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The Z pulsed power generator provides a
compact MJ-class target physics platform
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26 MA peak current
Cost ~ $4/stored J

100-300 ns pulse length




La'»rge currents and the corresponding magnetic fields
can efficiently create high energy density matter

Magnetic fields and currents can push conductors around:
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Magnetically-Driven Implosion
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Magnetic drive can reach very high
drive pressures if current reaches
small radius

Magnetic drive is very efficient at

coupling energy (no energy wasted
on ablation)
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Wire array Z-pinches efficiently radiate
soft x-rays

P
> 10% wall plug efficiency

~330TW, Y ,~2MJ
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ks Integrated LASNEX simulations demonstrate 400+ MJ
fusion yield in a pulsed-power z-pinch driven hohlraum

Double z-pinch hohlraum fusion concept High yield capsule design
R. A. Vesey, M. C. Herrmann, R. W. Lemke et al.,
Phys. Plasmas (2007) Be (0.2% Cu) 190 um

solid DT 280 um

DT gas 2180 um

primary (0.3 mg/cm?)

hohlraum
w/ z-pinch

secondary Fuel density at ignition
hohlraum

w/ capsule

symmetry control
foams
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Inefficiencies lead to only _
1D capsule yield 520 MJ

0.04% of the driver wall plug 2D integrated yield 470 MJ
energy in the fusion fuel
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Direct fuel compression and heating with the magnetic
field could be 25X more efficient than indirect-drive

efficiency
~1/cost

~1/driver size

Double
-ended
hohlraum

n ~ 0.04%

drive

current
|
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n~ 0.5 to 1% today
N~ 3% in an IFE system

Direct fuel
compression

risk ~ 1/maturity

>

= A near term directly driven concept we can test is Magnetized Liner
Inertial Fusion

= Other High Yield/ High Gain concepts are also being explored
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. w.@ The Z facility provides a unique opportunity to test the
Magnetized Liner Inertial Fusion (MagLIF) concept

1. A 10-30T axial magnetic field

is applied to inhibit thermal conduction
and enhance alpha particle deposition
before the implosion begins

Metal (beryllium)
Cylindrical Liner

cold deuterium/tritium
gas (fuel)

)RR |11

2. Z Beamlet can preheat the fuel to

Laser
of ~1 00.- 1000 eV to !'educe the preheated
L\E © require compression needed fuel
compressed

axial field

3. The Z accelerator can provide the drive current
which generates an azimuthal drive field (pressure)
to efficiently implode the liner (Z pinch) at 50-100 km
Isec

and compress the axial field by factors of 1000

Sandia
* S.A. Slutz et al., Physics of Plasmas 17, 056303 (2010). 7 Netiona

Laboratories




Simulations indicate scientific breakeven

(fusion energy out = energy deposited in fusion fuel)

may be possible on Z

INITIAL CONDITIONS
Peak Current:

Be Liner RO:

Liner height:

Aspect ratio (R0O/AR):
Initial gas fuel density:
Initial B-field:

FINAL CONDITIONS
Energy in Fusion Fuel
Target Yield:

Convergence ratio (RO/Rf):
Final on-axis fuel density:
Peak avg. ion temperature:
Final peak B-field:

Peak pressure:

27 MA
2.7 mm
5 mm

6

3 mg/cc
30T

~200 kJ
500 kJ
23

0.5 g/cc
8 keV
13500 T
3 Gbar

60 nm surface roughness,

80 (um) waves are resolved
| 1l

0 1000 2000 3000 4000
Radius (um)

2D yield for a DT target ~ 350 kJ (70% of 1D)

The magneto-Rayleigh Taylor instability is the
biggest concern for this concept
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«The physics issues for direct magnetic-drive targets

are similar to those for other inertial fusion concepts

Stabilization techniques

Instability growth Fuel Preheat

Convergence ratio ] A
drive

current
|

Fuel Premagnetization

Implosion time and velocity Driver coupling

. Pusher adiabat
Pusher-fuel mix

r-g symmetry

= We are conducting a vigorous research program to validate the general
class of magnetically-driven targets on the Z facility at the MJ target scale
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~~aWe have already developed most of the capabilities

required to test MagLIF on the Z facility, rest are imminent
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B et G - Cryogenic cooling of liner targets
,\\T L @h [(Fe™ has been demonstrated (liquid D2)
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We observe excellent agreement between theory and
experiment for single-mode MRT growth experiments
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D. Sinars, S. Slutz et al., Phys. Rev. Lett. (2010)
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A levitated shell version of MagLIF could give
high yield and high gain on a larger facility

INITIAL CONDITIONS

Peak Current: 61 MA
Al Liner RO: 4.4 mm
Liner height: 10 mm
Aspect ratio (RO/AR): 6

Initial gas fuel density: 10 mgl/cc
Initial B-field: 10T

FINAL CONDITIONS

Target Yield: 4.8 GJ
Target Gain: 700
Convergence ratio (RO/Rf): 22
Final on-axis fuel density: 9.3 g/cc
Final peak B-field: 12500 T

T

Aluminum Liner DT shell
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Summary

Pulsed power is an efficient, inexpensive way to create matter at high
energy densities

Magnetically driven implosions offer a path to coupling much higher
fractions of the driver stored energy to fusion fuel

Magnetized Liner Inertial Fusion (MagLIF) offers a near term chance for
testing our understanding of magnetically driven implosions. If
successful, would lead to breakeven with DT.

Experimental data on the Magneto-Rayleigh Taylor instability is
promising, we hope to do an integrated MagLIF test in 2012.

A high-yield (GJs), high-gain (>500) MagLIF design is under
development. Much of the relevant physics can be tested on Z.
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Temperature (keV)

*Basko et al. Nuc. Fusion 40, 59 (2000)

A large, embedded magnetic field significantly expands
the space for fusion self heating

100

10

T

PR | 1 PR S S R
0.01 0.1

Fuel areal density (g/cm?)

The pr needed for ignition can be
significantly reduced by the presence of a
strong magnetic field

*inhibits electron conduction

senhances confinement of alpha
particles

Lower pr means low densities are needed
(~1 g/cc << 100g/cc)

Pressure required for ignition can be
significantly reduced to ~5 Gbar
(<< 500 Gbar for hotspot ignition)

Large values of B/p are needed and
therefore large values of B are needed.

B~ 50-150 Megagauss >> B, -> flux
compression is needed

Sandia
m National

Laboratories






