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Outline 

!  Defining Verification (Code vs Calculation) 
!  What is difficult about verification  
!  The (less than completely obvious) connections of 

verification and numerical analysis 
!  New methods for numerical analysis of under-

resolved calculations 
! Putting this together with methodology for 

calculation verification 
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What verification means in numerical analysis! 

“For the numerical analyst there are two kinds 
of truth; the truth you can prove and the truth 
you see when you compute.”  

– Ami Harten 

Corollary: when proof and computing 
provide the same truth, you actually  
have something! 
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Let’s define verification first to make sure 
we are on the same page. * 

! Verification is used to do a couple of things: 
"  Provide evidence that the code is correct and correctly 
implemented 

"  Produce an estimate of numerical error, and evidence that 
the mesh is adequate. 

! Two types of verification are relevant here: 
"  Code verification: the proof that the code is correctly 
implemented 

"  Calculation (solution) verification: the estimate of 
numerical error and implicitly, discretization adequacy. 

"  Software verification is important, but off topic. 
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*I am adopting the common separation of verification and validation, 
i.e., Validation is comparison with experimental data.  



Verification and numerical analysis are 
intimately and completely linked. 

! The results that verification must produce are defined by 
the formal analysis of the methods being verified. 

! The numerical analysis results are typically (always) 
defined in the asymptotic range of convergence for a 
method. 
" This range is reached as the discretization parameter (i.e., 
mesh, time step, angle, etc.) becomes “small” i.e., 
asymptotically “close to zero”. 

! Practically, the asymptotic range is rarely achieved by 
verification practitioners or simulations.   

! Hence verification is not generally practiced where it is 
formally valid! 
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This is the way validation is typically 
presented. 
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!

!

This is what you’ll see in most Journals. 



Here is a notion of how a “converged” 
solution might be described. 
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!

!

This is the usually called mesh sensitivity, this is rather flimsy evidence 



Here is a notion of how a “converged” 
solution might be described. 
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!

!

With a third resolution 
convergence can be 

assessed, this is NOT  
converged (0th order). 



Here is a notion of how a “converged” 
solution should be described. 
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!

!

With a third resolution 
convergence can be 

assessed, this is 
converging (~1st order). 



Even better, a sequence of meshes can be 
used to extrapolate the solution. 
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!

!

With three grids plus a convergence rate a converged 
solution can estimated. 



In practice, one encounters problems 
when conducting verification 

! The convergence rates are (almost) never equal to the 
theoretical values. 
" If the value is larger than the theoretical value, 
practitioners are usually comforted. 

" If the values are smaller, the practitioners will become 
increasingly nervous, e.g. a second order method 
produces a rate of 1.95 or 1.87, or 1.71, or 1.55, 1.13…  

" Sometimes the rate is too large, 2.14, 2.56, 3.12, 4.67, … 
" Where is it viewed as being incorrect? When should one 
worry about the result? 

! Sometimes the method will diverge, or oscillate. 
! The asymptotic range is usually unreasonable to 

compute especially for applied problems. 
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If   R < 1  then monotonic convergence 
Else if R > 1  then monotonic divergence 
Else if R  < -1 then oscillatory divergence 
Else (-1 < R < 0) oscillatory convergence 
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A thought to start us off. 

 
“An expert is someone who knows some of the worst 

mistakes that can be made in his subject, and how to 
avoid them.”  

- Werner Heisenberg 



One theorem is absolutely essential to the 
conduct of verification. 

! The fundamental theorem of numerical analysis 
defined by Lax and Richtmyer (similar theorem 
by Dahlquist for ODEs, but it applies to 
nonlienar equations!), 

A numerical method for a linear differential 
equation will converge if that method is 
consistent and stable. Comm. Pure. Appl. Math. 
1954 

 
Restated by Strang - The fundamental theorem of 

numerical analysis, The combination of 
consistency and stability is equivalent to 
convergence. 

 



Continuing the discussion of this 
fundamental mathematical concept. 

Consistency - means that the method is at least 1st order 
accurate – means it approximates the correct PDE. 

Stable - the method produces bounded approximations 
 
In the practice of verification stability is generally 

assumed by the presence of a solution, convergence is 
sought as evidence of consistency.   

This means verification is not completely rigorous with 
regard to the Lax-Richtmyer theorem. 



There are a number of typical numerical 
analysis techniques 

! Method are analyzed through methods providing 
stability and accuracy information. 

! These techniques include Fourier (von Neumann), 
modified equations, and energy methods. 

! These methods provide information about the discrete 
stability, accuracy, and error structure for methods 
typically limited to linear problems. 

! Order of convergence is discussed in the limit where the 
discretization parameter becomes small.   

!  I will demonstrate the basic analysis on a simple method 
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! The standard power error ansatz, 
 
    
gives an estimate of numerical error based on 

extrapolation  
 
 
! A safety factor gives the uncertainty estimate: 

! This safety factor is described as giving a 95% 
confidence interval (the consequence of CFD 
experience).  

Roache’s Grid Convergence Index (GCI)* 
uses a fixed safety factor for numerical 
uncertainty.  

S = A + Chp

  S = Ak + Chk
p;unknowns S,C, p

 
! =

!mf

rmf
p "1

;!mf = Sf " Sm ,rmf =
hm
hf

 Unum = Fs!;Fs = 1.25

*P. Roache, Verification and Validation in Computational Science and Engineering, Hermosa(1996). 
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! The estimate developed by Stern uses the same basic 
framework, but with a key difference… 

! The safety factor is not constant, but depends on two 
pieces of information, 
" The observed order of convergence 
" The theoretical order of convergence 

! This potentially makes it attractive when the 
computation is not in the asymptotic range 

!  I am going to describe a way to extend this approach. 

Another uncertainty Estimate has a variable 
“safety factor” or asymptotic correction. 

pob
pth

Fs =
r pob !1
r pth !1
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We can start by showing how convergence 
rates are usually analyzed (forward Euler method, here). 

! Starting with an ODE we can analyze stability and 
accuracy using the standard methodology. 

! Analysis of ODE’s are primal for anything else, start with the 
simplest ODE and discretization, 

! The analysis includes the analytical solution and the Taylor 
series analysis of each 

! Error is the difference 
! The stability can be studied via an energy method by using 

an expansion of the ODE,  
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 !u = !u" un+1 = un + h!un

 !u = !u" u 0( ) + h!u 0( )
Error ! u 0( ) 1

2 "h( )2 + 1
6 "h( )3 +O h4( )( )

! = a + bi

 
!u = !u h"0# "## u 0( ) 1+ !h + 1

2 !h( )2 + 1
6 !h( )3 +O h4( )( )



Here, we examine the usual stability 
analysis techniques. 

! The magnitude of the amplification factor is plotted to 
display the stability region where it is less than one, 
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Here, we examine the usual stability 
analysis techniques (continued). 

! Another interesting view are the “order stars” where the 
numerical amplification factor is less than the analytical 
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With this foundation, we can augment these 
techniques to provide extended results. 

! The key is to realize that the error can be computed 
everywhere, 
" Compute the error with a refined step size (h/2), 

" The convergence rate can then be easily computed using 
the standard form, 

" This convergences to the     
 asymptotic limit of 1 as      
 h goes to zero. 

! Compute the error as a     
 function of discrete    
 integration steps 

Error h( ) = A h( )! exp "h( )

Error h / 2( ) = A h / 2( )2 ! exp "h( )( )
p = log Error h( ) / Error h / 2( )!" #$ / log 2( )
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This is the error and convergence for a 
single step, but multiple steps are used. 

! The results change a bit under two conditions: 
" The method is applied in the region of strong stability 
" As the step size becomes small, the result becomes less 
sensitive to the number of steps taken 

! The form can be extended to give 
Error h / 2,m( ) = A h / 2( )2m ! exp m"h( )( )
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We can analyze the second-order modified 
Euler method similarly 

! Asymptotic accuracy 
! Stability     Order star 

! Non-asymptotic Accuracy 
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We can apply the same methodology to 
calculation verification (no exact sol’n). 

! The calculation verification has some subtle differences 
from code verification (where an exact solution is 
available). 

! There is no reason we have to use a factor of two step 
size change (not enough time to go into this!). 
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Results for linear ODE can be used to 
produce “verification” of the analysis 

! We’ll start with the simplest thing possible, 

" Use a first-order forward Euler method 

" Compare with a second-order modified Euler 

Exact 
Stern  
Roache  

27 

New analysis gives the right rate pT = 1.13 

New analysis gives the right rate pT = 2.16 

Actually, the 
answers are correct 

to four digits! 
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Results for linear ODE with a bad choice for 
time step size further test the methodology. 

•  We’ll continue with the simplest thing possible and 
forward Euler, 

•  Study a “growing” case 

•  In each of these three cases, the new analysis gives quite 
precise estimates of the observed convergence rate.  

pT = 1 ! cm = !29.07 FRoache = 1.25
p = 0.167 ! cm = !24.46 FStern = 5.31
" = !1 # = !129.9 FExact = 3.49

New analysis gives pT = 0.167 



Applying the same methodology to other 
PDEs 

! Exact solutions in Fourier space are available for a 
broad class of PDEs, 1st, 2nd order operators, etc… 

! For example 1st order hyperbolic operators analyzed with 
Von Neumann analysis can be accomplished here for 
donor differencing of , 
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Standard Fourier analysis for PDEs
(continued) 

! Take an expansion to find the asymptotic error relations, 
" Amplitude error even order errors 

" Phase error odd order (divide by the angle!) 
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What does the convergence analysis look 
like?  First, some preliminaries… 

! We can converge in either space, time or both. 
! For some hyperbolic integrators, space & time are 

linked, and time only refinement is not convergent, but 
calculation verification is. 
" These methods are based on the “Lax-Wendroff” 
procedure where time accuracy is achieved with spatial 
derivatives. 

" Other methods are based on the “method of lines” and do 
converge independently in space and time 

" This is because time and space are discretized 
independently. 

u j
n+1 = u j

n !" u j+1/2
n+1/2 ! u j!1/2

n+1/2( );u j+1/2
n+1/2 = u j

n + 1
2 1!"( ) u j

n ! u j!1
n( )

u j
n+1 = u j

n !" u j+1/2
n+1/2 ! u j!1/2

n+1/2( );u j+1/2
n+1/2 = u j

n+1/2 + 1
2 u j

n+1/2 ! u j!1
n+1/2( )

u j
n+1/2 = u j

n ! "
2 u j+1/2

n ! u j!1/2
n( );u j+1/2

n = u j
n + 1

2 u j
n ! u j!1

n( )
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We worked on a verification exercise that 
resulted in some seemingly mysterious results. 

! Does the analysis of the methods explain the 
convergence rates?  Its all calculation verification 

! Combined space-time 

! LW time only 

! MOL time only 

32 



What does the convergence analysis tell 
us for each case? 

! L-W scheme  time-space    time only 

! MOL scheme 

p

!
!

p

!
!

p

!
!

p

!
!
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The schemes show distinct difference in 
convergence toward the exact solution. 

! MOL: very poorly convergent under time only 
refinement. 

 
! L-W: divergent under time only refinement! 
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Since we are advecting a Gaussian, we 
need to find the effective wave number. 

! The function is the following: 

" Solved on a grid of 100 cells. 
! Convert this to an effective wave number for the function 

through an integration of the second derivative of the 
Gaussian over the domain [0,1] and finding the effective 
trigonometric function. 
"  This leads to an effective wave number of  
"  Estimated L2 convergence rates 

# L-W space time:1.98 (observed 1.98) 
# L-W time only: 0.96 (observed 0.96) 
# MOL time only:2.00 (observed 1.99) 

u x( ) = 1
4 + 1

4 exp !30 x ! 1
2( )2"

#
$
%

! " 0.0911
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Summary of results 

! Verification is usually applied where it is formally invalid, 
i.e., outside the asymptotic range of convergence, so the 
theoretical convergence rate is not observed. 

! This problem can be addressed by developing analysis 
methods that can analyze methods without taking the 
limit of vanishing discretization parameters. 

! Several examples have been shown to demonstrate this 
technique, and the potential accuracy of the predicted 
convergence rates. 

! The work is rather preliminary and further extensions 
and demonstrations are needed. 



“Dilbert isn’t a comic strip, it’s a 
documentary” – Paul Dubois 

V&V 
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