
Lecture 9: Macroscale Property Estimation with
Molecular Dynamics

Reese Jones

Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

SAND2013-10042C



Table of contents

Types of properties
Non-transport
Transport

Types of methods
Analytical
Direct
Green-Kubo

Homework
Green-Kubo estimation of viscosity

add I&K/Hardy
please ask questions as we go

reference simulation, as discussed in Section 3.3. The number of argon atoms for the reference simulation is
NAr = 58268 and results in a density of q = 1.008 g cm!3 in the far-field of the tube. The simulation is equil-
ibrated for 1 ns and then run for another 4 ns to gather statistics. The statistical error in the averaged cell
velocities (1) is estimated to be ± 1.1%, based on the values of r(u) and su given in Section 4.1. During the
whole simulation, the z-component of the particle velocities are weakly coupled to a Berendsen thermostat
[30] at 215 K with a coupling constant 0.1 ps. The computational domain of the atomistic reference solution
and the average velocity in cells of size 0.5 · 0.5 · 4.26nm are shown in Figs. 7(a) and (c).

For the hybrid simulation, the edge length of the atomistic domain is reduced to LA = 10 nm and the
number of atoms to 6400 corresponding to 1/9 of the original system, cf. Fig. 7(b). The finite volume mesh
for the solution of the Navier–Stokes equations in XC consists of cells of size 0.5 · 0.5 · 4.26 nm and over-
laps the atomistic domain by four cell widths, i.e., by LO = 2.0 nm. We arbitrarily choose a uniform velocity
with ux = 100 m s!1 and uy = 0 m s!1 as an initial guess for the internal boundary condition on CC. Hence,
the solution for the velocity field u0C in the first iteration is a parallel flow.

In Fig. 8, we show the evolution of the ux velocity component during the iteration along the x- and the
y-axis. The noise introduced in the hybrid solution through the atomistic domain prevents the solutions to
fully converge. Nevertheless, the profiles are generally in close agreement with the reference solution (solid
line) after approximately 20 iterations and do not change more than expected from the noise amplitude. In

Fig. 7. (a) Computational domain for the reference solution of the flow of argon around a carbon nanotube using a purely atomistic
description. (b) Hybrid atomistic/continuum computational domain. Both computational domains have an extent of 30 · 30 nm.
(c) Velocity field for the reference solution averaged over 4 ns. The white lines are streamlines, and the black lines are contours of the
speed (|u|). (d) Velocity field of the hybrid solution after 50 iterations. The black square denotes the location of CA. The solution in XA

is averaged over 10 iterations.
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flow around a CNT
top: continuum, bottom: MD

[Werder et al JCompPhys 2005]



History

I [Clausius PhilMag 1870] [Maxwell TransRoySocEdin
1870] “virial” expression for stress

I [Onsager PhysRev 1931] discovery that decay from
perturbation is same as that from equilibrium fluctutaion

I [Born ProcCamPhilSoc 1940] Cauchy-Born model of
molecular response

I [Irving&Kirkwood JChemPhys 1950] correspondence
between molecular dynamics and continuum mechanics

I [Metropolis JChemPhys 1953] generated ensemble
response with Monte-Carlo method

I [Green JChemPhys 1954] [Kubo JPhysSocJap 1957]
calculated transport properties from decay of fluctuations



Macroscale properties

Material properties can be calculated from (empirical) potentials
(and structure):

Non-transport

I Surface/defect energies

I Energy of formation

I Mass density

I Heat capacity

Transport

I Elastic constants (solid): bulk,shear, & Young’s modulus

I Viscosity (fluid)

I Thermal conductivity

Since there are no explicitly-represented electrons, no electronic
properties can be computed directly (see DFT and other ab initio
methods) but ion conductivity is possible.



Mass density

The mass density of a system with volume V is simply

ρ =
1

V

∑
α

mα

where the mass of atom α is mα.

I For a NVT system ρ ≡ N
V mα.

I For a NPT system ρ = ρ(P,T ) is non-trivial since
V = V (P,T ).



A brief aside: correlation

Temporal correlation of a vector v(t) is simply the product
v(0)v(t) averaged over the ensemble.

To make this computable in MD, first use the ergodic hypothesis
to convert the ensemble to a time average

〈v(0)⊗ v(t)〉 = lim
τ→∞

1

τ

∫ τ

0
v(s)⊗ v(s + t) ds

and use time invariance of the product i.e. steady state statistics.

Next translate to discrete time

〈v(0)⊗ v(i ∆t)〉 ≈ 1

Nt

Nt∑
j=1

vj ⊗ vi+j

Spatial correlations are similar.



Heat capacity

Recall that the Dulong-Petit law implies that the heat capacity
(per unit volume) for classical dynamics is cv = 3kB

N
V .

The heat capacity can also be calculated from the variance of
fluctuations in the internal energy U (potential + thermal energy)

cv =
∂U

∂T

∣∣∣∣
V

=
〈U2〉 − 〈U〉2

kBT 2

using a derivation based on the partition function (see my last
lecture).

The idea of material properties being related to fluctuations will
come up again in the discussion of Green-Kubo methods.



Heat capacity

To take account of significant quantum effects at low
temperatures, the internal energy of the phonons (lattice
vibrations) can be modeled as a collection of harmonic oscillators

U =
∑
k,p

~ωk,p

exp (~ωk,p/kBT )− 1

≈
∑
p

∫
kBT ε(ω)ϕ(ω)Dp(ω) dω

where the first sum is over wave-vectors k & polarizations p.

The (reduced) energy of oscillator is ε(ω) = ~ω
kBT

, the distribution

is ϕ(ε) = (exp (ε)− 1)−1, and ϕdε ∼ ϕD dω.

D(ω) is the density of states (DOS) and can be computed by MD.



Heat capacity

Density of states (DOS) is the Fourier transform of the velocity
auto-correlation Av(t) = 〈v(0) · v(t)〉

D(ω) =

∫ ∞
0
Av(t) cos(ωt) dt

where

Av(i ∆t) ≡ 〈v(0) · v(i ∆t)〉 =
1

NαNt

∑
α

∑
j

vα,i · vα,i+j

and is typically normalized by 〈v(0) · v(0)〉 so that Av(0) = 1.

Notice this is essentially the Wiener-Kinchine theorem relating
spectral density to the auto-correlation.



Heat capacity
Finally, using the chain rule d

dT = dT
dε

d
dε

cv =
∂U

∂T
= kB

∑
p

∫
ε2(ω) exp (ε(ω))

(exp (ε(ω))− 1)2
Dp(ω) dω
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Equilibrium vs. Non-equilbrium
Equilibrium is defined by the average macro-scale fluxes zero and
the relevant statistics are steady. Transport involves
non-equilibrium but potentially steady processes.

So what is a flux? It is conjugate to a force, e.g.

Ψ̇ =
∂Ψ

∂F
Ḟ = PḞ

the stress–rate-of-deformation pair, and

Ṡ =
∂S

∂X
Ẋ = ∇

(
1

T

)
q

where the energy current density/heat flux q is a dissipative flux
i.e. one that directly contributes to entropy S production.

Linear response means that the flux J is linearly related to the
(external) force Fe

J = L(Fe = 0)Fe



Macroscale transport

Fick’s law: the flux in concentration flows its gradient

j = −D∇c

plus conservation of species

∂

∂t
c + ∇j = 0

together give a diffusion equation

∂

∂t
c = D∇2c

The question is can we determine the diffusion coefficient D from
MD?



Macro-micro connection

Apparently, macroscale laws do apply in aggreate at atomic scale
but there can be strong size effects.

One of the foundations of this observation is the Onsager
regression hypothesis (1931) which states:

The equilibrium fluctuations in a phase variable are governed
by the same transport coefficients as is the relaxation of that
same phase variable to equilibrium

In other words, the decay of an equilibrium fluctuation is
indistinguishable from that of a (small) external perturbation.

We will see that Green-Kubo theory makes this discovery
computable.



Microscopic fluxes

Irving & Kirkwood, 1950 made a correspondence between
Newton’s law for the ion cores to the Euler balances of mass,
momentum & energy for a continuum.

Stress (this is essentially the virial)

σ =
1

V

∑
α

mαvα ⊗ vα +
1

2

∑
β

fαβ ⊗ xαβ


and heat flux

q =
1

V

∑
α

(
φαI + σT

α

)
vα

note the PE φα = 1
Nβ

∑
β φ(rαβ) is per atom not per bond.

Recall xα are the positions, vα the velocities, & fα the forces.



Methods

There are three main methods with variants:

I Analytical : usually involve derivatives of potential &
simplified structure. These methods can be complex/tedious
and have limited applicability due to strong assumptions.

I Direct : based on a macroscale analogue. They usually involve
non-equilibrium with unphysically large gradients and large
systems ( variants include Müller-Plathe for conductivity)

I Green-Kubo : use equilibrium fluctuations and small systems
(non-equilibrium variants: Evans, SLLOD). The noise/errors
in the estimates must be handled correctly.



Analytical: Cauchy-Born rule
Potential energy is function of positions Φ = Φ({xα})

Cauchy-Born rule assume a
homogeneous (local) defor-
mation from a perfect lat-
tice reference xα = FXα

F

Stress, which identical in form to the virial

σ ≈ P = ∂FΦ =
1

V

∑ φ′

rαβ
xαβ ⊗ xαβ =

1

V

∑
fαβ ⊗ Xαβ

The elastic constants

C ≈ B = ∂2
FΦ = ∂2

uΦ∂Fu ∂Fu = D∂Fu ∂Fu

=
1

2V

∑
α

(
φ′′ − φ′

rα

)
r2
α

xα
rα
⊗ Xα

rα
⊗ xα

rα
⊗ Xα

rα

+
1

rα
φ′δij ei ⊗

Xα
rα
⊗ ej ⊗

Xα
rα



Analytical: Finite temperature Cauchy-Born

The zero temperature C-B rule can be extended to finite
temperatures using the same harmonic oscillator model seen earlier.

The Helmholtz free energy is Ψ = Φ− TS . The necessary entropy
S can be constructed via dynamical matrix

Dα =
1

m

∂2Φ

∂x0∂xα

which is essentially a stiffness matrix, so that

Ψ = Φ +
kBT

Vα
log

((
~

kBT

)3√
detD

)
.

where detD =
∏

i ωi .

Then the stress and elastic constants can be derived via the first
and second derivatives of Ψ with respect to F at constant T .



Direct methods

The methods are typically based on making an analogue with
continuum test, e.g. a tensile test.

Like the continuum ex-
periments these computer
“experiments” are usually
quasi-one dimensional.

The basic issue is how to
set up & support a gra-
dient via boundary condi-
tions which mimic the ex-
ternal environment.

a material subject to external
mechanical loads and heat flux

Control regions, ghost/periodic image atoms can be employed.



Direct determination of elastic constants

The bulk modulus K is the constant of propor-
tionality between the pressure p = 1

3 trσ and

the dilational strain p = K tr ε ≈ K ∆V
V
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Direct determation of thermal conductivity

rameters developed for GaN. Some thermal conductivity
studies have been reported from simulations using SW po-
tentials, including transport in bulk7,36 and nanowires.37

Here, we use the SW potential with parameters developed by
Bere and Serra.34,35 We will compare the results found using
this SW potential with previously published results.7,36

To evaluate the suitability of the SW potential34,35 for
thermal transport calculations, we first apply it to compute
the dynamical properties including the dispersion relations,
vibrational density of states !DOS", and heat capacity using
the established theory.38 The results are compared with cor-
responding experiments39–41 in Figs. 1–3.

Figure 1 shows phonon dispersion relations along the
#0001$ direction. It can be seen that the SW results of the
longitudinal acoustic branch are in very good agreement with
those obtained from the Raman scattering and inelastic x-ray
scattering experiments.39 By contrast, the SW potential sig-
nificantly underestimates the longitudinal optical branch.

Figure 2 shows the vibrational DOS data. Consistent with
the dispersion curves in Fig. 1, the calculated vibrational
DOS in Fig. 2 is seen to be in reasonable agreement with the
time-of-flight neutron spectroscopy experiments40 for the
lower-frequency modes which include the acoustic modes.
By contrast, there is a substantial difference between the

computed and experimental frequencies for the high-
frequency optical modes. It is noted that the SW potential
does not include the long-range electrostatic interaction,
which is known to be responsible for splitting the longitudi-
nal optical and transverse optical phonon branches in polar
materials. However, we also note that the interatomic poten-
tials with the electrostatic interactions42 may also fail to de-
scribe both acoustic and optical phonons at the same time.

Figure 3 shows specific heat Cp. It can be seen that the
SW predictions are in reasonable agreement with the experi-
mental data41 at low temperatures. At higher temperatures,
the calculations tend to underestimate the experimental val-
ues. This is consistent with a significant overestimation of
the optical phonon frequencies by the SW potential.

In summary, the dynamical properties of the SW potential
for GaN exhibit reasonable behavior when compared to ex-
periment. For low-frequency modes the agreement is much
better than for high-frequency optical modes.

B. Computational cell

The equilibrium GaN has a wurtzite hexagonal crystal
structure. The experimental lattice constants are a=3.19 Å,
c=5.19 Å, and an internal displacement u=0.377 !Ref. 43".
With the SW interatomic potential used here, the zero-
temperature lattice constants are a=3.19 Å, c=5.20 Å, and
u=0.375. The computational supercell is aligned so that the
x, y, and z coordinates correspond, respectively, to #0001$,
#1̄100$, and #112̄0$ directions. Of the hexagonal structure,
we can define a unit orthogonal cell whose dimensions in the
x, y, and z directions are, respectively, c, 2a cos!! /6", and a.
Along the #0001$ x direction of heat propagation, the number
of unit cells n1 is chosen from the range 150"n1"500,
which approximately corresponds to the range between
770 Å and 2550 Å. The numbers of unit cells in the #1̄100$
y and #112̄0$ z directions, n2 and n3, are chosen in the range
2#3"n2#n3"6#10 so that the corresponding cross-
sectional area ranges between approximately 106 Å2 and
1060 Å2.

Initial crystals were created by assigning atom positions
according to prescribed crystal lattice. Two types of initial
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FIG. 4. Schematic illustration of the x-y projection of the com-
putational cell. Boundaries of periodic cell and heat/cold regions are
carefully set at the middle between widely separated planes as high-
lighted, respectively, by dashed frame and dark shaded areas.
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A steady-state temperature gradi-
ent is supported by injected en-
ergy in the “hot” region and ex-
tracting the same amount from
the “cold” region via

I rescaling velocities

I a thermostat

I swapping hot atoms for cold
ones (Müeller-Plathe)

[Schelling PRB 2002]
[Zhou PRB 2009,2010]
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Einstein relation

Generally, correlations Ac satisfy same PDE as phase variable c

∂

∂t
Ac = D∇2Ac

Similarly 〈r2〉 ≡ 〈r(0)r(0)〉 where r2 = x · x & c = c(r , t)

∂

∂t
〈r2〉 = D

∫
r2∇c dV = 2D

∫
∇ · x c dr = 6D

via integration by parts and a normalized
∫
c dV = 1.

This is called an Einstein (1905) relation.



Green-Kubo

Using the Einstein relation & x =
∫ t

0 v dt, D can be connected to a
correlation:

6D = lim
t→∞

∂

∂t
〈r2〉

= lim
t→∞

∂

∂t

∫ t

0

∫ t

0
v(t1) · v(t2) dt1dt2 = lim

t→∞

∫ t

0
v(0) · v(s) ds

using the symmetry and time invariance of the correlation
v(t1) · v(t2). The limit is necessary to eliminate a 1− t1

t factor
that is significant at short times.

Evans derives the general Green-Kubo relation

L(Fe = 0) =
V

kBT

∫ ∞
0
〈J(0)J(s)〉Fe=0 ds

using the fluctuation and central limit theorems



Self-diffusion

So the self diffusion constant for
a material can be calculated

D =
1

3

∫ ∞
0
〈vα(0)⊗ vα(t)〉 dt

for a set of α to get ensemble.

Notice the correlation must decay
& in a reasonable amount of time
to get an answer.

Also, the Fast Fourier transform is
sometimes used instead of simple
sums to get fast correlations.

-5e-07

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 0  1000  2000  3000  4000  5000

C
O

R
R

E
LA

T
IO

N

TIME

N=1
N=8

N=16

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 1.6e-05

 1.8e-05

 0  1000  2000  3000  4000  5000

IN
T

E
G

R
A

L 
O

F
 C

O
R

R
E

LA
T

IO
N

TIME

N=1
N=8

N=16

correlation & integral for 1, 8, 16
atoms



Green-Kubo
Specific formulas exist:

I for elastic constants,

(C k⊗ k)−1 =
V

kBT
〈ũ(k)⊗ ũ(k)〉

ũ Fourier transform of displacements & k is the wave vector.

I for viscosity,

ν =
V

kBT

∫ ∞
0
〈ς(0)⊗ ς(t)〉 dt

ς is a vector of off-diagonal components of stress

I for thermal conductivity

κ =
V

kBT 2

∫ ∞
0
〈q(0)⊗ q(t)〉 dt .

q is the heat flux (whose “affinity” is 1
T thus the extra T )



Homework: set-up

Use LAMMPS and the Green-Kubo method to calculate the
viscosity of liquid Argon

# parameters

variable T equal 86.4956

variable dt equal 4.0 # time-step

variable s equal 4 # sample interval in steps

variable p equal 2000 # correlation length in units of $s steps

variable d equal $p*$s # output interval

# convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K] Boltzmann

variable kCal2J equal 4186.0/6.02214e23

variable atm2Pa equal 101325.

variable A2m equal 1.e-10

variable fs2s equal 1.e-15

variable convert equal ${atm2Pa}*${atm2Pa}*${fs2s}*${A2m}*${A2m}*${A2m}



Homework: create system

units real

dimension 3

boundary p p p

pair_style lj/cut 13.0

lattice fcc 5.719025032 # sets density of system

region box block 0 4 0 4 0 4

create_box 1 box

create_atoms 1 box

mass 1 39.948

pair_coeff 1 1 0.2381 3.405

velocity all create $T 31456 mom yes rot yes dist gaussian

variable V equal vol

variable scale equal ${convert}/(${kB}*$T)*$V*$s*${dt}



Homework: your turn

timestep ${dt}

thermo $d

variable pxy equal pxy # off-diagonal stress

fix NVT all nvt temp $T $T 10 drag 0.2

run 32000 # transient

reset_timestep 0

# hint use ave/correlate to calculate J(0).J(t)

# hint use trap to integrate the correaltion

# hint run for a long time

run 1000000



Homework: solution for Ar viscosity

Solution

...

fix SS all ave/correlate $s $p $d v_pxy type auto ave running

variable v11 equal trap(f_SS[3])*${scale}

thermo_style custom step temp press v_v11

run 1000000

I experimental value is
approximately 0.0003 Pa-s

I what could make the estimate
better? think size of the
ensemble

I extra credit : calculate the
thermal conductivity (see
http://lammps.sandia.gov/doc/compute heat flux.html)
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Conclusion

With a well-verified potential and appropriate atomic structure, we
can use molecular dynamics to predict a variety of material
properties.

reference simulation, as discussed in Section 3.3. The number of argon atoms for the reference simulation is
NAr = 58268 and results in a density of q = 1.008 g cm!3 in the far-field of the tube. The simulation is equil-
ibrated for 1 ns and then run for another 4 ns to gather statistics. The statistical error in the averaged cell
velocities (1) is estimated to be ± 1.1%, based on the values of r(u) and su given in Section 4.1. During the
whole simulation, the z-component of the particle velocities are weakly coupled to a Berendsen thermostat
[30] at 215 K with a coupling constant 0.1 ps. The computational domain of the atomistic reference solution
and the average velocity in cells of size 0.5 · 0.5 · 4.26nm are shown in Figs. 7(a) and (c).

For the hybrid simulation, the edge length of the atomistic domain is reduced to LA = 10 nm and the
number of atoms to 6400 corresponding to 1/9 of the original system, cf. Fig. 7(b). The finite volume mesh
for the solution of the Navier–Stokes equations in XC consists of cells of size 0.5 · 0.5 · 4.26 nm and over-
laps the atomistic domain by four cell widths, i.e., by LO = 2.0 nm. We arbitrarily choose a uniform velocity
with ux = 100 m s!1 and uy = 0 m s!1 as an initial guess for the internal boundary condition on CC. Hence,
the solution for the velocity field u0C in the first iteration is a parallel flow.

In Fig. 8, we show the evolution of the ux velocity component during the iteration along the x- and the
y-axis. The noise introduced in the hybrid solution through the atomistic domain prevents the solutions to
fully converge. Nevertheless, the profiles are generally in close agreement with the reference solution (solid
line) after approximately 20 iterations and do not change more than expected from the noise amplitude. In

Fig. 7. (a) Computational domain for the reference solution of the flow of argon around a carbon nanotube using a purely atomistic
description. (b) Hybrid atomistic/continuum computational domain. Both computational domains have an extent of 30 · 30 nm.
(c) Velocity field for the reference solution averaged over 4 ns. The white lines are streamlines, and the black lines are contours of the
speed (|u|). (d) Velocity field of the hybrid solution after 50 iterations. The black square denotes the location of CA. The solution in XA

is averaged over 10 iterations.

T. Werder et al. / Journal of Computational Physics 205 (2005) 373–390 385

⇐⇒

reference simulation, as discussed in Section 3.3. The number of argon atoms for the reference simulation is
NAr = 58268 and results in a density of q = 1.008 g cm!3 in the far-field of the tube. The simulation is equil-
ibrated for 1 ns and then run for another 4 ns to gather statistics. The statistical error in the averaged cell
velocities (1) is estimated to be ± 1.1%, based on the values of r(u) and su given in Section 4.1. During the
whole simulation, the z-component of the particle velocities are weakly coupled to a Berendsen thermostat
[30] at 215 K with a coupling constant 0.1 ps. The computational domain of the atomistic reference solution
and the average velocity in cells of size 0.5 · 0.5 · 4.26nm are shown in Figs. 7(a) and (c).

For the hybrid simulation, the edge length of the atomistic domain is reduced to LA = 10 nm and the
number of atoms to 6400 corresponding to 1/9 of the original system, cf. Fig. 7(b). The finite volume mesh
for the solution of the Navier–Stokes equations in XC consists of cells of size 0.5 · 0.5 · 4.26 nm and over-
laps the atomistic domain by four cell widths, i.e., by LO = 2.0 nm. We arbitrarily choose a uniform velocity
with ux = 100 m s!1 and uy = 0 m s!1 as an initial guess for the internal boundary condition on CC. Hence,
the solution for the velocity field u0C in the first iteration is a parallel flow.

In Fig. 8, we show the evolution of the ux velocity component during the iteration along the x- and the
y-axis. The noise introduced in the hybrid solution through the atomistic domain prevents the solutions to
fully converge. Nevertheless, the profiles are generally in close agreement with the reference solution (solid
line) after approximately 20 iterations and do not change more than expected from the noise amplitude. In

Fig. 7. (a) Computational domain for the reference solution of the flow of argon around a carbon nanotube using a purely atomistic
description. (b) Hybrid atomistic/continuum computational domain. Both computational domains have an extent of 30 · 30 nm.
(c) Velocity field for the reference solution averaged over 4 ns. The white lines are streamlines, and the black lines are contours of the
speed (|u|). (d) Velocity field of the hybrid solution after 50 iterations. The black square denotes the location of CA. The solution in XA

is averaged over 10 iterations.

T. Werder et al. / Journal of Computational Physics 205 (2005) 373–390 385



Further reading

I Allen & Tildesley,Computer Simulation of Liquids, 1987
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Liquids, 1990

I Haile, Molecular Dynamics Simulation: Elementary Methods,
1992

I Leach, Molecular Modelling - Principles and Applications,
2001

I Schlick, Molecular Modeling and Simulation: An
Interdisciplinary Guide, 2002

I Frenkel & Smit, Understanding Molecular Simulation, 2002

I Rappaport, The Art of Molecular Dynamics Simulation, 2004

I http://lammps.sandia.gov
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