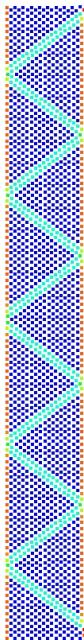
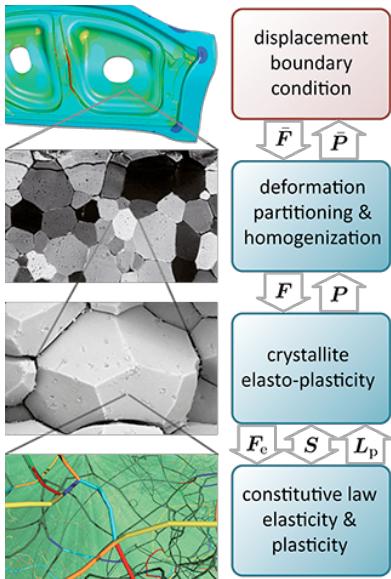
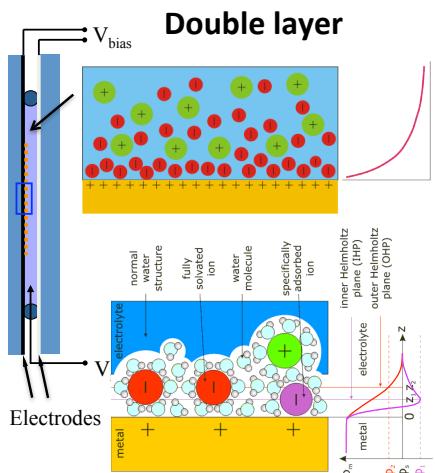
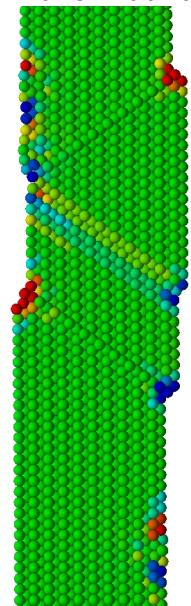

ESP900: Atomistic/Molecular Simulation:

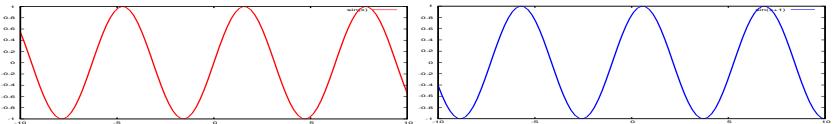
Lecture 7: Analyzing inhomogeneous systems




Instructor: Reese Jones
rjones@sandia.gov
 (925) 294-4744

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.


Metal grains

Scales of structure



Outline

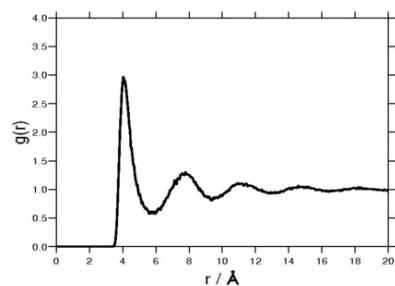
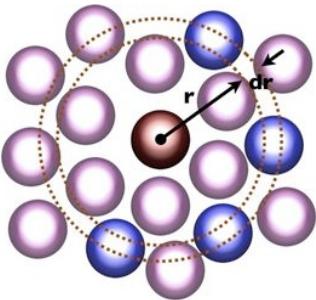
- Fluids: solvation shells & double layers
 - Radial distribution function/ spatial correlation
 - Molecules: radius of gyration
- Solids: lattice defects
 - Centrosymmetry
 - Common neighbor analysis
 - Slip vector
- Dense systems:
 - Kinematic measures
 - Continuum field estimation

Correlation

Given a function of space $v(x)$ the correlation $C(x,y)$ is an indication of how, e.g. motion if v is velocity, is coordinated as a function of distance or time

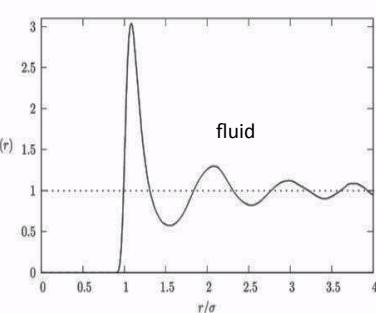
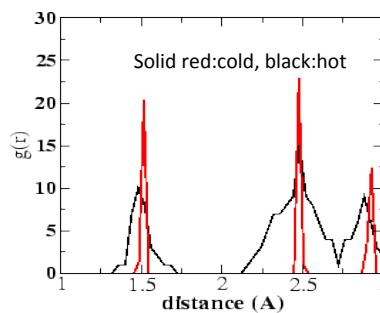
$$C_v(x,y) = \langle v(x)v(y) \rangle = \langle v(0)v(x-y) \rangle = C_v(x-y)$$

If all the atoms are statistically equivalent, then $(x,y) \rightarrow x-y$
 In discrete time dynamics, a time correlation is approximated by :

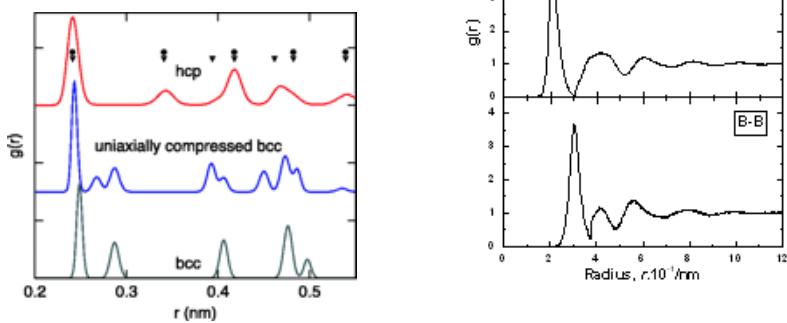


$$C_v(j\Delta t) \approx \frac{1}{n} \sum_{i,\alpha} v_\alpha(i\Delta t) v_\alpha((i+j)\Delta t)$$

Radial Distribution Function

Radial distribution function (RDF) is also known as the pair correlation function, g . The RDF describes how atomic density varies as a function of distance from any particular atom in group a to group b. It can be approximated using, e.g. kernel density estimation, where Δ_h is a bell-shaped function with width h .



$$g_{ab}(r) = \frac{1}{N_a N_b} \sum_{i=1}^{N_a} \sum_{j=1}^{N_b} \langle \delta(|\mathbf{r}_{ij}| - r) \rangle$$

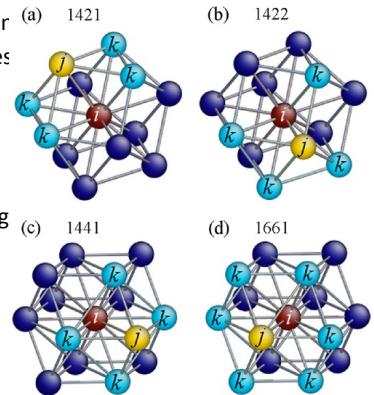
$$\approx \frac{1}{N_a N_b} \sum_{i,j} \Delta_h(\|\mathbf{r}_{ij}\| - r)$$


RDF as a phase discriminator

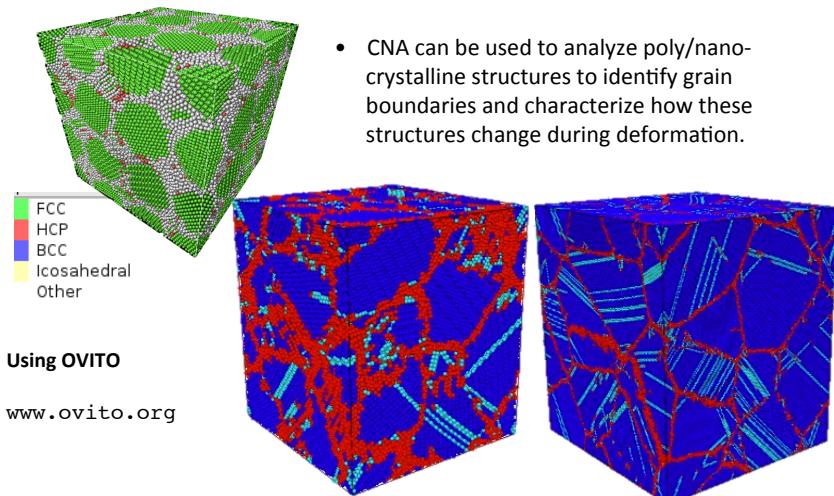
The widths of the peaks of the RDF (or the lack of peaks) can be used to identify whether a given substance is in an amorphous fluid/crystalline solid phase. As a crystalline solid heats and melts the peaks denoting atomic shells broaden and merge.

RDF as a structure discriminator

- The locations of peaks in the RDF can be used to identify the crystal structure of a solid material (as in X-ray diffraction)
- For alloys/mixtures, multiple RDFs can be constructed to provide information about the structure of the alloy.


Common Neighbor Analysis

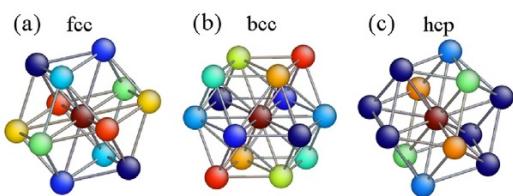
Common neighbor analysis (CNA) is a classifier of local atomic structure based on the coordination of any particular atom and the patterns of typical crystalline structures (FCC, BCC, HCP etc)


With CNA a structure is classified by topologically. Starting with a pair of atoms, α and β , a diagram is created with a set of four indices

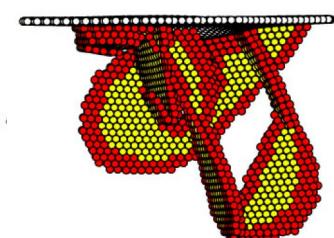
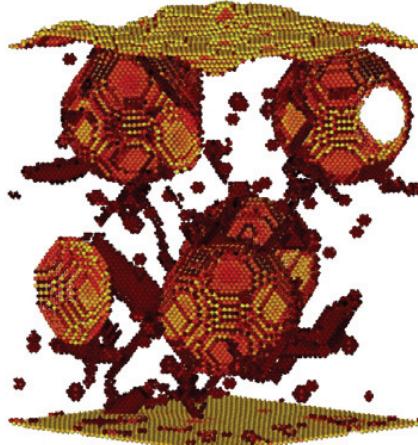
- indicates that α and β are nearest-neighbors
- indicates the number of nearest neighbors shared by the pair
- indicates the number of bonds among the common neighbors
- differentiates diagrams with same (i), (ii), and (iii) indexes and different bonding among common neighbors.

Relative presence of different CNA diagrams in the fcc, bcc, and hcp crystal structures		
CNA diagram	fcc	bcc
1421	1	0
1422	0	0
1441	0	3/7
1661	0	4/7

CNA visualization of grain structures


- CNA can be used to analyze poly/nano-crystalline structures to identify grain boundaries and characterize how these structures change during deformation.

Centrosymmetry



- CNA is useful for discriminating various structured phases of bulk materials. But, what if surfaces are present?
- One way to isolate surfaces is to filter atoms according to values of potential energy; however, this tends to “drown-out” defect structures like stacking faults and dislocation cores.
- The centrosymmetry parameter can be used for **radially-symmetric crystal structures** (e.g. FCC, BCC) to **detect regions where symmetry has been lost** such as surfaces, dislocation cores and stacking faults.

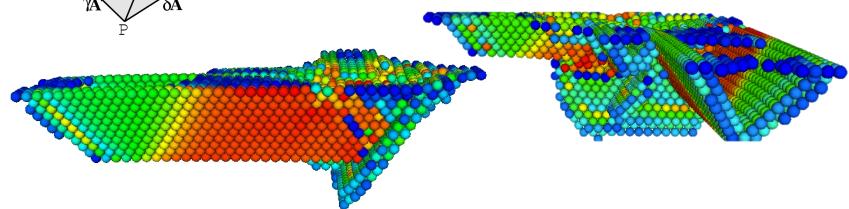
$$c_k = \min_{N_k} \sum_{i,j \in N_k} \|\mathbf{x}_{ik} + \mathbf{x}_{jk}\|$$

Here N_k is one of the $1/2n(n-1)$ unique pairings of the n neighbors of k

Centrosymmetry

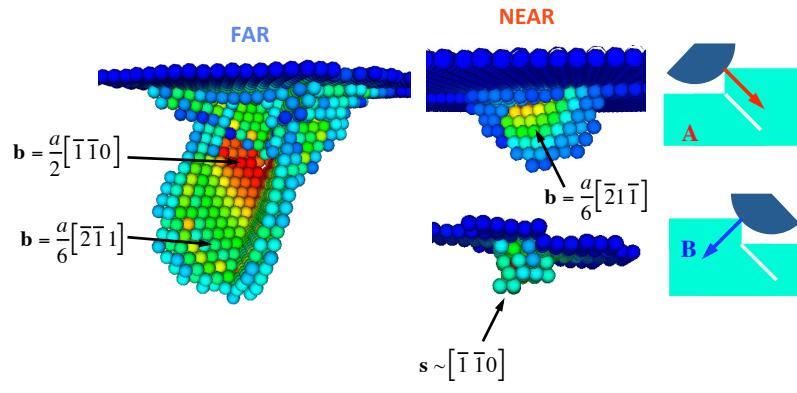

CSP produces the highest values for

1. surfaces vacancies
2. stacking faults
3. dislocation cores
4. highly-stretched regions.

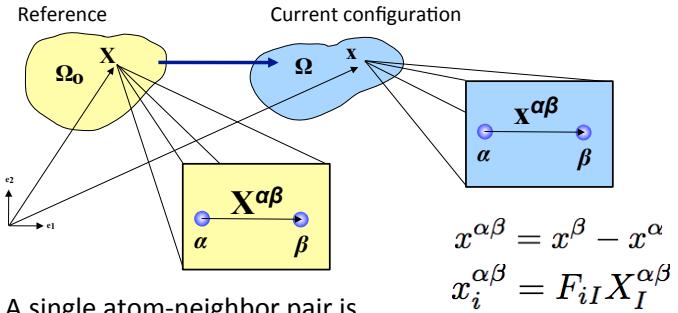

Atoms in bulk configuration have CSP equal to zero.

Slip Vector

- CNA and the centrosymmetry parameter are useful for discriminating and visualizing surfaces, defects, etc.
- Another piece of desired information are **crystallographic** details regarding these defects, e.g. **Burgers vectors**.
- The slip vector \mathbf{s} is the “slip” for atoms that lie on planes that border these discontinuities relative to **reference positions \mathbf{X}**



$$s^\alpha = -\frac{1}{n_s} \sum_{\beta \neq \alpha}^n (\mathbf{x}^{\alpha\beta} - \mathbf{X}^{\alpha\beta}).$$



Example: dislocation nucleation during nanoindentation

Using the slip vector, dislocation structure can be determined in terms of specific Burgers vectors .

Atomic-scale deformation gradient

A single atom-neighbor pair is insufficient to completely determine F.

Multiple neighbors are used employing a least-squares mean:

$$\min_F \sum_{\beta=1}^n (x_i^{\alpha\beta} X_M^{\alpha\beta} - F_{iI}^\alpha X_I^{\alpha\beta} X_M^{\alpha\beta})^2$$

Atomic-scale deformation gradient

Minimization leads directly to:

$$F_{iI}^\alpha = \omega_{iM}^\alpha (\eta_{IM}^\alpha)^{-1}$$

where:

$$\omega_{iM}^\alpha = \sum_{\beta=1}^n x_i^{\alpha\beta} X_M^{\alpha\beta} \quad \text{and} \quad \eta_{IM}^\alpha = \sum_{\beta=1}^n X_I^{\alpha\beta} X_M^{\alpha\beta}$$

Polar decomposition gives a rotation and stretch $\mathbf{F} = \mathbf{R} \mathbf{U}$

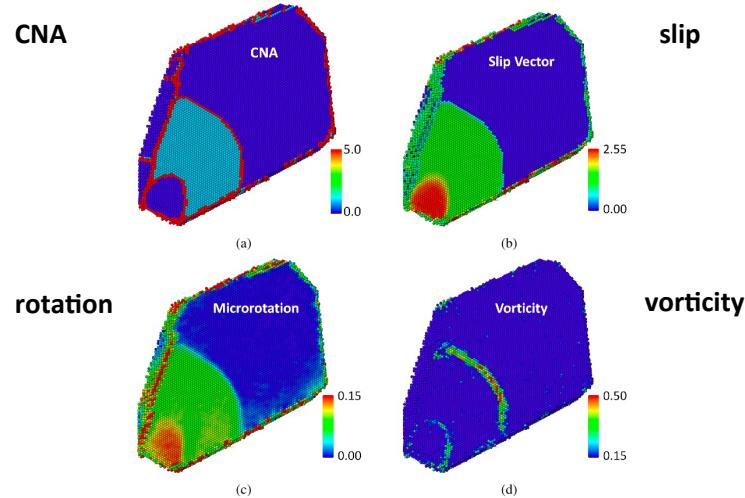
From the rotation tensor a rotation vector can be form that can discriminate grain texture

$$\phi_k = -\frac{1}{2} \epsilon_{ijk} (R_{skew})_{ij}$$

Atomic-scale velocity gradient

A similar minimization gives a velocity gradient

$$\mathbf{L} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \rightarrow v_i^{\alpha\beta} = L_{ik} x_k^{\alpha\beta} \rightarrow L_{ik}^\alpha = \rho_{im}^\alpha (\tau_{km}^\alpha)^{-1}$$


$$\text{where} \quad \rho_{im}^\alpha = \sum_{\beta=1}^n v_i^{\alpha\beta} x_m^{\alpha\beta} \quad \tau_{km}^\alpha = \sum_{\beta=1}^n x_k^{\alpha\beta} x_m^{\alpha\beta}$$

The usual symmetric + skew decomposition leads to

$$\mathbf{L} = \mathbf{D} + \mathbf{W} \quad \mathbf{W} = \frac{1}{2} (\mathbf{L} - \mathbf{L}^T)$$

$$\text{And a vorticity vector} \quad \omega_k = -\frac{1}{2} \epsilon_{ijk} W_{ij}$$

Correlating multiple metrics

Estimating continuum fields

In 1950 Irving and Kirkwood provided a direct connection between continuum and atomic mechanics.

Three basic fields are postulated:

$$\text{Mass density } \rho(x, t) = \sum m_\alpha \Delta(x - x_\alpha(t))$$

$$\text{Momentum density } p(x, t) = \sum m_\alpha v_\alpha(t) \Delta(x - x_\alpha(t))$$

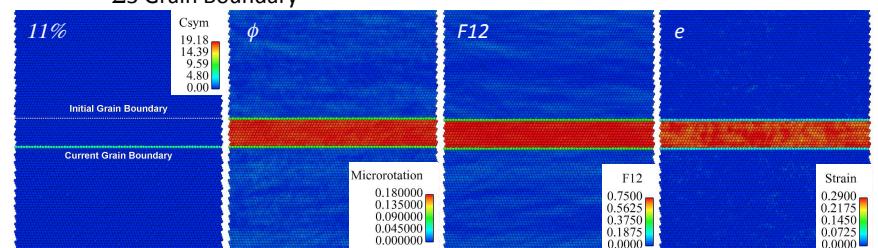
$$\text{Energy density } \epsilon(x, t) = \sum e_\alpha(t) \Delta(x - x_\alpha(t))$$

Using a kernel function Δ that is normalized $\int \Delta(x) dV = 1$

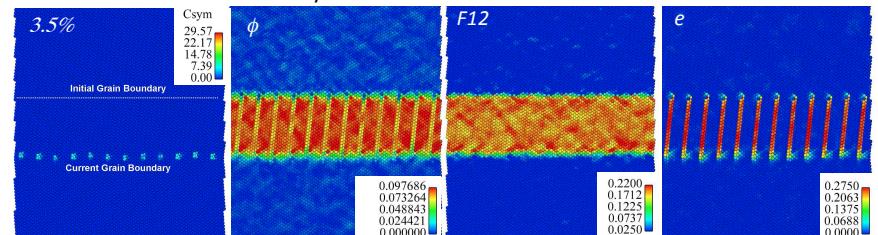
Estimating continuum fields

$$\text{The velocity is derived } v(x) = \frac{p(x, t)}{\rho(x, t)}$$

And the per-atom energy e is somewhat arbitrary due to the potential energy being based on bonds

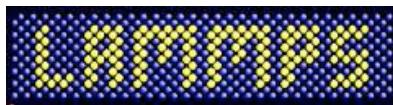
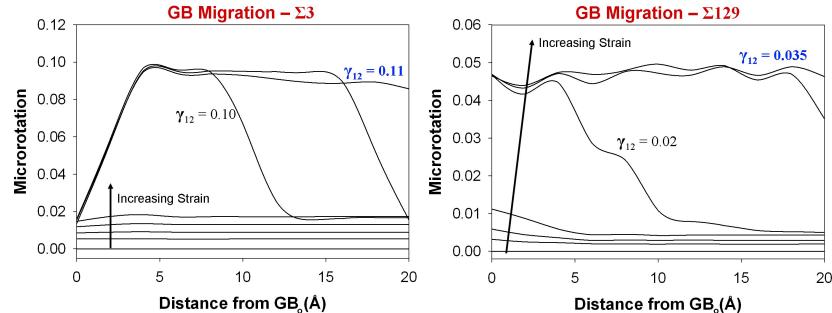

$$e_\alpha = \frac{1}{2} m_\alpha v_\alpha^2 + \frac{1}{2n} \sum_\beta \phi(x_{\alpha\beta})$$

Substituting the primitive fields in the continuum balance of mass, momentum, and energy results in formulae for the continuum fluxes, e.g. stress

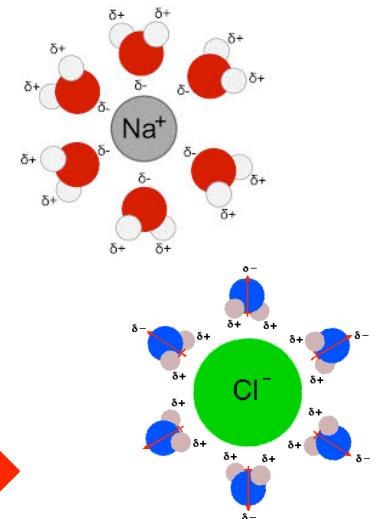

$$\begin{aligned} \dot{p} &= \frac{d}{dt} \sum m_\alpha v_\alpha(t) \Delta(x - x_\alpha(t)) = \sum f_\alpha(t) \Delta(x - x_\alpha(t)) + m_\alpha v_\alpha \otimes v_\alpha \nabla \cdot \Delta(x - x_\alpha(t)) \\ &= \nabla \cdot \sum f_{\alpha\beta} \otimes x_{\alpha\beta} B(x - x_\alpha, x - x_\beta) + m_\alpha v_\alpha \otimes v_\alpha \Delta(x - x_\alpha(t)) = \nabla \cdot \sigma \end{aligned}$$

Example: Grain Boundary Migration

- $\Sigma 3$ Grain Boundary

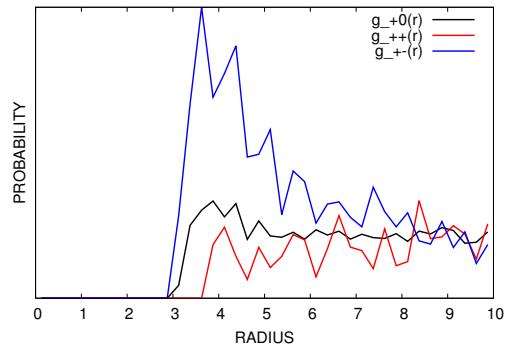



- $\Sigma 129$ Grain Boundary


Think beyond visualization

While all of these metrics and tools make lovely pictures and provide visual insight on deformation phenomena, the longer-term goal to use this information to construct models at larger scales...

“Homework”


- Two choices:
 - Radial distribution function for an ionic fluid
 - Centrosymmetry & CNA for a defected solid system

INPUT-RDF

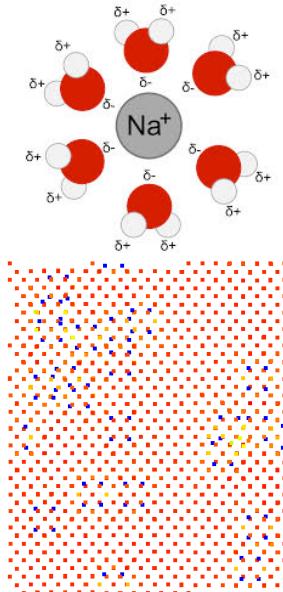
```

pair_style lj/cut/coul/cut 10.
dielectric 80.0
read_data relax.data
group NEUTRAL type 1
group POSITIVE type 2
group NEGATIVE type 3
pair_coeff * * 0.2381 3.405
pair_modify shift yes
mass * 39.948
timestep 1.0
fix NVE all nve
thermo 100
thermo_style custom step temp pe
compute RDF all rdf 40 2 1 2 2 2 3
fix RDF all ave/time 1000 1 1000 c_RDF file
rdf.dat mode vector
run 100000
  
```


- Do these distributions make sense?
- Why is there a gap?
- Why is the blue curve peaked?
- Why are the curves ordered the way they are?
- Is this data converged?
- Does the system size matter?

INPUT-CNA/CS

```


boundary p s p
atom_style atomic
lattice fcc 3.52 origin 0.001 0.001 0.001 orient x 1 1
0 orient y 0 0 1 orient z 1 -1 0
region SYSTEM block -25 25 -5 5 0 3 units lattice
create_box 1 SYSTEM
create_atoms 1 region SYSTEM
mass 1 58.70
region STEP block 0 0.5 4.5 5 0 3 units lattice
group step region STEP
delete_atoms group step
pair_style eam/alloy
pair_coeff * * ni1.set Ni
neighbor 0.3 bin
thermo 20
thermo_style custom step pe
compute CEN all centro/atom 12
compute CNA all cna/atom 3.0
dump D all custom 100000 nanobeam.dmp id
type x y z c_CEN c_CNA
variable n equal 10
variable i loop $n
label loop_i
change_box all x scale 1.01
minimize 1.e-10 1.e-10 10000 100000
next i
jump SELF loop_i
  
```


- What are the green colored regions?
- When do they appear?
- Why do they appear?
- What does the “step” do in the deformation process?
- Does the pattern depend on loading? E.g. step size, tension/compression

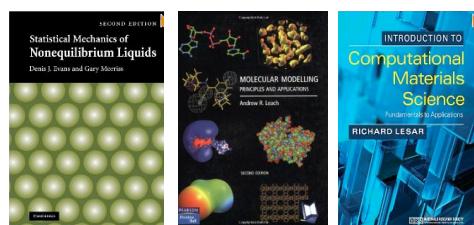
BONUS

- Change the neutral species in the fluid system for a water model like TIP4P and observe the differences in the solvation structure
- Make a fluid confined by two walls. Will the RDF change? Will it be uniform?
- Observe the differences in point defect structures obtained using a Stillinger-Weber potential vs Tersoff
- Reverse the loading of the nanobeam, will the response change?
- Add stress as an output does it tell you anything?

Lecture 8

Week 7: Analyzing Inhomogeneous Systems

- Identification and visualization of defects and structures
- Metrics, e.g. radial distribution function, common neighbor analysis, centrosymmetry
- Available tools
- Homework: Calculation of centrosymmetry and slip vector around a defect


Week 8 : Molecular Dynamics

- Newton's 2nd Law
- Time integration algorithms (Verlet, SHAKE, Gear)
- Conserved quantities
- Ensembles (NVE, NVT, NPT, NPH) & equations of motion
- Thermostats, e.g. Nose-Hoover
- Initial conditions and velocity distributions
- Homework: NVT average of pressure.

Reading Suggestions for Lec. 8

- Chapter 6 of LeSar
- Chapter 4 of Frenkel & Smit
- Chapter 3 & 6 of Evans & Morris
- http://en.wikipedia.org/wiki/Molecular_dynamics
- <http://lammps.sandia.gov/>

Additional slides

Calculating Centrosymmetry within LAMMPS

```
compute ID group-ID centro/atom lattice
```

* ID, group-ID are documented in compute command
* centro/atom = style name of this compute command
* lattice = fcc or bcc or N = # of neighbors per atom to include

Examples:

```
compute 1 all centro/atom fcc
compute 1 all centro/atom 8
```

Typical centro-symmetry values, from a nanoindentation simulation into gold (FCC):

Bulk lattice = 0
Dislocation core ~ 1.0 (0.5 to 1.25)
Stacking faults ~ 5.0 (4.0 to 6.0)
Free surface ~ 23.0

Calculating CNA within LAMMPS

```
compute ID group-ID cna/atom cutoff
```

* ID, group-ID are documented in compute command
* cna/atom = style name of this compute command
* cutoff = cutoff distance for nearest neighbors (distance units)

Examples:

```
compute 1 all cna/atom 3.08
```

Currently, there are five kinds of CNA patterns LAMMPS recognizes:

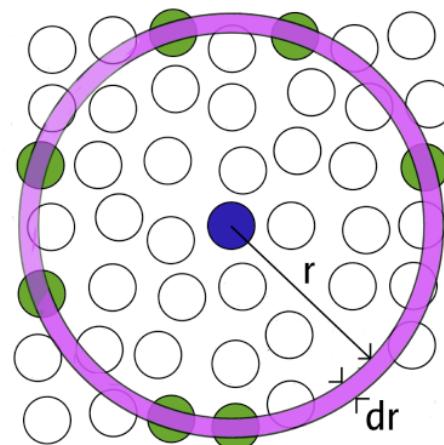
* fcc = 1 * hcp = 2 * bcc = 3
* icosohedral = 4 * unknown = 5

The value of the CNA pattern will be 0 for atoms not in the specified compute group. Note that normally a CNA calculation should only be performed on mono-component systems.

Calculating RDF within LAMMPS

```
compute ID group-ID rdf Nbin itype1 jtype1 itype2 jtype2 ...
```

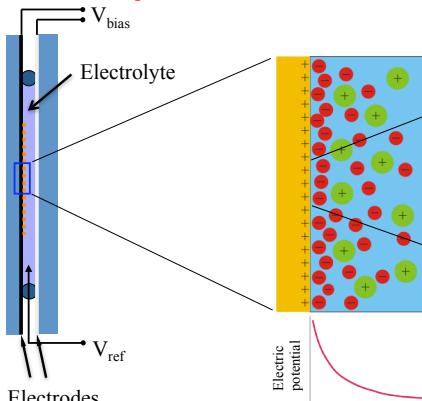
* ID, group-ID are documented in compute command
* rdf = style name of this compute command
* Nbin = number of RDF bins
* itypeN = central atom type for Nth RDF histogram (see asterisk form below)
* jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)


Examples:

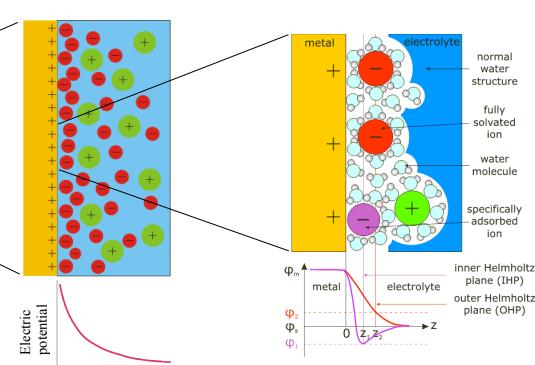
```
compute 1 all rdf 100
compute 1 all rdf 100 1 1
compute 1 all rdf 100 * 3
compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10
```

```
compute myRDF all rdf 50
fix 1 all ave/time 100 1 100 c_myRDF file tmp.rdf mode vector
```

Radial distribution function

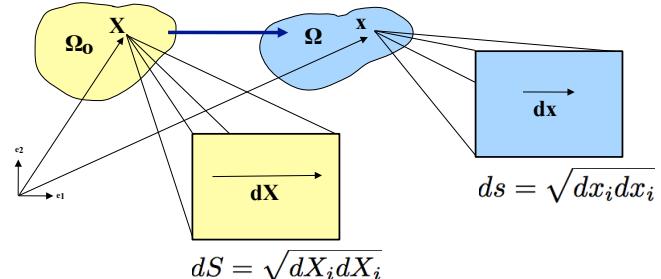

Assume circumferential variation unintering

Structure of electrochemical interfaces


The importance of the electric double layer

The electric double layer is where extreme gradients in electrical and chemical potentials provide the driving force for electrochemical reactions

Most electrochemical devices have ion conducting electrolytes between two electrodes


The operating voltage drop occurs across an interfacial layer a few molecules thick. This results in extremely high fields and large interfacial capacitance.

Complex interface structure depends on surface structure, ion size, ion charge and applied voltage

Continuum-based Kinematic Metrics

Continuum Mechanics

$$\text{Deformation Gradient (F):} \quad F_{iI} = \frac{\partial x_i}{\partial X_I} \quad dx_i = F_{iI} dX_I$$

$$\mathbf{F} = \mathbf{R}\mathbf{U}$$