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Solar Energy Conversion

Clean and renewable energy is the most challenging problem of our generation

Conventional PV Cell @ heat loss
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Can we utilize the excess energy: hv - E, ?7?




Carrier Multiplication

Can we utilize the excess energy: hv - E,?
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However carrier multiplication is inefficient in bulk:
* Impactionization rate in bulk is very small

» Thermalization rate is much faster than impact ionization rate




Carrier Multiplication in Nanocrystals

» Impact ionization is an inverse Auger process

— — Auger processes enhanced in nanocrystals
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Impact ionization can compete
successfully with
thermalization !!

A.]. Nozik, Physica E 14 (2002), 115-120.




Multiple Excitons Generated by One Photon

Effect first observed in transient absorption dynamics in PbSe nanocrystals
R.Schaller & V. Klimov, PRL 92 7186607 (2004)
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Quantum Yield of Multi-Exciton Generation

Quantum Yield measured by transient bleach: QY=(n_+n,)100%
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What is the reason of such high efficiency?
Impact lonization?

Bleach build up
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Puzzle:

*Decay time ~100 ps (Auger process)

*Rise time ~2-3 ps (Inverse Auger process)

Rise time consistent only with carrier thermalization time.

Creation of a coherent superposition of a single and several electron-hole pairs.




T M I1s Explainin Ellingson et.al,
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States with Energy Larger than Energy Gap

Electron in the 2P, state:
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Two states are degenerate and coupled:
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valid for these carriers !!!

Two degenerate states BUT uncoupled
O

d (nm)
7.07 5.77 5.00 4.47 4.08

>

2

>

>

o

c

w -

Kang&Wise (1997)

In bulk:

4

v




7 6 5 4.5 4
2P, 2P, | | \ | \
. el I — 2D,
1S, Wlts. o o s .
~ >0 e 2D
—
1S 1S - 20F2.| " m
h h > = \ "
2P, 2P, o 20 | ~20,) _m® _ omH
g 0.02 0.04 0.06 g Moy ™
2D, 2D, ) 1/d? (nm?) mE gu™®
2P, ----@---- 2P, ---m S 10T M = m>
e e n
= c 1PASAS, .= .
e e LLI | m m®
18, W |1s, @ |
® u g
2N =
& =N mn®
T N— 1S, -2m----]
' 1Ph h 1Ph I. . ) | © ) | ) | ) |
pEgEe— 2Py oo 0.02 0.03 0.04 0.05 0.06
h 2 -2
— 1/d“ (nm”)

Valence and conduction bands in PbSe are almost symmetrical: 2P, and 2D, hole states are
strongly coupled with trion states.

Wape, 2pe =20%] electron T+ 50%|trion

Wave functions of the mixed electron and hole states:
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Non-Coherent Models of the MEG

2r
Use the Fermi Golden Rule: P ="=—W<p,.  (ho)
h

ex—biex

where W <ex|v(r,,r,)| biex> and p,,,, is the density of the biexciton states.

The FGR is an approximation !!!!

The rate of formation of ONE excited J- bi-exciton state from the optically

created exciton: ,
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where £, and £ are the exciton and J- bi-exciton energies, V(& <ex|y(r,,r,)|J-biex>,
v, and y, are the exciton and biexciton relaxation rate:

The total transition rate:  Lospier = Z})ex—)J—biex How do we get the FGR ?
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3. The number J-biex states where the is exciton transferred: N, = p,. iy,




Quantum simulation of multiple-exciton generation

Closed system evolution: the initial single-photon state excites electronic states,

which evolve ONLY through Columbic interaction :
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H 1s the Hamiltonian, which includes all Columbic interactions.
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B
MEG Dependence on Coulomb Strength and Excitation

Energy
No oscillation of <N,>(t),
“].1"I E 5 [T LNLELBELLL N R R T T 1T even if MEG iS effiCient-
F(a)Ad=2nm | = ®=5, K=10 10° o :
ok Ks=Kg=3 = B X : Oscillations are seen in
= E, =0.792eV i 3 he ) -
~ E = g £y el cross-over behavior.
“> 100k : =+ k=10, Kg=5
& t Wi 30 & Rabi oscillations:
i E=@ledlesos b H10? 2
g 2.55,3.33, 3.7 E 2 —
E 1D | P *3JE ] 2 P(t) - zgzhz [1 o COS(th)]
10" g 1 7% where
= 2 4
S

_ Qh=\\W?+(E, —E,) 4
10™

2

Att<<1/Q:  P(t) z%tz

T r1r|1lr[

el

E.=(4.00, 4.23,
' 322.356)E,
P 1G

Independent of detuning !!!

10~

IRELL] T Iltllll L TRETm T

1 1 L L. 4 11 J] 1 1 Ll 1 B 11
1 10" 10" 10° 1_4}* 10° 10
time (fs) tume (fs)

Pt=m/2Q)=

0 3

Max values:
W2

2 2 j-w\‘ie’_a‘nc» L_;,',%J

W +(E6X_EJ) /4 if “Lt:: 1 ¥

10




Eftect of Exciton and Bi-exciton Relaxation

In 2 nm radius PbSe NCs under excitation at the 1°H,,-1" H,,, transition: £ =5.05 E;=4 eV
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Summary

— Our calculations unambiguously demonstrate that highly

efficient MEG can be observed in small nanocrystals.

— The effect 1s enhanced by a high density of biexciton states

and strong coupling with optically created excitons.

— The fast multi-exciton thermalization accelerates the

formation of multiexciton in the ground state and improve

extraction efficiency of electron-hole pair from the NCs




