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History

v

[CLAUSIUS PhilMag 1870] [MAXWELL TransRoySocEdin
1870] “virial" expression for stress

[ONSAGER PhysRev 1931] discovery that decay from
perturbation is same as that from equilibrium fluctutaion
[BORN ProcCamPhilSoc 1940] Cauchy-Born model of
molecular response

[IRVING& KIRKWOOD JChemPhys 1950] correspondence
between molecular dynamics and continuum mechanics

[METROPOLIS JChemPhys 1953] generated ensemble
response with Monte-Carlo method

[GREEN JChemPhys 1954] [KuBO JPhysSocJap 1957]
calculated transport properties from decay of fluctuations



Macroscale properties

Material properties can be calculated from (empirical) potentials
(and structure):

Non-transport

v

Surface/defect energies

v

Energy of formation

v

Mass density

v

Heat capacity

Transport
» Elastic constants (solid): bulk,shear, & Young's modulus
» Viscosity (fluid)
» Thermal conductivity

Since there are no explicitly-represented electrons, no electronic
properties can be computed directly (see DFT and other ab initio
methods) but ion conductivity is possible.



Mass density

The mass density of a system with volume V is simply
1
B > Ma
[e%
where the mass of atom « is m,,.

> For a NVT system p = Vma

» For a NPT system p = p(P, T) is non-trivial since
V=V(P,T).



A brief aside: correlation

Temporal correlation of a vector v(t) is simply the product
v(0)v(t) averaged over the ensemble.

To make this computable in MD, first use the ergodic hypothesis
to convert the ensemble to a time average

(vi0)@v(t)) = lim 1/OTV(S)®V(S—|— t)ds

T—00 T

and use time invariance of the product i.e. steady state statistics.

Next translate to discrete time
1
WO SU(iAL) & > vy
j=1

Spatial correlations are similar.



Heat capacity

Recall that the Dulong-Petit law implies that the heat capacity
(per unit volume) for classical dynamics is ¢, = 3kg{y.

The heat capacity can also be calculated from the variance of
fluctuations in the internal energy U (potential + thermal energy)

_ov (U2) — (U)?

“YTOT|, T keT?

using a derivation based on the partition function (see my last
lecture).

The idea of material properties being related to fluctuations will
come up again in the discussion of Green-Kubo methods.



Heat capacity

To take account of significant quantum effects at low
temperatures, the internal energy of the phonons (lattice
vibrations) can be modeled as a collection of harmonic oscillators

ok
U = L
% exp (hwk#,/kg T) -1

Z / kg Te(w) p(w) Dp(w) dw
p

%

where the first sum is over wave-vectors k & polarizations p.

The (reduced) energy of oscillator is e(w) = kaT' the distribution

is o(€) = (exp (€) —1)7%, and pde ~ ¢ D dw.

D(w) is the density of states (DOS) and can be computed by MD.



Heat capacity

Density of states (DOS) is the Fourier transform of the velocity
auto-correlation Ay (t) = (v(0) - v(t))

= /OO Ay (t) cos(wt) dt
0

Ay(i At) = (v(0) - v(i At))

where

and is typically normalized by (v(0) - v(0)) so that 4,(0) = 1.

Notice this is essentially the Wiener-Kinchine theorem relating
spectral density to the auto-correlation.



Heat capacity
Finally, using the chain rule % —drd

de de

U _ E(w)exp(e(w)) p o
“ToT T szp:/ (exp (e(w) Delw)d

specific heat (J/mol-K)
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Equilibrium vs. Non-equilbrium

Equilibrium is defined by the average macro-scale fluxes zero and
the relevant statistics are steady. Transport involves
non-equilibrium but potentially steady processes.

So what is a flux? It is conjugate to a force, e.g.

A
W =""F=PF
oF

the stress—rate-of-deformation pair, and

S . 1
—X=
S=xX=V <T) q
where the energy current density/heat flux q is a dissipative flux

i.e. one that directly contributes to entropy S production.

Linear response means that the flux J is linearly related to the
(external) force Fe



Macroscale transport

Fick's law: the flux in concentration flows its gradient

j=-DVc
plus conservation of species
0
= Vj=0
atc + V]

together give a diffusion equation

0
—c=DV?
at° ‘

The question is can we determine the diffusion coefficient D from
MD?



Macro-micro connection

Apparently, macroscale laws do apply in aggreate at atomic scale
but there can be strong size effects.

One of the foundations of this observation is the Onsager
regression hypothesis (1931) which states:

The equilibrium fluctuations in a phase variable are governed
by the same transport coefficients as is the relaxation of that
same phase variable to equilibrium

In other words, the decay of an equilibrium fluctuation is
indistinguishable from that of a (small) external perturbation.

We will see that Green-Kubo theory makes this discovery
computable.



Microscopic fluxes

Irving & Kirkwood, 1950 made a correspondence between
Newton's law for the ion cores to the Euler balances of mass,
momentum & energy for a continuum.

Stress (this is essentially the virial)

1 1
U:VZ mava®va+2§focﬁ®xa5

(0%
and heat flux )
q= VZ(cbal—i-aof)va
«
note the PE ¢o = = d(rop) is per atom not per bond.
Ng £+ B

Recall x,, are the positions, v, the velocities, & f, the forces.



Methods

There are three main methods with variants:

» Analytical : usually involve derivatives of potential &
simplified structure. These methods can be complex/tedious
and have limited applicability due to strong assumptions.

» Direct : based on a macroscale analogue. They usually involve
non-equilibrium with unphysically large gradients and large
systems ( variants include Miiller-Plathe for conductivity)

» Green-Kubo : use equilibrium fluctuations and small systems

(non-equilibrium variants: Evans, SLLOD). The noise/errors
in the estimates must be handled correctly.



Analytical: Cauchy-Born rule
Potential energy is function of positions ® = ®({x,})

Cauchy-Born rule assume a
homogeneous (local) defor-
mation from a perfect lat-
tice reference x, = FX,,

Stress, which identical in form to the virial

1 ! 1
U%P_aF(b_\/Zfigxaﬁ@)(aﬁ_vzfaﬁ@xaﬁ

The elastic constants
C~B = 02 = 9200rudru = DIpudru
1 v Y o%a  Xa %o Xa
- QV%:((b o ro‘ra®ra®ra®ra
1 X X
+—¢'0je 0 " Rer —
ry, ro, r,

«



Analytical: Finite temperature Cauchy-Born

The zero temperature C-B rule can be extended to finite
temperatures using the same harmonic oscillator model seen earlier.

The Helmholtz free energy is W = & — TS. The necessary entropy
S can be constructed via dynamical matrix

1 9%
m 0xg0X,,

D, =

which is essentially a stiffness matrix, so that

kg T o3

where detD = []; w;.

Then the stress and elastic constants can be derived via the first
and second derivatives of W with respect to F at constant T.



Direct methods

The methods are typically based on making an analogue with
continuum test, e.g. a tensile test.

Like the continuum ex-
periments these computer

“experiments” are usually
quasi-one dimensional. [@
The basic issue is how to
set up & support a gra-

dient via boundary condi- ?///

tions which mimic the ex-

%

i a material subject to external
ternal environment. mechanical loads and heat flux

Control regions, ghost/periodic image atoms can be employed.



Direct determination of elastic constants

The bulk modulus K is the constant of propor-
tionality between the pressure p = %tro and
the dilational strain p = K'tre ~ KA—VV
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To obtain this elastic constant we simply stretch
the periodic box & take derivative of curve at
any particular volume strain.

tension via box
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Direct determation of thermal conductivity

add_J (eV/psA)
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A steady-state temperature gradi-
ent is supported by injected en-
ergy in the “hot” region and ex-
tracting the same amount from
the “cold” region via
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> rescaling velocities
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ones (Mueller-Plathe)
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Einstein relation

Generally, correlations A, satisfy same PDE as phase variable ¢

9

_ 2
8tAC =DV-<A.

Similarly (r?) = (r(0)r(0)) where r> =x-x & ¢ = ¢(r, t)
§t<r2> = D/rZVch:QD/V-xcdr:6D

via integration by parts and a normalized [cdV = 1.

This is called an Einstein (1905) relation.



Green-Kubo

Using the Einstein relation & x = fotv dt, D can be connected to a

correlation:
. 0,5
60 = lim )
8 t t t
= tIergoat/o ; v(t1) - v(t2) dt1dty = tlljgo/o v(0) - v(s) ds

using the symmetry and time invariance of the correlation
v(t1) - v(t2). The limit is necessary to eliminate a 1 — % factor
that is significant at short times.

Evans derives the general Green-Kubo relation

V o

L(Fe:O):kBiT 0

(J(0)J(s))F.=0 ds

using the fluctuation and central limit theorems



Self-diffusion

2e-06

N=1
\ iy
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So the self diffusion constant for 2 \
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Green-Kubo
Specific formulas exist:

» for elastic constants,

vV

-1
(Ckek) ™=

(i(k) @ a(k))

0 Fourier transform of displacements & k is the wave vector.
» for viscosity,
V o0

= %7 Js (¢(0) ®¢(2)) dt

v

¢ is a vector of off-diagonal components of stress

» for thermal conductivity

vV

kT

/0 " (a(0) @ a(t)) dt .

q is the heat flux (whose “affinity” is + thus the extra T)



Homework: set-up

Use LAMMPS and the Green-Kubo method to calculate the
viscosity of liquid Argon

# parameters

variable T equal 86.4956

variable dt equal 4.0 # time-step

variable s equal 4 # sample interval in steps

variable p equal 2000 # correlation length in units of $s steps
variable d equal $p*$s # output interval

# convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K] Boltzmann

variable kCal2J equal 4186.0/6.02214e23

variable atm2Pa equal 101325.

variable A2m equal 1.e-10

variable fs2s equal 1.e-15

variable convert equal ${atm2Pa}*${atm2Pa}*${fs2s}*${A2m}*${A2m}*${A2m}



Homework: create system

units real

dimension 3

boundary p p p

pair_style 1j/cut 13.0

lattice fcc 5.719025032 # sets density of system
region box block 04 0 4 0 4

create_box 1 box

create_atoms 1 box

mass 1 39.948

pair_coeff 11 0.2381 3.405

velocity all create $T 31456 mom yes rot yes dist gaussian
variable V equal vol

variable scale equal ${convertl}/(${kB}*$T)*x$V*$s*${dt}



Homework: your turn

timestep ${dt}

thermo $d

variable pxy equal pxy # off-diagonal stress
fix NVT all nvt temp $T $T 10 drag 0.2

run 32000 # transient

reset_timestep O

# hint use ave/correlate to calculate J(0).J(t)
# hint use trap to integrate the correaltion

# hint run for a long time

run 1000000



Homework: solution for Ar viscosity

Solution

fix SS all ave/correlate $s $p $d v_pxy type auto ave running
variable v11l equal trap(f_SS[3])*${scale}

thermo_style custom step temp press v_vil

run 1000000

> experimental value is oo
approximately 0.0003 Pa-s 0004 1

0.00035 ‘
|

0.0003 Ft

0.00025

» what could make the estimate
better? think size of the e
ensemble o.000t

5e-05 |
0
-5e-05

VISCOSITY

> extra credit : calculate the
thermal Conductivity (See 0 200000 AOOOOSOTESOOOOO 800000 1e+06
http://lammps.sandia.gov/doc/compute_heat_flux.html)



Conclusion

With a well-verified potential and appropriate atomic structure, we
properties.

can use molecular dynamics to predict a variety of material




Further reading

> Allen & Tildesley, Computer Simulation of Liquids, 1987

» Evans & Morriss, Statistical Mechanics of Non-equilibrium
Liquids, 1990

» Haile, Molecular Dynamics Simulation: Elementary Methods,
1992

» Leach, Molecular Modelling - Principles and Applications,
2001

» Schlick, Molecular Modeling and Simulation: An
Interdisciplinary Guide, 2002

> Frenkel & Smit, Understanding Molecular Simulation, 2002
» Rappaport, The Art of Molecular Dynamics Simulation, 2004
» http://lammps.sandia.gov
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