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Solar Energy Conversion
Clean and renewable energy is the most challenging problem of our generation
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Can we utilize the excess energy: hν - Eg ??



Carrier  multiplication if h - Eg > Eg

However carrier multiplication is inefficient in bulk:

• Impact ionization rate  in bulk is very small

• Thermalization rate is much faster than impact ionization rate
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Carrier Multiplication
Can we utilize the excess energy:  hν - Eg ?



Carrier Multiplication in Nanocrystals

Impact ionization can compete 
successfully with 
thermalization !!

A. J. Nozik, Physica E 14 (2002), 115-120.
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• Discrete e-h spectra Phonon bottleneck
Carrier thermalization is suppressed
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• Impact ionization is an inverse Auger process
Auger processes enhanced in nanocrystals

<2Pe|v(r1,r2)| 1Se 1Se 1Sh>
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Experimental
Evidence

Multiple Excitons Generated by One Photon
Effect first observed in transient absorption dynamics in PbSe nanocrystals 

R.Schaller & V. Klimov, PRL 92 186601 (2004)
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Band-edge transient bleach:
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R.Ellingson, et.al. 
NanoLetters 5, 865 (2005)



Quantum Yield of Multi-Exciton Generation 

R.Ellingson, et.al. NanoLetters 5, 865 (2005)
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R. Schaller, et. al., NanoLetters,  6, 424 (2006)

Quantum Yield measured by transient bleach:  QY=(ne+nh)100%

PbSe, PbS, CdSe, 
InAs, Si nanocrystals

Using various 
techniques



What is the reason of such high efficiency?

R.Ellingson, et.al. NanoLetters (2005)
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Impact Ionization?

Puzzle:

•Decay time ~100 ps (Auger process)

•Rise time ~2-3 ps (Inverse Auger process)

Creation of a coherent superposition of a single and several electron-hole pairs.

Auger decay

Bleach build up

Rise time consistent only with carrier thermalization time.



Two Models Explaining 
Efficient MEG in NCs

Coherent 
superposition model:


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Ellingson et.al, 
NanoLett.2005.
A.Shabaev et.al, 
Nano Lett. 2006

Basis: single electron 
or hole states are not 
eigenstates of a NC.

Non- Coherent models:

Basis: the density of the 
biexciton states is much  
larger that the exciton one

Schaller, Agranovich, Klimov, Nature Phys, 2005.

Putasov, 
Klimov, 
PRB 2007



States with Energy Larger than Energy Gap
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Two degenerate states BUT uncoupled

In bulk:

Electron in the 2Pe state:
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Two states are degenerate and coupled:  
<2Pe|v(r1,r2)| 1Se 1Se 1Sh> 0

Single electron approximation is not 
valid for these carriers !!!

Kang&Wise (1997)

PbSe
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Multi-electron-hole states

Valence and conduction bands in PbSe are almost symmetrical: 2Ph and 2Dh hole  states are 
strongly coupled with trion states.

Wave functions of the mixed electron and hole states:
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Non-Coherent Models of the MEG

Use the Fermi Golden Rule:

where W <ex|v(r1,r2)| biex> and biex is the density of the  biexciton states.
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The total transition rate:   
J

biexJexbiexex PP

The rate of formation of ONE excited J- bi-exciton state from the optically 
created exciton:

where Eex and EJ are the exciton and J- bi-exciton energies, Wj <ex|v(r1,r2)|J-biex>, 

1 and 2 are the exciton and biexciton relaxation rate:
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How do we get the FGR ?

We assume: 1. 2 >> WJ/ 2.  W2= <WJ
2>

3. The number J-biex states where the is exciton transferred: 2 biexJN 



Quantum simulation of multiple-exciton generation
Closed system evolution: the initial single-photon state excites electronic states, 
which evolve ONLY through Columbic interaction :

H is the Hamiltonian, which  includes  all Columbic interactions.

Time dependent evolution 
of 2eP1/2 -2h P1/2 excitation 
created by a single photon

Occupation probability: 

2||)(|||  tk
of exciton, bi-exciton 
and tri-exciton states 
(k=1,2, and 3)

2nm radius PbSe NC:       
s= g=5, E=2.95 eV
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MEG Dependence on Coulomb Strength and Excitation 
Energy

No oscillation of <Nx>(t), 
even if MEG is efficient.

At t << 1/: 2
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Independent of detuning !!!

Oscillations are seen in 
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Effect of Exciton and Bi-exciton Relaxation
In 2 nm radius PbSe NCs under excitation at the  1eH1/2-1

h H1/2 transition: E=5.05 E1=4 eV

Exciton-biexciton 
coupling time: 300 fs

Saturation  value 
for MEG depends 
only on exciton 
relaxation time, 1



Summary

– Our calculations unambiguously demonstrate that highly 

efficient MEG can be observed in  small nanocrystals. 

– The effect is enhanced by a high density of biexciton states 

and strong coupling with optically created excitons. 

– The fast multi-exciton thermalization accelerates the 

formation of multiexciton in the ground state and improve 

extraction efficiency of electron-hole pair from the NCs


