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e Fluids: solvation shells & double
layers

— Radial distribution function/ spatial
correlation

— Molecules: radius of gyration
* Solids: lattice defects

— Centrosymmetry

— Common neighbor analysis

— Slip vector
* Dense systems:

— Kinematic measures

— Continuum field estimation

Correlation

Given a function of space v(x) the correlation C(x,y) is an
indication of how, e.g. motion if v is velocity, is coordinated as a
function of distance or time

C,(x,3) = (v(x)w() = (OW(x =)= C,(x~)

If all the atoms are statistically equivalent, then (x,y) -> x-y
In discrete time dynamics, a time correlation is approximated by :

Cv(jAt)zlEva(iAt) v, (i + j)AD)
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Radial Distribution Function

Radial distribution function (RDF) is also known as N, N,

RDF as a phase discriminator

the pair correlation function, g. The RDF 1 o X
descpribes how atomic densitygvaries aca Jan(T) = A E E (0(|ri;| — 7)) The widths of the peaks of the RDF (or the lack of peaks) can be used to
function of distance from any particular atom in atb i1 j=1 identify whether a given substance is in a amorphous fluid/crystalline
group a to group b. It can be approximated solid phase. As a crystalline solid heats and melts the peaks denoting
using, e.g. kernel density estimation, where A, is atomic shells broaden and merge
a bell-shaped function with width h. . 1 A ge.
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Common Neighbor Analysis

Common neighbor analysis (CNA) is a classifier of

RDF as a structure discriminator

+ The locations of peaks in the RDF can be —— local atomic structure based on the coordination e of e O dasam in e i b andbp il
used to identify the crystal structure of a : tel of any particular atom and the patterns of s = T m
solid material (as in X-ray diffraction) . ] typical crystalline structures (FCC, BCC, HCP etc) i . % 0s

* For alloys/mixtures, multiple RDFs can | With CNA a structure is classified by = . = -
be constructed to provide information [ /AN, topologically. Starting with a pair of atoms, o ar

4+ B

about the structure of the aIon. 8, a diagram is created with a set of four indices

(i) indicates that o and 8 are nearest-
neighbors

alr)

(i) indicates the number of nearest
neighbors shared by the pair

(iii) indicates the number of bonds among
the common neighbors

aln

(iv) differentiates diagrams with same (i),
(i), and (iii) indexes and different

' bonding among common neighbors.
Radius, 10 '/rm

1
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CNA visualization of grain structures

¢ CNA can be used to analyze poly/nano-
crystalline structures to identify grain

boundaries and characterize how these
structures change during deformation.

Icosahedral
Other

Using OVITO
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Centrosymmetry

CSP produces the highest
values for

1. surfaces vacancies

2. stacking faults

3. dislocation cores

4. highly-stretched regions.

Atoms in bulk configuration
have CSP equal to zero.

Centrosymmetry

e CNA is useful for discriminating various structured phases of bulk
materials. But, what if surfaces are present?

* One way to isolate surfaces is to filter atoms according to values of
potential energy; however, this tends to “drown-out” defect structures
like stacking faults and dislocation cores.

* The centrosymmetry parameter can be used for radially-symmetric
crystal structures (e.g. FCC, BCC) to detect regions where symmetry
has been lost such as surfaces, dislocation cores and stacking faults.

Ny
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Here N, is one of the
1/2n(n-1) unique pairings of
the n neighbors of k

Slip Vector

e CNA and the centrosymmetry parameter are useful for discriminating
and visualizing surfaces, defects, etc.

* Another piece of desired information are crystallographic details
regarding these defects, e.g. Burgers vectors.

* The slip vector s is the “slip” for atoms that lie on planes that border
these discontinuities relative to reference positions X

n
0 — =L S (x*8 - X9B),
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Example: dislocation nucleation

during nanoindentation
Using the slip vector, dislocation structure can be

determined in terms of specific Burgers vectors .
NEAR

FAR

Atomic-scale deformation gradient
Minimization leads directly to: -1
Fi7 = win(m®)

where:

n n
wing = Z w?aXf\l/fﬁ and "im = ZX?ﬁXJ?/Iﬁ
p=1 p=1

Polar decomposition gives a rotation and stretch F' = RU
From the rotation tensor a rotation

1
vgctc?r can be form that can b = _ieijk(Rskew)ij
discriminate grain texture

Atomic-scale deformation gradient
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A single atom-neighbor pair is ¢ Rk

insufficient to completely determine F.

Multiple neighbors are used employing
a least-squares mean: n

min > @PX5] - FEX7UXGT)
B=1
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Atomic-scale velocity gradient

A similar minimization gives a velocity gradient

ov
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The usual symmetric + skew decomposition leads to
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And a vorticity vector wg = —§€ijkWij



Correlating multiple metrics

CNA slip

: Slip Vector

rotation “ Microrotation "} v Vorticity VOI’l‘iCitV

Estimating continuum fields
(x.1)

The velocity is derived  V(x) = —"=

po(x,1)
And the per-atom energy e is somewhat arbitrary due to the
potential energy being based on bonds

1, 1
e, =—m,v, +— E X
a 2 a’a 2n ﬁ¢( a/})
Substituting the primitive fields in the continuum balance of

mass, momentum, and energy results in formulae for the
continuum fluxes, e.g. stress

. d
b= Ezmava(m(x- X, (D)= Y £ (OAX =X, (1) +m,y, ®v,V-A(x - x, (1))

=V'2faﬂ ® X Bx=x,,x-x5)+m,y, ®v,A(x-x,(1)=V -0

Estimating continuum fields

In 1950 Irving and Kirkwood provided a direct connection
between continuum and atomic mechanics.

Three basic fields are postulated:

Mass density p(x,t) = Ema A(x - X, (1))
Momentum density p(x,t) = Emava (f)A(.X - X, (f))
Energy density S(X,t) = E €, (t) A(X — X, (t))

Using a kernel function A that is normalized fA(x)dV =1

Example: Grain Boundary Migration
e 33 Grain Boundary

Initial Grain Boundary

[Microrotation
0.180000
0.135000
0.090000

0.045000
0.000000

e 3129 Grain Boundary

0.097686

1




Microrotation

Think beyond visualization

While all of these metrics and tools make lovely pictures and provide visual
insight on deformation phenomena, the longer-term goal to use this
information to construct models at larger scales...

GB Migration - X3

GB Migration — X129
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INPUT-RDF

pair_style lj/cut/coul/cut 10.
dielectric 80.0

read_data  relax.data
group NEUTRAL type 1
group POSITIVE type 2
group NEGATIVE type 3
pair_coeff * * 0.2381 3.405
pair_modify shift yes

mass  *39.948

PROBABILITY

timestep 1.0

fix NVE all nve

thermo 100

thermo_style custom step temp pe
compute RDF allrdf40212223

fix RDF all ave/time 1000 1 1000 c_RDF file
rdf.dat mode vector

run 100000

RADIUS

Do these distributions make sense?
Why is there a gap?

Why is the blue curve peaked?

Why are the curves ordered the way
they are?

Is this data converged?

Does the system size matter?

* Two choices:
* Radial distribution function for
an ionic fluid
* Centrosymmetry & CNA for a
defected solid system

“Homework”

INPUT-CNA/CS

boundary psp
atom_style  atomic
lattice fcc 3.52 origin 0.001 0.001 0.001 orientx 1 1
Oorienty00O1orientz1-10
region SYSTEM block -25 25 -5 5 0 3 units lattice
create_box 1 SYSTEM
create_atoms 1 region SYSTEM
mass 158.70
region STEP block 0 0.5 4.5 5 0 3 units lattice
group step region STEP
delete_atoms group step
pair_style  eam/alloy
pair_coeff  * * nil.set Ni
neighbor 0.3 bin
thermo 20
thermo_style custom step pe
compute CEN all centro/atom 12
compute CNA all cna/atom 3.0
dump D all custom 100000 nanobeam.dmp id
type xy z c_CEN c_CNA
variable n equal 10
variable i loop $n
label loop_i
change_box all x scale 1.01
minimize 1.e-10 1.e-10 10000 100000
next i
jump SELF loop_i

What are the
green colored
regions?

When do they
appear?

Why do they
appear?

What does the
“step” do in the
deformation
process?

Does the pattern
depend on
loading? E.g.
step size,
tension/
compression



BONUS

* Change the neutral species in the fluid

system for a water model like TIP4P and
observe the differences in the solvation
structure

* Make a fluid confined by two walls. Will

the RDF change? Will it be uniform?

* Observe the differences in point defect

structures obtained using a Stillinger-
Weber potential vs Tersoff

* Reverse the loading of the nanobeam,

will the response change?

* Add stress as an output does it tell you

anything?

Reading Suggestions for Lec. 8

Chapter 6 of LeSar
Chapter 4 of Frenkel & Smit

Chapter 3 & 6 of Evans & Morriss
http://en.wikipedia.org/wiki/Molecular_dynamics

http://lammps.sandia.gov/

WIKIPEDIA

The Free Encyclopedia

Lecture 8

Week 7: Analyzing Inhomogeneous Systems

Identification and visualization of defects and structures

Metrics, e.g. radial distribution function, common neighbor analysis,
centrosymmetry

Available tools

Homework: Calculation of centrosymmetry and slip vector around a
defect

Week 8 : Molecular Dynamics

Newton’s 2" Law

Time integration algorithms (Verlet, SHAKE, Gear)
Conserved quantities

Ensembles (NVE, NVT, NPT, NPH) & equations of motion
Thermostats, e.g. Nose-Hoover

Initial conditions and velocity distributions

Homework: NVT average of pressure.

Additional slides



Calculating Centrosymmetry within
LAMMPS

compute ID group-ID centro/atom lattice

* D, group-ID are documented in compute command
* centro/atom = style name of this compute command
* Jattice = fcc or bee or N = # of neighbors per atom to include

Examples:

compute 1 all centro/atom fcc
compute 1 all centro/atom 8

Typical centro-symmetry values, from a nanoindentation simulation into gold (FCC):
Bulk lattice = 0

Dislocation core ~ 1.0 (0.5 to 1.25)

Stacking faults ~ 5.0 (4.0 to 6.0)

Free surface ~ 23.0

Calculating RDF within LAMMPS

compute ID group-ID rdf Nbin itypel jtypel itype2 jtype2 ...

* D, group-ID are documented in compute command

* rdf = style name of this compute command

* Nbin = number of RDF bins

* itypeN = central atom type for Nth RDF histogram (see asterisk form below)

* jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)

Examples:

compute 1 all rdf 100

compute 1 all rdf 100 1 1

compute 1 all rdf 100 * 3

compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10

compute myRDF all rdf 50
fix 1 all ave/time 100 1 100 c_myRDF file tmp.rdf mode vector

Calculating CNA within LAMMPS

compute ID group-ID cna/atom cutoff
* D, group-ID are documented in compute command
* cna/atom = style name of this compute command
* cutoff = cutoff distance for nearest neighbors (distance units)
Examples:
compute 1 all cna/atom 3.08
Currently, there are five kinds of CNA patterns LAMMPS recognizes:
*fce=1 *hep=2 *bcc=3

* icosohedral = 4 * unknown =5

The value of the CNA pattern will be 0 for atoms not in the specified compute group. Note
that normally a CNA calculation should only be performed on mono-component systems.

Radial distribution function

Assume circumeferential variation unintersing




Structure of electrochemical interfaces

The importance Of the electric double layer C Ontinuum_based Kinematic Metric S

The electric double layer is where extreme gradients in electrical and chemical potentials
provide the driving force for electrochemical reactions

vV e Continuum Mechanics
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Electrodes

The operating voltage drop occurs across C B
, N . omplex interface structure
an interfacial layer a few molecules thick. P E = R l l

hi lts i Iy hich fields and depends on surface structure, ion
This resu ts mn extreme.: y high lields an size, ion charge and applied voltage
large interfacial capacitance.

Most electrochemical devices
have ion conducting electrolytes
between two electrodes



