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Questions to be addressed

What is the Magnetized Liner Inertial Fusion (MagLIF) approach at Sandia?
Which details are included in integrated simulations?
What are the expectations for near-term experiments with present parameters?

What are the expectations for future experiments with upgraded parameters?
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AP Many groups want to use magnetic fields
to relax inertial fusion stagnation requirements
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" We are working toward the evaluation of the

Magnetized Liner Inertial Fusion (MagLIF)* concept

Liner (Al or Be) =  Theinitial B,~10-50 T flux is compressed to ~5-15 kT (~50-150 MG)
azimuthal = to reduce thermal electron conduction losses
sug / drive field = to enable low pR;,,, ignition (B,R;,. requirement instead)

The fuel is preheated using the Z-Beamlet laser in order to reduce:
= the convergence ratio (CR) needed to obtain T, > 4 keV

axial ] = the implosion velocity needed to < 100 km/s
r?agnetlc = the stagnation pressure needed to a few Gbar (not 100s Gbar)
field =  Measurable yields may be possible on Z + Z-Beamlet

preheated _ 'PS?{T']‘ g.
fuel ' % | g
g. 3 3e+2
g g
8l 3
: 2
compressed =
axial field
r(cm) r (cm)
Sandi
*S. A. Slutz, et. al., Phys. Plasmas 17, 056303 (2010). h EEEE?;MS




""' MagLIF uses the Z facility to compress a liner

containing pre-magnetized and pre-heated D, gas

o+ Magnets Liner
MagneticalIy-Drive::mE;‘ﬁ)ndrical Implosion ] (1 cm
B 1,130\ po= .
P=2M,=14O(Rm ) MBar " height)

140 MBar is generated
atR=1mmand| =30 MA

Or current
delivery

Laser / compression

Applied-B Capacitors [




’* !‘W " The necessary components are being
separately tested in “focused” experiments

e Laser preheat

— 8 laser-only
experiments

e Applied magnetic
field
— 8Zshots
— 6 laser-only

e Linee$rridiitgts —
— >30Zshots
e Modified power flow

— Geometry scan to
minimize losses

— 15 Z shots
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..idaser-only fuel preheating experiments (with laser
and B,, but no implosion) measure absorption into gas

Measured Z-Beamlet power

We can infer gas absorption energy as f(z)
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A dLaser-only fuel preheating experiments (with laser

’ -4;,.-.5—;'5’ ATE -

and B,, but no implosion) measure absorption into gas

Measured Z-Beamlet power

We can infer gas absorption energy as f(z)
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AT Ideal 1D HYDRA simulation of near term

*:

MagLIF experiments on Z using available parameters

Near-term MagLIF experiment:
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ST Ideal 1D HYDRA simulation of near term
MagLIF experiments on Z using available parameters

Stagnation profile

Near-term MagLIF experiment:

_ ~ Time (ns) : 140.004
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“““waAn integrated model seeks to realistically simulate
MagLIF experiments as they would occur on Z

A number of parameters and
constraints must be self-
consistently included and
integrated into one simulation

(1) Laser

(2) Laser entrance hole (LEH)
and window

(3) Liner and circuit

Cathode

(4) Electrode end caps

(5) Component interactions,
timing, and optimization
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AT Integrated 2D HYDRA simulation of near-term
MagLIF experiments on Z using available parameters

rho (log10[g/cc)), t (ns) : 139.750 Te and T (log10[eV]), t (ns) : 139.750
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AT Integrated 2D HYDRA simulation of near-term
MagLIF experiments on Z using available parameters

rho (log10[g/cc)), t (ns) : 139.750 Te and T (log10[eV]), t (ns) : 139.750
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Liner length and gas density variations for
near-term integrated MagLIF experiments on Z

Liner =5 mm Liner =7.5 mm Liner =10 mm
(Imax~20 MA) (Ima~19 MA) (Imax™~18 MA)

Pgas = 0.3 mg/cc Maser 1100“m Maser 840 Hm Maser 660“m
Az, 4o, ~1.1 pm E,??51.27 kI 2?5 1.54 kI E,??51.74 kI
Pgas = 1.1 mg/cc Maser 700Mm Maser 530Mm Maser 490Mm
Az, 4o ~1.5 UM E,, 2?5 1.49 kJ E,, 2?5 1.78 kJ E,,2?51.85 kI
pgas =1.5 mg/cc MNaser 470Mm MNaser 460 Hm MNaser 440Mm
A2, g ~2.0 M E,, 2?5 1.67 kJ E,, 2?5174 kJ E,,2?51.85 kI
pgas =2.0 mg/cc Maser 440Mm Maser 380Mm Maser 360Mm
4z, 4o ~2.7 UM E,, 2?5 1.52 kJ E,, 2?5 1.62 kJ E,,2?51.66 kI
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Liner length and gas density variations for
near-term integrated MagLIF experiments on Z

Liner =5 mm Liner =7.5 mm Liner =10 mm

(1__~20 MA) (1__~19 MA) (1__~18 MA)
Pgas = 0.8 mg/cc CRyp 46 CRyp 42 CRyp 33
dZWindOW ~1.1 pum mloss 73% mloss 60% mloss 43%
Pgas = 1.1 mg/cc CR, 42 CR,p 37 CR,p 33
dZwindow ~1.5 um Mioss 638% Mioss 51% Mgss 39%
Pgas = 1.5 mg/cc CR,p, 40 CR,p 37 CR,p 33
dZWi”dOW ~2.0 pm Mgss 61% Mgss 43% Mgss 35%
Peas = 2.0 mg/cc CR,p 42 CR,p 39 CR,p 36
dZwindow ~2.7 um Mioss 56% Mioss 35% Mgss 29%
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Liner length and gas density variations for
near-term integrated MagLIF experiments on Z

Liner =5 mm Liner =7.5 mm Liner =10 mm
(1__~20 MA) (1__~19 MA) (1__~18 MA)
Pgas = 0.8 mg/cc
dz,; 4o ~1.1 pm Y, 1.4e13 Y, 6.5e13 Y, 8.3e13
Pgas = 1.1 mg/cc
dz,ingow ~1.5 UM Y, 2.0e13 Y, 7.0e13 Y, 6.5e13

Pgas = 1.5 mg/cc
dZyingow ~2.0 um Y 2.3e13 (5% of 1D) | Y. 6.1e13 (24% of 1D) | Y. 4.8e13 (32% of 1D)

Pgas = 2.0 mg/cc
dz,indow ~2-7 UM Y, 3.3el3 Y, 2.5el3 Y, 1.9el3

Independent Lasnex calculations of Y, are
generally within an approximate factor of 2 - Sandia

National
Labhoratories




Laser timing variations for
near-term integrated MagLIF experiments on Z
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Simulated performance of how MagLIF scales up

Benefit___|Present | Upgrades | New machine_

Length End losses 7.5 mm 10 mm 10 mm

Elocer CR 2 kJ 6 kJ 25 kJ

B, CR, losses 10T 30-40 T 8T

| ax Egriver Vimp 19 MA 24 MA 70 MA

Temp,,, 5-6 keV 20 keV 13 keV

PRtueir PRiiner 4e-3,1.0gcm? 4e-3,2.0gcm? 0.6,3.1gcm™

Pressureg,, 2-3 Gbar 5 Gbar 25 Gbar

Yield 6.1e13 (DD) 3.7e14 (DD) 2.8e21 (DT)
3.0el6 (DT)

Gaing, 2.7e-3 (DD) 1.5e-2 (DD) 4400 (DT)
1.2 (DT)

Sandia
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—aTtal Ideal 1D HYDRA simulation of MagLIF
experiments on Z using upgraded parameters

Stagnation profile

Upgraded MagLIF experiment:

L. .=10 mm, AR =6, Time (ns) : 136.004

liner liner”” ~5 Gbar JIIII\\I|I|I\\||II|\||||I|II||E
Pgas = 1.2 mg cm3, DT fuel, e = V’ -
B,°=40T,E. =6 kj (1 TW) 32% flux loss - -
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~0.2gcm3
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¢ | Integrated 2D HYDRA simulation of MagLIF
experiments on Z using upgraded parameters

rho (Iog10{gz’cc]) (ns) : 0.00000 Te and TI (Iog10[eV] ( S) : 0.00000

Material energies
1000_—,""""” lvrea bbb L

= Ejper~895 kJ

_l
o
o
o
i
N S TR NI

~163 k1 -
5, E,."68 k)

" ireg,t(ns):  0.00000

0.0 = (vt
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Time (ns)

* Y =3e16 (83 k)

+ G,=0.07,G,=1.2
* CR,,26
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* (Dloss 32%
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T In principle*, MagLIF could achieve high gain

using a cryogenic DT layer and substantial fuel preheat

z (cm)

rho (Iog1 D[g/cc]) (ns) : 0.00000 HYDRA 1D
| Pl | il | | | 10000'0 I I I I
g B DT cryo layer
c 1000.0F DT gas only Yield
1]
- G
1.0— — 2
E - 5 100.0
- Z 3
- - 9 10.0
S
- - = HYPRA 1D
0.5— - > 1.0
- - 0.1
- . 20 30 40 50 60 70
- Peak Current (MA)
0.0— — | 4125 40
§ - DT cryo Iayer
=3 ~ 30 DT gas only
-0.5 0.0 0.5 § a0l
r (cm) 5
10¢
An intermediate regime exists wherein the B, field is
e strong enough to reduce conduction losses, but 0 : : ' :
. o e . 20 30 40 50 60 70
* weak enough not to inhibit the o deflagration wave Peak Current (MA)
Sandia
*S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012). |I'| National
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Ideal 1D HYDRA simulation of
high-gain MagLIF experiments

High-gain MagLIF experiment:
I'Iiner= 10 mm, ARIiner= 6'

Yn (# cm™), dYn/dt (# cm™' ns™)

pgas=5mgcm-3'DTcryofuel' J_||||||||\|||\|||\||\\||\||j

B,°=8T,E,., =21kl (0.66 TW) 1022 — Y, = -

- 2.8e21cm’ -
10+2U__ —
- (7.9G) cm?) -
70?‘ e bbb “':—0-7 10+1a_5 Gt=830 —
oo 1 ~70 MA ~ G,=4400 :
50; ;0.5 10+16_: :_
E = E - g o~ -
§40: / \ :0.4§ 104_147 t gburn }
:30_: }0_3% 0-4 ns
- - -
20— —0.2 10*12 | T T R O O R O A O
- - 116 118 120 122 124 126 128
e CR,p “24 > Time (ns)
0 b I AL B —0.0
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iona
Labhoratories




High-gain MagLIF experiment:
=10 mm AR o= 6,

leer

Pgas= 5 mg cm3, DT cryo fuel,
B,°=8T, E, = 21 k) (0.66 TW)

~25 Gbar
~24% flux loss
~13 keV
~2 g cm3 (hot spot)
~130 g cm3 (main fuel)
~0.06 g cm (hot spot)
~0.6 g cm2 (main fuel)
~3.1 g cm? (liner)

Ideal 1D HYDRA simulation of
high-gain MagLIF experiments

Stagnation profile

Time (ns) : 125.500
J|||||||||||||||||||||||||||||||||||||||L

—

o
+
S

0+3

10"2—

10+1 =
B, (MG) -
10+0 —
T, (keV) -
10_1_IIII|IIII|IIII|III|IIII|IIII|IIII|IIII’_
0.00 0.01 0.02 0.03 0.04
R (cm)
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P Integrated 2D HYDRA simulation of

High-gain MagLIF experiment:
I'Iiner= 10 mm, ARIiner= 6'

Pgas= 5 mg cm3, DT cryo fuel,
B,0=8T,E,., =25kl (0.78 TW)

Integrated 2D simulation uses 25 kJ laser
in32ns=0.78 TW (I,~5e13 W cm™?)
and gives E_,. = 15 kJ at end of pulse

Ideal 1D case had E_,, = 17 kJ at end of
heating (from 21 kJ total), since some is

lost to radiation and the solid fuel

Integrated 2D simulations can ignite with
CR,;, slightly higher than CR,, and
achieve a majority fraction of Y,

high-gain MagLIF experiments

rho (log10[gicc]), t (ns) : 0.00000
;| EEREE R | 1

1.0

0.5

z (cm)

0.0
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Integrated MagLIF simulations
are making progress in 3D
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Summary

Magnetically-driven implosions of liners containing magnetized and preheated fuel
may enable significant ICF yields on pulsed-power accelerators

We are benchmarking simulations to ongoing “focused” experiments involving
flux compression (liner and B, only) and fuel preheating (laser and B, only)

Integrated calculations provide realistic design requirements for MagLIF
experiments, as well as “clean 2D” integrated experiment predictions

Integrated experiments to measure
neutrons will occur soon !

Sandia
ﬂ" National

Labhoratories




