a third resolution
convergence can be
assessed, this is NOT
converged (0™ order).
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Here is a notion of how a “converged”
solution should be described.

With a third resolution
convergence can be
assessed, this is
converging (~1st order).
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Even better, a sequence of meshes can be
used to extrapolate the solution.

With three grids plus a convergence rate a converged
solution can estimated.
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In practice, one encounters problems
when conducting verification

= The convergence rates are (almost) never equal to the
theoretical values.

< If the value is larger than the theoretical value,
practitioners are usually comforted.

¢If the values are smaller, the practitioners will become
Increasingly nervous, e.g. a second order method
produces a rate of 1.95 or 1.87, or 1.71, or , 1.13...
¢ Sometimes the rate is too large, 2.14, 2.56, , 4.67, ...
¢Where is it viewed as being incorrect? When should one
worry about the result?
= Sometimes the method will diverge, or oscillate.

= The asymptotic range is usually unreasonable to
<= Compute especially for applied problems.
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Convergent

Neutral

Divergent

Else if R>1 then monotonic divergence
Else if R < -1 then oscillatory divergence

Else (-1 < R <0) oscillatory convergence
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A thought to start us off.

“An expert is someone who knows some of the worst
mistakes that can be made in his subject, and how to

avoid them.”
- Werner Heisenberg
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One theorem is absolutely essential to the
conduct of verification.

= The fundamental theorem of numerical analysis
defined by Lax and Richtmyer (similar theorem
by Dahlquist for ODEs, but it applies to
nonlienar equations!),

A numerical method for a linear differential
equation will converge if that method is
consistent and stable. Comm. Pure. Appl. Math.
1954

Restated by Strang - The fundamental theorem of
numerical analysis, The combination of
consistency and stability is equivalent to

ggconvergence.
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Continuing the discussion of this
fundamental mathematical concept.

Consistency - means that the method is at least 1st order
accurate — means it approximates the correct PDE.

Stable - the method produces bounded approximations

In the practice of verification stability is generally
assumed by the presence of a solution, convergence is
sought as evidence of consistency.

This means verification is not completely rigorous with
regard to the Lax-Richtmyer theorem.
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There are a number of typical numerical
analysis techniques

= Method are analyzed through methods providing
stability and accuracy information.

= These techniques include Fourier (von Neumann),
modified equations, and energy methods.

= These methods provide information about the discrete
stability, accuracy, and error structure for methods
typically limited to linear problems.

= Order of convergence is discussed in the limit where the
discretization parameter becomes small.

= | will demonstrate the basic analysis on a simple method
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Roache s Grid Convergence Index (GCI)~
uses a fixed safety factor for numerical

uncertainty.
= The standard power error ansatz, S = A+ Ch” |
@
§=A_+Ch ;unknowns S,C,p a .
S
gives an estimate of numerical error basedon™ | @
extrapolation
P Amf h he h, h
0 = A =S —-S ,r =2 log' (i )
PP mf f m?* " mf h
mf f

= A safety factor gives the uncertainty estimate:
U = FS5;F; = [
= This safety factor is described as giving a 95%

confidence interval (the consequence of CFD
experience).

*P. Roache, Verification and Validation in Computational Science and Engineering, Hermosa(1996).
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Another uncertainty Estimate has a variable
“safety factor” or asymptotic correction.

= The estimate developed by Stern uses the same basic
framework, but with a key difference...

= The safety factor is not constant, but depends on two
pieces of information,

# The observed order of convergence p ,
¢ The theoretical order of convergence P,

rPo —1
rfm —1

m This potentially makes it attractive when the
computation is not in the asymptotic range

= | am going to describe a way to extend this approach.

FS:
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We can start by showing how convergence
rates dalre usua"y analyzed (forward Euler method, here).

= Starting with an ODE we can analyze stability and
accuracy using the standard methodology.

= Analysis of ODE’ s are primal for anything else, start with the
simplest ODE and discretization, 1= Au — u"" =u" + hAu"

m The analysis includes the analytical solution and the Taylor
series analysis of each

o u(0)(1+ Ah+4(Ah) +L(2R)' +0O(n*))

it =Au—> u(0)+hAu(0)

= Error is the difference Error = u(O)(%()Lh)2 +1(Ah) +0(n* ))

= The stability can be studied via an energy method by using
an expansion of the ODE, ) - ,+p;

u=Au
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Here, we examine the usual stability
analysis techniques.

= The magnitude of the amplification factor is plotted to
display the stability region where it is less than one,

imaginary
2 2
A=(1+ha)’ +(hb)

Al

L ﬂ : The method can be safely
0 @ real used inside the

[ ] region plotted
-1k
Pk : - ! : (1) Sandia National Laboratores
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Here, we examine the usual stability
analysis techniques (continued).

= Another interesting view are the “order stars” where the
numerical amplification factor is less than the analytical

1.0

J(1+ha)’ +(hb)’
Expla—Db]

<1

05F

The method can be safely
used inside the
region plotted because
the solution is damped
more than
the analytical solution

00

-05F

= jhchls
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With this foundation, we can augment these
techniques to provide extended results.

= The key is to realize that the error can be computed
everywhere, Error(h)=|A(h)-exp(Ah)
¢ Compute the error with a refined step size (h/2),
Error(h/2)= ‘(A(h /2)" - exp(lh))‘
¢ The convergence rate can then be easily computed using

the standard form, p =log| Error(k)/Error(h/2) |/log(2)

¢ This convergences to the
asymptotic limit of 1 as
h goes to zero.

= Compute the error as a
function of discrete 19
. . ; . . Y. o
integration steps ' ’.: 2% imaginary
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This is the error and convergence for a
single step, but multiple steps are used.

= The results change a bit under two conditions:
¢ The method is applied in the region of strong stability

¢As the step size becomes small, the result becomes less
sensitive to the number of steps taken

= The form can be extended to give
= Error(h/2,m)=

250

e p/\

=2 =1l [ 1 2

(A(n12)" ~exp(man))

1.5~

ok -0sf
\ 1oL
1 (I [ W T oW | | S ) 1 1 1 o

a, b=0 100 steps

(1) Sandia National Laboratores

a, b=0, single step




We can analyze the second-order modified
Euler method similarly

= Asymptotic accuracy Error = M(O)(%(M)3 i) 0(h4 ))

= Stability 1 Order star




We can apply the same methodology to
calculation verification (no exact sol’ n)

m The calculation verification has some subtle differences

from code verification (where an exact solution is

available).

imaginary
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= Size change (not enough time to go into this!).
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Results for linear ODE can be used to
produce “verification” of the analysis

= We’ |l start with the simplest thing possible,
= Au— u(t) =u(0)exp (—At)
¢ Use a first-order forward Euler method

P = 1 Acm = 0.027 FRoache =1.25
p=113 A,;=0.012 Fsiern = 1.18 /
0 = 0.015 Frxact = 1.12

New analysis gives the right rate p-=1.13

Exact

Stern
- Roache

¢Compare with a second-order modified Euler

pr=2 Agy =0.0036 Froache = 1.25
p=216 A, =0.0008 Fsern=1.16
5 =0.0002  Fge.o = 1.09 L

to four digits!

#% New analysis gives the right rate p, = 2.16 |
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Results for linear ODE with a bad choice for
time step size further test the methodology.

We’ Il continue with the simplest thing possible and
forwardiedlan, — u (t) = u (0) exp (—At)
Study a “growing” case

p,=1 A =-2907 F, =125
p=0167 A =-2446 F, =531
A=-1 6=-1299 F, =349

Exact

New analysis gives p; = 0.167

In each of these three cases, the new analysis gives quite
precise estimates of the observed convergence rate.

=
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Applying the same methodology to other
PDEs

= Exact solutions in Fourier space are available for a
broad class of PDEs, 1st, 2"d order operators, etc...

= For example 15t order hyperbolic operators analyzed with
Von Neumann analysis can be accomplished here for
donor differencing of, u;.l:exp{ijejzm;lﬂ=u;.l-c[u;.l-u’? }:>

j-1
Aexp[zj@]z exp{ij@]— C i [ j —1}9

exp[zj@]—exp

Azl—C[l—cos[QJHsin[HD ; .[9]
phase=arctan {I—C [1+cos [Hm [—CQJ

amp:\/{1—C{1+COS[9DF{—Csin{@}
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Standard Fourier analysis for PDEs
(continued)

= Take an expansion to find the asymptotic error relations,
¢ Amplitude error even order errors
ampz1+(—g+6'22 92+0[94]

¢Phase error odd order (divide by the angle!)

2
l,c_c=2

phase=1+ T3 3

02 +0{94]
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What does the convergence analysis look
like? First, some preliminaries...

= We can converge in either space, time or both.

= For some hyperbolic integrators, space & time are
linked, and time only refinement is not convergent, but
calculation verification is.

¢ These methods are based on the “Lax-Wendroff”
procedure where time accuracy is achieved with spatial
derivatives.

n+l _ . n n+l/2 n+l/2), n+l/2 __ _ n 1 . n__.n
u, =Uu; V(”jﬂ/z uj—l/2)’”j+1/2_u'+2(1 V)(“j uj—l)

J
¢ Other methods are based on the “method of lines” and do
converge independently in space and time

¢ This is because time and space are discretized

. n+1/2 n B St e 1 4 0

independently. u;” " =u; —5 (Mj+1/2 uj—l/Z)’ujH/Z =U; +5 (uj U;
n+l i B w2 /2N, a2 o2 1 (a2 ntl2

u, =Uu; V(uj+1/2 uj—1/2)’uj+1/2 —U; +2(uj U, )
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We worked on a verification exercise that
resulted in some seemingly mysterious results.

= Does the analysis of the methods explain the
convergence rates? Its all calculation verification

= Combined space-time

= LW time only

= MOL time only

Cells L' error L' rate L? error L? rate
100 2.80 x 101 3.75 x 101

200 7.06 x 102 1.99 9.53 x 102 1.98
CFL L' error L' rate L? error L? rate l
0.10 2.01x10 ? 2.62 x 10 2

0.05 1.08x102 096 1.35x10 2  0.96
CFL L' error L' rate L? error L? rate
0.10 1.40x 103 1.87 x 103

0.05 3.51x101 1.99 4.70 x 101 1.99

32
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What does the convergence analysis tell
us for each case?

= L-W scheme | time-space time only
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The schemes show distinct difference in
convergence toward the exact solution.

= MOL: very poorly convergent under time only
refinement.
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Since we are advecting a Gaussian, we
need to find the effective wave number.

= The function is the following:
u(x)= %+%exp[—30(x—%)2}
¢ Solved on a grid of 100 cells.

= Convert this to an effective wave number for the function
through an integration of the second derivative of the
Gaussian over the domain [0,1] and finding the effective
trigonometric function.

¢ This leads to an effective wave number of 6 =0.0911
¢ Estimated L, convergence rates

> L-W space time:1.98 (observed 1.98)

> L-W time only: 0.96 (observed 0.96)

> MOL time only:2.00 (observed 1.99)
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Summary of results

= Verification is usually applied where it is formally invalid,
i.e., outside the asymptotic range of convergence, so the
theoretical convergence rate is not observed.

= This problem can be addressed by developing analysis
methods that can analyze methods without taking the
limit of vanishing discretization parameters.

= Several examples have been shown to demonstrate this
technique, and the potential accuracy of the predicted
convergence rates.

= The work is rather preliminary and further extensions
and demonstrations are needed.
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“Dilbert isn’ t a comic strip, it' s a
documentary” — Paul Dubois

I CAME FROM A
DISTANT PLANET TO
BRING YOU ADVANCED
TECHNOLOGY, BUT NO
ONE HERE WILL LISTEN!

www.dilbert.com scottadams®aol.com

I AM A SUPERIOR
BEING, YOU MORON!
LISTEN TO WHAT I
TELL YOU AND THEN

DO IT!

\|/

(o

A

129507 ©2007Scott Adams, Inc./Dist. by UFS, Inc.

I FIRED HIM
BEFORE HE STARTED
YAMMERING ABOUT

L=, \/ &V

I

| EASY COME,
\  EASY GO.

T l.

B A

I 1

© Scott Adams, Inc./Dist. by UFS, Inc.
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