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Fatigue crack growth laws in H, are
expected to be complex

 FCGR does not follow simple Paris law
relationship in gaseous hydrogen

— Testing should identify important transitions

« FCGR in H, depends on cyclic load frequency
and load ratio, R, (K.,./K. .,)

* Need to balance test efficiency with data
reliability



Fatigue crack growth behavior in hydrogen differs
from behavior in air
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Many variables affect fatigue crack growth
in hydrogen
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Hydrogen effects on fatigue above K'__, are
dependant on testing variables

Suresh and Ritchie, Metal Science, 1982
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Measured fracture properties technologically
relevant steels

«X52 ERW linepipe steel
- Oy 62 ksi (428 MPa); UTS: 70 ksi (483 MPa)

« X60 HIC grade linepipe steel
- 0Oy 63 ksi (434 MPa); UTS: 70 ksi (483 MPa)

« X80 linepipe steel
- 0Oy 82 ksi (565 MPa); UTS: 87ksi (600 MPa)

«4130X pressure vessel steel

- Commercially produced test ring
- oy: 88 ksi (607 MPa); UTS: 111 ksi (765 MPa)
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Fatigue data from two classes of steels

X52 base metal has 4130X is tempered martensite
ferrite/pearlite microstructure with bainite and pearlite
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Crack initiation thresholds similar for
three pipeline steels

X60 and X80 data: C. San Marchi et al., ASME PVP2010-25825, 2010
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e No effect of loading rate from 0.3 to 3 MPa
m'/2/minute
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Fatigue crack growth measured in H,

» Load-control testing employs internal
o & load cell in feedback loop
1

- Crack-opening displacement
measured internally using LVDT
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e Triangular load-cycle waveform applied

e Measured crack growth rate (da/dN) vs.
stress-intensity factor range (AK)

- 99.9999% H., pressure=3 kpsi (21 MPa)
for X52, 45 MPa for 4130X

- Evaluated effects of load-cycle
frequency and R ratio (K.;./K

min max)
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Measured baseline fatigue crack growth law

for X52 steel in 21 MPa H,

™

102 3 . .
1 X52 Pipeline Steel
1298 K
103 - 21 MPa H,
5 R=0.1
Iy f=1 Hz
104 4 21 MPa H,
] R=0.5
] f=1 Hz
10-5 _E SR Py
] Z R=0.1 and 0.5
: el f=10 Hz
064 T KT ax ~ 10 MPa m'2
E -~ KTmax
107 . '
5 10 20 50
Stress intensity factor range, AK (MPa m'?)
e Results reveal transitions in da/dN vs AK trend
Sandia that must be captured for measurements in H,
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Hydrogen-assisted fracture mode
evolves as a function of AK
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| « Hydrogen-assisted fatigue crack growth transitions
@ Moo from intergranular to transgranular mode
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Hydrogen gas pressure affects fatigue

e Increasing H, pressure from 5.5 Mpa to 21 MPa does not
significantly affect crack growth rates

- Replicate results may reveal subtle trends

Sandia
National
Laboratories



No significant effect of frequency observed for 0.1 and
1 Hz in 4130X
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Frequency effects most pronounced at high da/dN

A.H. Priest, British Steel, EHC-(1)42-012-81UK(H), 1983

Effect of frequency on FCGR of A3750 O
steel; 41 bar H2 I XH
_—
1.0E-01 H, H, H
H, H
1.0E-02 R l Aa
2 ol o
3
E - R — 1/2
£ 10e03 o < el netf Xy = (Dt)
3 I
) e Aa = x,, = (Dt)"2
I 4
1.0E-04 f j Aa = (D/f)1/2
|
1.0E-05 | D
10 100 f = >
K (MPa m(1/2) (da/ dN )
©001Hz +0.1Hz +1Hz m10Hz m25Hz

e Most studies of frequency effects on H,-assisted
@ Sandia fatigue crack growth conducted at high AK
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Measurement of fatigue crack growth laws
must consider effects of frequency
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» Tests at higher frequency may be non-conservative at high
crack growth rates

e Frequency selected must balance test efficiency (i.e.,
duration) and data reliability

 Higher frequency testing may be conservative at low crack
growth rates
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Effects of load-cycle frequency may be
more complex at low AK
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 Frequency may affect K7, as well as da/dN
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Fatigue crack growth rates in H, similar
for three different pipeline steels
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X60 and X80 data: C. San Marchi et al., ASME PVP2010-25825, 2010
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e More disparity noted for tests at R=0.1 but
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replicate results are needed

50



Fatigue crack growth data for X52 in H,
compare favorably with results from literature

X42 data: H.J. Cialone and J.H. Holbrook, Met. Trans. A, 1985
A516 data: H.F. Wachob and H.G. Nelson, Hydrogen Effects in Metals, 1981
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 Elevated da/dN for X42 steel may be due to
@ Natons severely banded ferrite/pearlite microstructure
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Conclusions

 Fatigue laws in gaseous hydrogen are not accurately
described by single Paris law relationship

« Fatigue testing should identify transitions (e.g. K7 ..)
« Fatigue may not be markedly alter by hydrogen below KT __.

 Higher testing frequency may yield conservative results at
low AK (i.e. small da/dn), but may be non-conservative at
high AK

e K. ., 1S as important as, or more important than, AK in
controlling fatigue crack growth rates
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