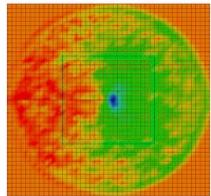


October 2013-January 2014

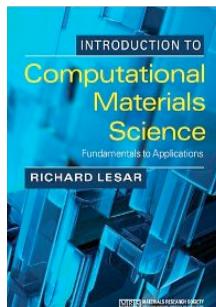
ESP900: Atomistic/Molecular Simulation:

Lecture 11: kinetic Monte Carlo methods



Instructor: Reese Jones
rjones@sandia.gov
 (925) 294-4744

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



Review of Metropolis Monte Carlo

- Last lecture, we looked at the Metropolis method.
- For each step:
 - Pick a move at random: the **trial move**
 - Calculate the change in energy for the trial move
 - Compute the probability of accepting the trial move, typically:
- Generate a random number r , and accept the move if $r < P_{accept}$
- Eventually, people started using this method to look at *dynamics* of systems, not just equilibrium states
 - E.g. Stoll et al., *Phys. Rev. B* 8:3266 (1973)
- These could probably be considered to be Kinetic Monte Carlo simulations... but usually aren't
- KMC in this context usually refers to a change in the algorithm itself, not just the introduction of dynamics

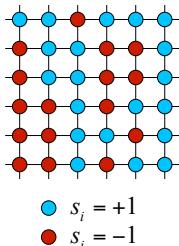
- Introduction
- Spatial KMC and the N-fold way
- KMC for chemical reactions
- Implementation issues
- The SPPARKS code
- Application examples
- On-the-fly KMC

The N-Fold Way

- In the Metropolis method, for systems close to equilibrium the acceptance probability for most events is often very low
 - Especially true near equilibrium, when $\Delta E \gg 0$ for many events
 - Leads to slow evolution and convergence
- The **n-fold** method was introduced to overcome this problem
 - Bortz, Kalos and Lebowitz, *J. Comp. Phys.* 17:10 (1975)
 - "BKL" for short
- The new method is *equivalent* to the Metropolis method, but changes the order of operations
 - Instead of choosing a trial move at random and testing for acceptance, compute the probability of *all* possible events
 - Obviously, requires that the number of events be finite, which limits the types of problems this can be used on
 - At each step, ask the question: Which event happens *next*?

The Ising Model

- BKL worked with the **Ising model**, a very important model in materials science
 - Lattice of sites, where each site has one of 2 values ("spin"), e.g. ± 1
 - Model used for phase changes, magnetic spin systems, critical phenomena, etc...



$$E(\mathbf{s}) = -J \sum_{i,j} s_i s_j - H \sum_i s_i$$

- First sum is over nearest neighbor pairs
 - If $J > 0$, favors like neighbors
- Second term biases system toward $+1$ or -1 (depending on sign of H)
- Metropolis Monte Carlo trial move: pick a site at random and flip its spin to the opposite value

The N-Fold Method

- In the Ising model, each site has just one possible move (or "event"): flip spin from one value to the other
- Goal: choose an event at random to execute next
- Intuitively, this random choice for each event i should be weighted by its acceptance probability P_i
 - Imagine arranging all of the events in a line, weighted by their probabilities:

- Choose a point along this line at random, and execute that event

Define: $Q_i = \sum_{j=1}^i P_j$
 Choose random number $r \in [0,1]$
 Find and execute event with: $\frac{Q_{i-1}}{Q_N} < r < \frac{Q_i}{Q_N}$

The N-Fold Method

$$Q_i = \sum_{j=1}^i P_j$$

- After the chosen event gets executed, we have to recompute this list of events and probabilities
- For many systems, most of the possible events and their probabilities remain unchanged
 - E.g. for the Ising model, only the flipped site and its nearest neighbors are affected
- However, we still have a couple of inefficiencies here...
 - We need to compute the cumulative sum of all of the events, Q_i , any time any one of them changes
 - To choose an event, it appears we have to loop over *all* events to find the one where:

$$\frac{Q_{i-1}}{Q_N} < r \leq \frac{Q_i}{Q_N}$$

- These are both order N operations (not good)

The 10-Fold Way

- The BKL paper authors found a nice solution for these inefficiencies
- Note that there are really only 10 possible events for a site in the 2D Ising model:

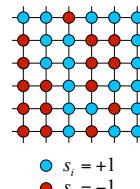


TABLE I
Classifications of Spins in the Ten-Fold Way*

Class	Spin	Number of spin up nearest neighbors
1	Up	4
2	Up	3
3	Up	2
4	Up	1
5	Up	0
6	Down	4
7	Down	3
8	Down	2
9	Down	1
10	Down	0

From BKL, *J Comp Phys* (1975)

- All of the events within the same class have *equal* probability
- So we can first select a *class* at random with weighted probability, then select an event from that class with uniform probability
 - Details on next slide...

The 10-Fold Way

- Define the probability P_i^{class} and cumulative probability Q_i^{class} for each of the 10 classes:

$$Q_i^{\text{class}} = \sum_{i=1}^{10} n_i P_i^{\text{class}}$$

n_i = # of events in class i ($1 < i < 10$)

P_i^{class} = constant probability for each event in class i

- Generate random number r between 0 and 1, and find class such that:

$$\frac{Q_{i-1}^{\text{class}}}{Q_{10}^{\text{class}}} < r \leq \frac{Q_i^{\text{class}}}{Q_{10}^{\text{class}}}$$

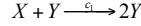
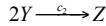
- This operation has cost of order 10, no matter how large the system is
- Then choose a random event from this class, with uniform probability
 - This operation has cost of order 1
- BKL called this the “10-fold way”, and the general method the “n-fold way”

Gillespie's Stochastic Simulation Algorithm (SSA)

- A similar but independent method was developed at around the same time as the BKL paper
- D.T. Gillespie, “Exact stochastic simulations of coupled chemical reactions.” *J. Phys. Chem.* **81**(25):2340
- Developed for systems of chemical reactions
- Gillespie’s work is more obviously related to dynamics (and kinetics)
- Even though the methods are similar in the basic idea, the two communities don’t seem to have much overlap
 - Physicists and mathematicians reference BKL
 - Chemists reference Gillespie
- It’s worth understanding the Stochastic Simulation Algorithm (SSA) in detail (even for non-chemists!)

Stochastic Simulation Algorithm

- Suppose we have a system of chemical reactions taking place in a fixed volume:



etc...

- Rate c_i for each reaction will be defined more formally later...
- One way to follow changes in the amount of each chemical species is to write coupled, deterministic ODE’s for them:

$$\frac{dN_X}{dt} = f_1(X, Y, Z)$$

$$\frac{dN_Y}{dt} = f_2(X, Y, Z)$$

$$\frac{dN_Z}{dt} = f_3(X, Y, Z)$$

- But in small systems, with small numbers of molecules, this approach has some flaws:
 - Real system is discrete, not continuous (numbers of molecules are integers)
 - Real system is stochastic, not deterministic

Stochastic Simulation Algorithm

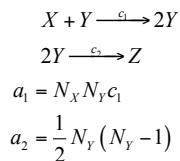
- Gillespie’s SSA proceeds stochastically, one reaction at a time
- Have to answer two questions:
 - When does the next reaction occur?
 - What is the next reaction that occurs?
- Obviously, these questions can only be answered in some “probabilistic” way
- First, note that reaction rates (the c_i constants) can be thought of as probabilities
 - E.g. for the reaction:

$$X + Y \xrightarrow{c_1} 2Y$$

- The rate is defined such that:
 $c_1 dt$ = average probability that a particular $X + Y$ pair in the system will undergo reaction 1 in the next infinitesimal time interval dt
- The total number of $X + Y$ pairs is $N_X N_Y$, so:
 $N_X N_Y c_1 dt$ = average probability that *some* $X + Y$ pair in the system will undergo reaction 1 in the next infinitesimal time interval dt

Stochastic Simulation Algorithm

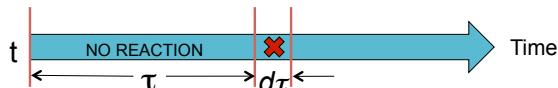
- More generally:
 $c_i dt$ = average probability that a particular set of reactants for reaction i will undergo reaction i in the next infinitesimal time interval dt
 $a_i dt$ = average probability that *some* set of reactants for reaction i will undergo reaction i in the next infinitesimal time interval dt
- E.g. for our original set of 2 reactions:



- Note that a_2 has a different form since it involves two atoms of the same species

Stochastic Simulation Algorithm

- First, let's compute $P_1(\tau)d\tau$, the probability that the next reaction of *any* type occurs in the interval $(t+\tau, t+\tau+d\tau)$



- To compute this, note that the individual reaction probabilities can be summed over all reactions (assume there are M of them), so that:

$a_0 d\tau$ = average probability that any reaction will take place in the next infinitesimal time interval $d\tau$

where

$$a_0 = \sum_{i=1}^M a_i$$

Stochastic Simulation Algorithm

- So we can compute the set of probabilities a_i for each reaction i
- Note that a_i has units of 1/time, and can be thought of as the expected rate for each reaction
- Now define the **reaction probability density function** $P(\tau, i)$:

$P(\tau, i)d\tau$ = probability that, starting from time t , the next reaction will occur in the infinitesimal time interval $(t+\tau, t+\tau+d\tau)$ and will be a reaction of type i

- We can break this down into the product of two separate probabilities:

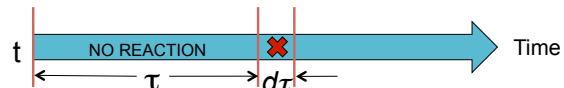
$$P(\tau, i)d\tau = P_1(\tau)P_2(i|\tau)d\tau$$

where

$P_1(\tau)d\tau$ = probability that the next reaction occurs in the interval $(t+\tau, t+\tau+d\tau)$

$P_2(i|\tau)$ = probability that the next reaction will be of type i , given that the next reaction occurs at time $t+\tau$

Stochastic Simulation Algorithm



- Now the total probability P_1 can be broken down further:

$$P_1(\tau)d\tau = P_0(\tau)a_0 d\tau$$

where

$P_0(\tau)$ = probability that NO reaction will occur within time τ

$a_0 d\tau$ = probability that ANY reaction will occur in the subsequent interval $d\tau$

- Almost there...

$(1 - a_0 d\tau)$ = probability that NO reaction will occur within an interval $d\tau$

$$P_0(\tau + d\tau) = (1 - a_0 d\tau)P_0(\tau)$$

$$\frac{P_0(\tau + d\tau) - P_0(\tau)}{d\tau} = -a_0 P_0(\tau)$$

$$P_0(\tau) = \exp(-a_0 \tau)$$

Stochastic Simulation Algorithm

- So: $P_1(\tau) d\tau = P_0(\tau) a_0 d\tau = a_0 \exp(-a_0 \tau) d\tau$
- $P_2(i|\tau)$ is easier; the probability that the next reaction is of type i is simply proportional to a_i , normalized by the sum over all types:

$$P_2(i|\tau) = \frac{a_i}{a_0}$$
- So the full reaction probability density function is:

$$P(\tau, i) d\tau = (a_0 \exp(-a_0 \tau) d\tau) \left(\frac{a_i}{a_0} \right)$$

$$= a_i \exp(-a_0 \tau) d\tau$$
- In practice, this gets simulated in two steps:
 - Use $P_1(\tau)$ to generate the time τ to the next reaction
 - Use $P_2(i|\tau)$ to select the next reaction i

Computing the Time to Next Reaction

- We need to select a time τ from the probability distribution $P_1(\tau)$
 - But in general, random number generators select from a uniform distribution, usually on the interval $(0,1)$
 - How do we map from one distribution to another?
- Let $x(\tau)$ be a random number with uniform distribution on the interval $(0,1)$; we can compute the mapping by integrating:

$$\int_0^\tau P_1(\tau') d\tau' = \int_0^\tau P(x(\tau')) dx'$$

$$\int_0^\tau a_0 \exp(-a_0 \tau') d\tau' = \int_0^\tau dx'$$

$$1 - \exp(-a_0 \tau) = x$$

$$\tau = \frac{1}{a_0} \ln\left(\frac{1}{1-x}\right)$$

- Note that if x is uniformly distributed on $(0,1)$, then so is $r_1 = 1-x$:

$$\tau(r_1) = \frac{1}{a_0} \ln\left(\frac{1}{r_1}\right)$$

- Note that τ will be on the interval $(0, \infty)$, as expected

Computing the Type of the Next Reaction

- Now select the next reaction, exactly as in the n-fold method
 - Generate a random number r_2 on the interval $(0,1)$, and find the type i such that:

$$\frac{\sum_{j=1}^{i-1} a_j}{a_0} < r_2 \leq \frac{\sum_{j=1}^i a_j}{a_0}$$
- After the reaction is selected, the numbers of each species involved in the reaction get updated, e.g.:

$$X + Y \xrightarrow{c_1} 2Y$$

$$N_X \rightarrow N_X - 1$$

$$N_Y \rightarrow N_Y + 1$$
- Since the reaction probabilities a_i depend on the numbers of species (e.g. $a_1 = N_X N_Y c_1$), those must be updated for all reactions involving the modified species (not just the latest reaction)

SSA: Summary of Algorithm

- Given: initial numbers of all species, list of M reactions with rates c_i
- Set system clock to zero: $T = 0$
- 1. Compute all reaction probabilities a_i
- 2. Compute total reaction rate a_0 :
$$a_0 = \sum_{i=1}^M a_i$$
- 3. Generate random number r_1 on $(0,1)$ and compute time to next reaction:

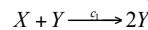
$$\tau = \frac{1}{a_0} \ln\left(\frac{1}{r_1}\right)$$
- 4. Generate random number r_2 on $(0,1)$ and select next reaction i such that:

$$\frac{\sum_{j=1}^{i-1} a_j}{a_0} < r_2 \leq \frac{\sum_{j=1}^i a_j}{a_0}$$
- 5. “Execute” reaction by updating numbers for all products and reactions of reaction i
- 6. Update system clock: $T \rightarrow T + \tau$
- 7. End if total simulation time has been reached
- 8. Go to step 1

SSA: Example

- Look at an example from Gillespie's original paper:

- Solve the 2-reaction example case:



where:

$$N_X \text{ is assumed constant}$$

$$c_1 N_X = 5$$

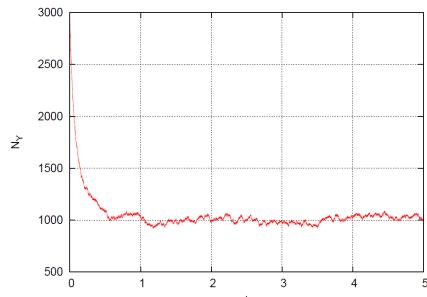
$$c_2 = 0.005$$

$$N_Y(t=0) = 3000$$

- Equivalent deterministic system has a steady state of:

$$N_Y = \frac{c_1 N_X}{c_2} = 1000$$

- SSA solution fluctuates around this value



Kinetic Monte Carlo

- The SSA and BKL methods are essentially equivalent
 - The original BKL paper even includes time dependence and the selection of a timestep, equal to that in the SSA
- This basic algorithm is the method that is usually called **Kinetic Monte Carlo**
- The algorithm can be used for any system that can be described by a set of discrete events with known rates/probabilities
- Especially useful for atomic systems where:
 - All atoms remain on a set of pre-defined lattice points, and
 - Dynamics is driven by **infrequent events** (relative to atomic vibrational timescale)
- E.g. crystal growth, surface diffusion

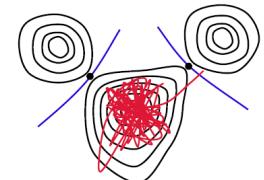
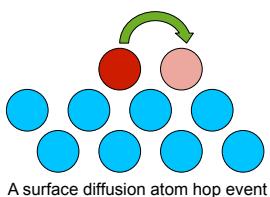


Illustration of potential energy surface in an infrequent event system (from Voter, 2005)

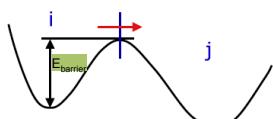
KMC Events



- For many atomistic systems, we can use **transition state theory** to estimate the rate of a given event
- We compute the barrier energy E_{barrier} , the amount of energy needed to reach the saddle point separating two local energy minima
- The rate is computed from an Arrhenius equation:

$$k = k_0 \exp\left(-\frac{E_{\text{barrier}}}{k_b T}\right)$$

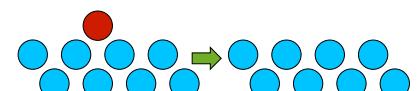
where k_0 is the "attempt frequency" (related to the vibrational frequency of the system)



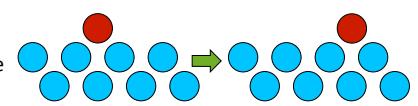
KMC Events

Events in atomistic systems can be broadly classified as **Glauber** or **Kawasaki dynamics**

- Glauber dynamics**
 - Atoms/particles are inserted or removed from the lattice
 - Number of particles is not conserved
 - Can be thought of as exchanging particles with an external reservoir (e.g. surrounding gas)
 - Used for simulations of evaporation/condensation, deposition
- Kawasaki dynamics**
 - Atoms/particles moved from one site to another on the lattice
 - Number of particles is conserved
 - Used for simulations of diffusion
- Both types can be combined in the same simulation



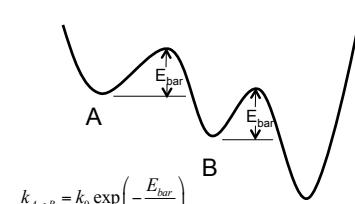
Glauber Dynamics



Kawasaki Dynamics

Connection Between Transition State Theory and the Metropolis Monte Carlo Method

- Sometimes the Metropolis MC algorithm (or at least, the MMC acceptance criterion) is used to simulate dynamics
- How is this related to “real” dynamics, e.g. transition state theory?
- Make two assumptions about our set of events:
 - All events have the same attempt frequency k_0
 - All energetically *downhill* events have the same barrier energy E_{bar}
- Then for all downhill events (like A \rightarrow B):



$$k_{A \rightarrow B} = k_0 \exp\left(-\frac{E_{bar}}{k_B T}\right)$$

- For uphill events (like B \rightarrow A):

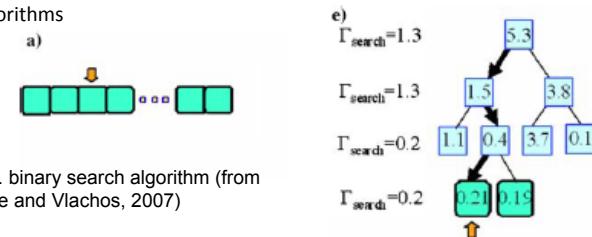
$$k_{B \rightarrow A} = k_0 \exp\left(-\frac{E_{bar} + (E_A - E_B)}{k_B T}\right)$$

- The time variable can then be rescaled (note that the scale factor depends on temperature!) to give in general:

$$k_{A \rightarrow B} = \begin{cases} 1, & \text{if } E_B \leq E_A \\ \exp\left(-\frac{E_B - E_A}{k_B T}\right), & \text{if } E_B > E_A \end{cases}$$

Implementation: Search & Update Algorithms

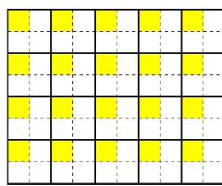
- For a general simulation with many events, the selection of the event can become expensive
 - This is the problem that BKL solved using their n-fold way, but this may not be generally applicable
- A simple linear search to find i such that $\frac{Q_{i-1}}{Q_N} < r \leq \frac{Q_i}{Q_N}$ scales as N
- More efficient algorithms are possible, e.g. binary search
 - Tree structure allows faster search; scales as $\log_2 N$
- See Chatterjee & Vlachos (2007) reference for a nice review of various algorithms



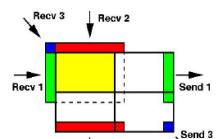
Linear vs. binary search algorithm (from Chatterjee and Vlachos, 2007)

KMC in Parallel: SPPARKS

- Sandia’s SPPARKS code is a freely available, general, parallelized KMC code:
 - www.cs.sandia.gov/~sjplimp/spparks.html
- True KMC is an inherently serial algorithm
 - One event at a time
 - Each event affects possible events and rates around it, so not strictly legal to execute multiple events in parallel (e.g. on multiple processors)
- SPPARKS (and other parallelized KMC codes) make an approximation that allows independent events to be executed in parallel
 - Processor domains sub-divided into sectors to perform events that will not conflict with neighbors
 - Balance must be achieved between accuracy and efficiency



2D domain partitioned among 20 processors (4x5); each sub-domain further divided into 4 sectors



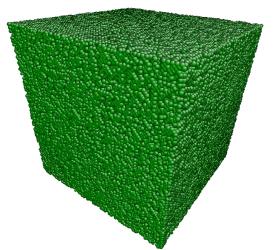
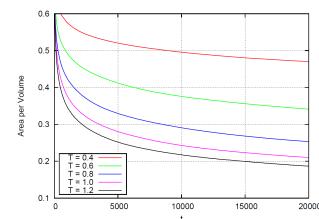
Each processor can perform events on a given sector while other sectors are “frozen”; inter-processor communication updates boundaries

SPPARKS

- SPPARKS provides the main computational “engine” to do event search and selection
- Handles lattice creation, parallelization of the domain, I/O, and other general functions
- Problem-specific information, like the definition of events and their probabilities, is specified in a user-supplied **application** class
- Application class is an inherited C++ class that must supply at least the following methods for a KMC simulation:
 - `site_energy()`: compute the energy associated with the given lattice site in the current state
 - `site_propensity()`: compute the total rate (or probability) at which events associate with the given site may take place
 - `site_event()`: perform an event at the given site and update the list of events and probabilities
- Some basic applications are included with the SPPARKS code, including the Ising model, Gillespie’s SSA model, and some simple models for solid diffusion

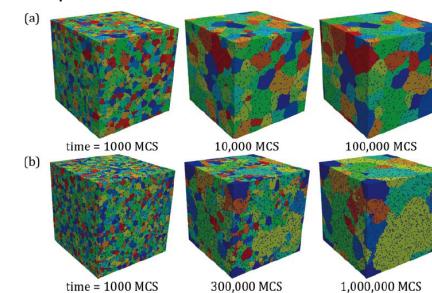
KMC Example: Nanoporous Material Evolution

- The “diffusion” application of the SPPARKS code was used to compute the time evolution of a nanoporous material
 - Initially, atoms occupy random sites in a lattice with 50% volume fraction
 - Atom hop events on the surface model material diffusion
 - Surface area decreases as the pore structure coarsens over time



KMC Example: Grain Growth

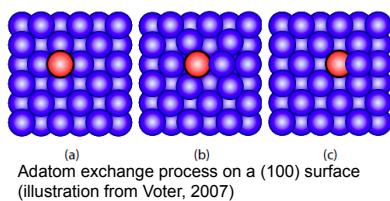
- A Potts model is often used to model growth of grains in a material
 - Similar to an Ising model, except instead of two possible values each site can have one of N integer values (so, Ising is a special case with $N=2$)
 - Energy function penalizes unlike neighbors, so large “grains” (volumes with the same site value everywhere) are energetically favorable
 - Each event flips the value of a site to that of one of its neighbors



[Plimpton et al., 2009]

“On-the-Fly” KMC

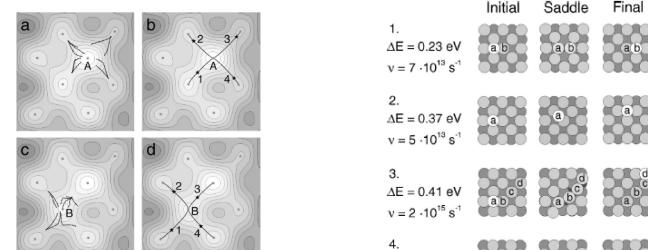
- The biggest source of inaccuracy in most KMC simulations (when compared with reality) is our lack of knowledge about the possible events that might take place
- Classic example: adatom diffusion on a (100) metal surface
 - It had been assumed that the relevant events in diffusion involve hops of an atom from one surface site to another
 - Peter Feibelman and coworkers at Sandia discovered using DFT calculations in 1990 that the lowest energy event is actually an exchange of atoms with the first layer
 - Other possible events might include multiple atom motion, or other non-intuitive processes



“On the Fly” KMC

Henkelman and Jonsson (J. Chem. Phys. **115**, 2001) introduced a KMC method that attempts to automatically find events and their rates by exploring the potential energy surface

- Called “On the Fly” KMC since it doesn’t require a pre-defined list of events



Exploration of potential energy surface to find nearby local energy minima (from Henkelman and Jonsson, 2001)

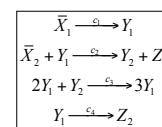
The four lowest energy events found for an adatom on a (100) surface, including the exchange event (from Henkelman and Jonsson, 2001)

Further Reading

- A. Chatterjee and D.G. Vlachos, "An overview of spatial microscopic and accelerated kinetic Monte Carlo methods," *J. Computer-Aided Mater. Des.* **14**:253 (2007)
 - A nice tutorial and review article on KMC
- A.F. Voter, "Introduction to the Kinetic Monte Carlo Method," in *Radiation Effects in Solids*, edited by K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga (Springer, Berlin, 2007), p. 1-24
 - Another good introduction to some of these topics
- S.J. Plimpton et al., "Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo", SAND Report #SAND2009-6226
 - SAND report summarizing the SPPARKS code, with several example applications
- A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, "A New Algorithm for Monte Carlo Simulation of Ising Spin Systems", *J. Comp. Phys.*, **17**:10 (1975)
 - The "BKL" paper on the n-fold way
- D.T. Gillespie, "Exact Stochastic Simulation of Coupled Chemical Reactions," *J. Phys. Chem.* **81**(25):2340 (1977)
 - Development of the SSA

Homework

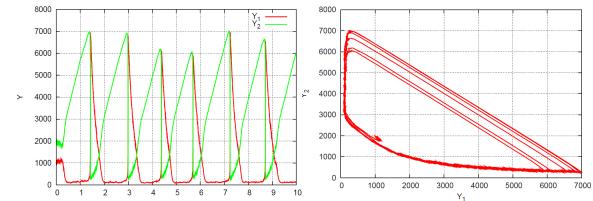
- Another example of an SSA problem from Gillespie's *J Phys Chem* paper:
- The Brusselator:



Your assignment: Download the `brusselatorSSA.py` script, fill in the missing parts of the code, and reproduce the plots of Y_1 and Y_2 vs. time from Gillespie's paper (below);

with:

$$\begin{aligned}
 X_1 \text{ and } X_2 \text{ constant} \\
 c_1 \bar{X}_1 &= 5000 \\
 c_2 \bar{X}_2 &= 50 \\
 c_3 &= 5 \times 10^{-5} \\
 c_4 &= 5 \\
 Y_1(0) &= 1000 \\
 Y_2(0) &= 2000
 \end{aligned}$$



INPUT

```

clock = 0
while clock < totalTime:
    a1 = NX * NY * c1
    a2 = 0.5 * NY * (NY - 1) * c2
    a0 = a1 + a2
    r1 = random.uniform(0,1)
    tau = 1.0/a0 * math.log(1.0/r1)
    r2 = random.uniform(0,1)
    iType = 1
    if (r2 > a1/a0):
        iType = 2
    if (iType == 1):
        NY = NY + 1
    else:
        NY = NY - 2
    clock = clock + tau
  
```

BONUS

- Change the neutral species in the fluid system for a water model like TIP4P and observe the differences in the solvation structure
- Make a fluid confined by two walls. Will the RDF change? Will it be uniform?
- Observe the differences in point defect structures obtained using a Stillinger-Weber potential vs Tersoff
- Reverse the loading of the nanobeam , will the response change?
- Add stress as an output does it tell you anything?

Lecture 12

Week 7: Analyzing Inhomogeneous Systems

- Identification and visualization of defects and structures
- Metrics, e.g. radial distribution function, common neighbor analysis, centrosymmetry
- Available tools
- Homework: Calculation of centrosymmetry and slip vector around a defect

Week 8 : Molecular Dynamics

- Newton's 2nd Law
- Time integration algorithms (Verlet, SHAKE, Gear)
- Conserved quantities
- Ensembles (NVE, NVT, NPT, NPH) & equations of motion
- Thermostats, e.g. Nose-Hoover
- Initial conditions and velocity distributions
- Homework: NVT average of pressure.

Reading Suggestions for Lec. 12

- Chapter 6 of LeSar
- Chapter 4 of Frenkel & Smit
- Chapter 3 & 6 of Evans & Morriss
- http://en.wikipedia.org/wiki/Molecular_dynamics
- <http://lammps.sandia.gov/>

