
ESP900:"Atomis,c/Molecular5
Simula,on:"

Lecture"11:"kine-c"Monte"Carlo"methods"

October"2013<January"2014"

Instructor:"Reese"Jones"

rjones@sandia.gov"

(925)"294<4744"
Sandia"Na-onal"Laboratories"is"a"mul-<program"

laboratory"managed"and"operated"by"Sandia"

Corpora-on,"a"wholly"owned"subsidiary"of"Lockheed"

Mar-n"Corpora-on,"for"the"U.S."Department"of"

Energy's"Na-onal"Nuclear"Security"Administra-on"

under"contract"DE<AC04<94AL85000."

Topics
•  Introduction
•  Spatial KMC and the N-fold way
•  KMC for chemical reactions
•  Implementation issues
•  The SPPARKS code
•  Application examples
•  On-the-fly KMC

Review of Metropolis Monte Carlo
•  Last lecture, we looked at the Metropolis method.
•  For each step:

•  Pick a move at random: the trial move
•  Calculate the change in energy for the trial move
•  Compute the probability of accepting the trial move, typically:

•  Generate a random number r, and accept the move if r < Paccept

•  Eventually, people started using this method to look at dynamics of
systems, not just equilibrium states
•  E.g. Stoll et al., Phys. Rev. B 8:3266 (1973)

•  These could probably be considered to be Kinetic Monte Carlo
simulations… but usually aren’t

•  KMC in this context usually refers to a change in the algorithm itself,
not just the introduction of dynamics

()
1, if 0

exp , if 0accept
B

E
P

E k T E
Δ ≤#

= $ −Δ Δ >&

The N-Fold Way
•  In the Metropolis method, for systems close to equilibrium the

acceptance probability for most events is often very low
•  Especially true near equilibrium, when ΔE >> 0 for many events
•  Leads to slow evolution and convergence

•  The n-fold method was introduced to overcome this problem
•  Bortz, Kalos and Lebowitz, J. Comp. Phys 17:10 (1975)

•  “BKL” for short
•  The new method is equivalent to the Metropolis method, but

changes the order of operations
•  Instead of choosing a trial move at random and testing for

acceptance, compute the probability of all possible events
•  Obviously, requires that the number of events be finite, which limits the

types of problems this can be used on
•  At each step, ask the question: Which event happens next?

SAND2013-10043C

The Ising Model
•  BKL worked with the Ising model, a very important model in

materials science
•  Lattice of sites, where each site has one of 2 values (“spin”), e.g. ±1
•  Model used for phase changes, magnetic spin systems, critical

phenomena, etc…

1is = +
1is = −

()
,

i j i
i j i

E J s s H s= − −∑ ∑s

•  First sum is over nearest neighbor pairs
•  If J>0, favors like neighbors

•  Second term biases system toward +1 or -1
(depending on sign of H)

•  Metropolis Monte Carlo trial move: pick a site at
random and flip its spin to the opposite value

The N-Fold Method
•  In the Ising model, each site has just one possible move (or

“event”): flip spin from one value to the other
•  Goal: choose an event at random to execute next
•  Intuitively, this random choice for each event i should be

weighted by its acceptance probability Pi
•  Imagine arranging all of the events in a line, weighted by

their probabilities:

•  Choose a point along this line at random, and execute that
event

1

1

Define:

Choose random number [0,1]

Find and execute event with:

i

i j
j

i i

N N

Q P

r
Q Qr
Q Q

=

−

≡

∈

< <

∑

P1######P2##########P3###P4####P5#############P6##P7#######P8########################………#####################PN#

The N-Fold Method

•  After the chosen event gets executed, we have to recompute this list of events
and probabilities

•  For many systems, most of the possible events and their probabilities remain
unchanged

•  E.g. for the Ising model, only the flipped site and its nearest neighbors are affected
•  However, we still have a couple of inefficiencies here…

•  We need to compute the cumulative sum of all of the events, Qi, any time any one
of them changes

•  To choose an event, it appears we have to loop over all events to find the one
where:

•  These are both order N operations (not good)

1

i

i j
j

Q P
=

≡∑

1i i

N N

Q Qr
Q Q

− < ≤

P1######P2##########P3###P4####P5#############P6##P7#######P8########################………#####################PN#

The 10-Fold Way
•  The BKL paper authors found a nice solution for these inefficiencies
•  Note that there are really only 10 “classes” of event in the 2D Ising

model:

•  All of the events within the same class have equal probability
•  So we can first select a class at random with weighted probability,

then select an event from that class with uniform probability
•  Details on next slide…

1is = +
1is = −

From BKL, J Comp Phys (1975)

The 10-Fold Way
•  Define the probability Pclass and cumulative probability Qclass for each of the

10 classes:

•  Generate random number r between 0 and 1, and find class such that:

•  This operation has cost of order 10, no matter how large the system is

•  Then choose a random event from this class, with uniform probability
•  This operation has cost of order 1

•  BKL called this the “10-fold way”, and the general method the “n-fold way”

10

1

of events in class (1 10)

constant probability for each event in class

class class
i i i

i

i
class
i

Q n P

n i i
P i

=

=

= < <

=

∑

1

10 10

class class
i i
class class

Q Qr
Q Q

− < ≤

Gillespie’s Stochastic Simulation Algorithm (SSA)

•  A similar but independent method was developed at around the
same time as the BKL paper

•  D.T. Gillespie, “Exact stochastic simulations of coupled chemical
reactions.” J. Phys. Chem. 81(25):2340

•  Developed for systems of chemical reactions
•  Gillespie’s work is more obviously related to dynamics (and kinetics)
•  Even though the methods are similar in the basic idea, the two

communities don’t seem to have much overlap
•  Physicists and mathematicians reference BKL
•  Chemists reference Gillespie

•  It’s worth understanding the Stochastic Simulation Algorithm (SSA)
in detail (even for non-chemists!)

Stochastic Simulation Algorithm
•  Suppose we have a system of chemical reactions taking place

in a fixed volume:

•  Rate ci for each reaction will be defined more formally later…

•  One way to follow changes in the amount of each chemical
species is to write coupled, deterministic ODE’s for them:

•  But in small systems, with small numbers of molecules, this
approach has some flaws:
•  Real system is discrete, not continuous (numbers of

molecules are integers)
•  Real system is stochastic, not deterministic

1

2

2
2

...

c

c

X Y Y
Y Z
etc

+ !!→

!!→

()

()

()

1

2

3

, ,

, ,

, ,

X

Y

Z

dN f X Y Z
dt
dN f X Y Z
dt
dN f X Y Z
dt

=

=

=

Stochastic Simulation Algorithm
•  Gillespie’s SSA proceeds stochastically, one reaction at a time
•  Have to answer two questions:

•  When does the next reaction occur?
•  What is the next reaction that occurs?

•  Obviously, these questions can only be answered in some “probabilistic”
way

•  First, note that reaction rates (the ci constants) can be thought of as
probabilities

•  E.g. for the reaction:

•  The rate is defined such that:

•  The total number of X+Y pairs is NXNY, so:

1 2cX Y Y+ !!→

1 average probability that a particular pair in the system
 will undergo reaction 1 in the next infinitesimal time interval

c dt X Y
dt

= +

1 average probability that pair in the system
 will undergo reaction 1 in the next infinitesimal time interval

X YN N c dt some X Y
dt

= +

Stochastic Simulation Algorithm
•  More generally:

•  E.g. for our original set of 2 reactions:

•  Note that a2 has a different form since it involves two atoms of the same species

average probability that set of reactants for reaction
 will undergo reaction in the next infinitesimal time interval

ia dt some i
i dt

=

average probability that a particular set of reactants for reaction
 will undergo reaction in the next infinitesimal time interval

ic dt i
i dt

=

()

1

2

1 1

2

2
2

1 1
2

c

c

X Y

Y Y

X Y Y
Y Z

a N N c

a N N

+ !!→

!!→

=

= −

Stochastic Simulation Algorithm
•  So we can compute the set of probabilities ai for each reaction i
•  Note that ai has units of 1/time, and can be thought of as the

expected rate for each reaction
•  Now define the reaction probability density function P(τ,i):

•  We can break this down into the product of two separate
probabilities:

()
()

, probability that, starting from time , the next reaction will occur
in the infinitesimal time interval , will be a
reaction of type

P i d t
t t d and

i

τ τ
τ τ τ

≡
+ + +

() () ()

() ()
()

1 2

1

2

,

where

probability that the next reaction occurs in the interval ,

probability that the next reaction will be of type , given that the next
reaction occurs at time

P i d P P i d

P d t t d

P i i
t

τ τ τ τ τ

τ τ τ τ τ

τ
τ

=

≡ + + +

≡
+

Stochastic Simulation Algorithm
•  First, let’s compute P1(τ)dτ, the probability that the next

reaction of any type occurs in the interval (t+τ,t+τ+dτ)

•  To compute this, note that the individual reaction
probabilities can be summed over all reactions (assume
there are M of them), so that:

 NO REACTION Time
τ# dτ"

t

0

0
1

average probability that any reaction will take place
 in the next infinitesimal time interval

where
M

i
i

a d
d

a a

τ
τ

=

=

=∑

Stochastic Simulation Algorithm

•  Now the total probability P1 can be broken down further:

•  Almost there…

 NO REACTION Time
τ# dτ"

t

() ()

()

1 0 0

0

0

where
probability that NO reaction will occur within time

a probability that ANY reaction will occur in the subsequent interval d

P d P a d

P
d

τ τ τ τ

τ τ

τ τ

=

=

=

()
() () ()
() () ()

() ()

0

0 0 0

0 0
0 0

0 0

1 probability that NO reaction will occur within an interval d

1

exp

a d

P d a d P

P d P
a P

d
P a

τ τ

τ τ τ τ

τ τ τ
τ

τ
τ τ

− =

+ = −

+ −
= −

= −

Stochastic Simulation Algorithm
•  So:

•  P2(i|τ) is easier; the probability that the next reaction is of type i
is simply proportional to ai, normalized by the sum over all
types:

•  So the full reaction probability density function is:

•  In practice, this gets simulated in two steps:
•  Use P1(τ) to generate the time τ to the next reaction
•  Use P2(i|τ) to select the next reaction i

() () ()1 0 0 0 0expP d P a d a a dτ τ τ τ τ τ= = −

()2
0

iaP i
a

τ =

() ()()

()

0 0
0

0

, exp

exp

i

i

aP i d a a d
a

a a d

τ τ τ τ

τ τ

" #
= − % &

' (

= −

Computing the Time to Next Reaction
•  We"need"to"select"a"-me"τ""from"the"probability"distribu-on"P1(τ)"

–  But"in"general,"random"number"generators"select"from"a"uniform"
distribu-on,"usually"on"the"interval"(0,1)"

–  How"do"we"map"from"one"distribu-on"to"another?"

•  Let"x(τ)"be"a"random"number"with"uniform"distribu-on"on"the"interval"
(0,1);"we"can"compute"the"mapping"by"integra-ng:"
"
"
"
"
"
"
"

•  Note"that"if"x"is"uniformly"distributed"on"(0,1),"then"so"is"r1=1<x:"
"
"
"

–  Note"that"τ"will"be"on"the"interval"(0,∞),"as"expected"

() ()()

()

()

10 0

0 00 0

0

0

exp

1 exp

1 1
ln
1

x

x

P d P x dx

a a d dx

a x

a x

τ

τ

τ τ τ

τ τ

τ

τ

" " " "=

" " "− =

− − =

$ %= & '−()

∫ ∫

∫ ∫

()1
0 1

1 1lnr
a r

τ
" #

= $ %
& '

Computing the Type of the Next Reaction

•  Now select the next reaction, exactly as in the n-fold method
•  Generate a random number r2 on the interval (0,1), and find the type i

such that:

•  After the reaction is selected, the numbers of each species involved
in the reaction get updated, e.g.:

•  Since the reaction probabilities ai depend on the numbers of species
(e.g. a1=NXNYc1), those must be updated for all reactions involving
the modified species (not just the latest reaction)

1 2
1
1

c

X X

Y Y

X Y Y
N N
N N

+ !!→

→ −

→ +

1

1 1
2

0 0

i i

j j
j j
a a

r
a a

−

= =< ≤
∑ ∑

SSA: Summary of Algorithm
•  Given: initial numbers of all species, list of M reactions with rates ci

•  Set system clock to zero: T = 0
1.  Compute all reaction probabilities ai
2.  Compute total reaction rate a0 :

3.  Generate random number r1 on (0,1) and compute time to next reaction:

4.  Generate random number r2 on (0,1) and select next reaction i such that:

5.  “Execute” reaction by updating numbers for all products and reactions of reaction i
6.  Update system clock: T → T + τ
7.  End if total simulation time has been reached
8.  Go to step 1

0
1

M

i
i

a a
=

=∑

0 1

1 1ln
a r

τ
" #

= $ %
& '

1

1 1
2

0 0

i i

j j
j j
a a

r
a a

−

= =< ≤
∑ ∑

SSA: Example
•  Look at an example from Gillespie’s

original paper:
•  Solve the 2-reaction example case:

where:

•  Equivalent deterministic system has
a steady state of:

•  SSA solution fluctuates around this
value

1

2

2
2

c

c

X Y Y
Y Z
+ !!→

!!→

()

1

2

 is assumed constant
5

0.005

0 3000

X

X

Y

N
c N
c

N t

=

=

= =

1

2

1000X
Y

c NN
c

= =

Kinetic Monte Carlo
•  The SSA and BKL methods are essentially equivalent

•  The original BKL paper even includes time
dependence and the selection of a timestep, equal to
that in the SSA

•  This basic algorithm is the method that is usually called
Kinetic Monte Carlo

•  The algorithm can be used for any system that can be
described by a set of discrete events with known rates/
probabilities

•  Especially useful for atomic systems where:
•  All atoms remain on a set of pre-defined lattice points,

and
•  Dynamics is driven by infrequent events

(relative to atomic vibrational timescale)
•  E.g. crystal growth, surface diffusion

Illustration of potential energy
surface in an infrequent event
system (from Voter, 2005)

KMC Events
•  For many atomistic systems, we can

use transition state theory to
estimate the rate of a given event

•  We compute the barrier energy Ebarrier,
the amount of energy needed to reach
the saddle point separating two local
energy minima

•  The rate is computed from an
Arrhenius equation:

where k0 is the “attempt
frequency” (related to the vibrational
frequency of the system)

A surface diffusion atom hop event

Ebarrier 0 exp
barrier

B

Ek k
k T

! "
= −$ %

& '

KMC Events
Events"in"atomis-c"systems"can"be"broadly"

classified"as"Glauber"or"Kawasaki"dynamics5
•  Glauber"dynamics"

–  Atoms/par-cles"are"inserted"or"

removed"from"the"lacce"

–  Number"of"par-cles"is"not"conserved"

–  Can"be"thought"of"as"exchanging"
par-cles"with"an"external"reservoir"

(e.g."surrounding"gas)"

–  Used"for"simula-ons"of"evapora-on/

condensa-on,"deposi-on"

•  Kawasaki"dynamics"

–  Atoms/par-cles"moved"from"one"site"

to"another"on"the"lacce"

–  Number"of"par-cles"is"conserved"

–  Used"for"simula-ons"of"diffusion"

•  Both"types"can"be"combined"in"the"same"

simula-on"

Glauber Dynamics

Kawasaki Dynamics

Connection Between Transition State Theory
and the Metropolis Monte Carlo Method

•  Sometimes the Metropolis MC algorithm
(or at least, the MMC acceptance criterion)
is used to simulate dynamics

•  How is this related to “real” dynamics, e.g.
transition state theory?

•  Make two assumptions about our set of
events:
1.  All events have the same attempt

frequency k0
2.  All energetically downhill events have

the same barrier energy Ebar
•  Then for all downhill events (like A→B):

•  For uphill events (like B → A):

•  The time variable can then be rescaled
(note that the scale factor depends on
temperature!) to give in general:

A

B

C

Ebar

Ebar

0 exp
bar

A B
B

Ek k
k T→

" #
= −% &

' (

()
0 exp

bar A B
B A

B

E E E
k k

k T→

+ −# $
= −% &

' (

1, if

exp , if

B A

A B B A
B A

B

E E
k E E E E

k T
→

≤#
$

= % &−(
− >) *$
+ ,-

Implementation: Search & Update Algorithms
•  For"a"general"simula-on"with"many"events,"the"selec-on"of"the"event"can"

become"expensive"

–  This"is"the"problem"that"BKL"solved"using"their"n<fold"way,"but"this"may"

not"be"generally"applicable"

•  A"simple"linear"search"to"find"i"such"that""
scales"as"N#
•  More"efficient"algorithms"are"possible,"e.g."binary"search"

–  Tree"structure"allows"faster"search;"scales"as"log2N#
•  See"Chaierjee"&"Vlachos"(2007)"reference"for"a"nice"review"of"various"

algorithms"

1i i

N N

Q Qr
Q Q

− < ≤

Linear vs. binary search algorithm (from
Chatterjee and Vlachos, 2007)

KMC in Parallel: SPPARKS
•  Sandia’s SPPARKS code is a freely available, general, parallelized KMC

code:
•  www.cs.sandia.gov/~sjplimp/spparks.html

•  True KMC is an inherently serial algorithm
•  One event at a time
•  Each event affects possible events and rates around it, so not strictly

legal to execute multiple events in parallel (e.g. on multiple processors)
•  SPPARKS (and other parallelized KMC codes) make an approximation that

allows independent events to be executed in parallel
•  Processor domains sub-divided into sectors to perform events that will

not conflict with neighbors
•  Balance must be achieved between accuracy and efficiency

2D domain partitioned among 20 processors (4x5);
each sub-domain further divided into 4 sectors

Each processor can perform events on a given
sector while other sectors are “frozen”; inter-
processor communication updates boundaries

SPPARKS
•  SPPARKS provides the main computational “engine” to do event

search and selection
•  Handles lattice creation, parallelization of the domain, I/O, and other

general functions
•  Problem-specific information, like the definition of events and their

probabilities, is specified in a user-supplied application class
•  Application class is an inherited C++ class that must supply at least the

following methods for a KMC simulation:
•  site_energy(): compute the energy associated with the given

lattice site in the current state
•  site_propensity(): compute the total rate (or probability) at

which events associate with the given site may take place
•  site_event(): perform an event at the given site and update the

list of events and probabilities
•  Some basic applications are included with the SPPARKS code,

including the Ising model, Gillespie’s SSA model, and some simple
models for solid diffusion

KMC Example: Nanoporous Material Evolution
•  The “diffusion” application of the SPPARKS code was used to

compute the time evolution of a nanoporous material
•  Initially, atoms occupy random sites in a lattice with 50% volume

fraction
•  Atom hop events on the surface model material diffusion
•  Surface area decreases as the pore structure coarsens over

time

KMC Example: Grain Growth

[Plimpton et al., 2009]

•  A Potts model is often used to model growth of grains in a material
•  Similar to an Ising model, except instead of two possible values each

site can have one of N integer values (so, Ising is a special case with
N=2)

•  Energy function penalizes unlike neighbors, so large “grains” (volumes
with the same site value everywhere) are energetically favorable

•  Each event flips the value of a site to that of one of its neighbors

“On-the-Fly” KMC

Adatom exchange process on a (100) surface
(illustration from Voter, 2007)

•  The biggest source of inaccuracy in most KMC simulations (when
compared with reality) is our lack of knowledge about the possible
events that might take place

•  Classic example: adatom diffusion on a (100) metal surface
•  It had been assumed that the relevant events in diffusion involve

hops of an atom from one surface site to another
•  Peter Feibelman and coworkers at Sandia discovered using DFT

calculations in 1990 that the lowest energy event is actually an
exchange of atoms with the first layer

•  Other possible events might include multiple atom motion, or
other non-intuitive processes

“On the Fly” KMC
Henkelman and Jonsson (J. Chem. Phys. 115, 2001) introduced a KMC
method that attempts to automatically find events and their rates by
exploring the potential energy surface

•  Called “On the Fly” KMC since it doesn’t require a pre-defined list of
events

Exploration of potential energy surface to find nearby local
energy minima (from Henkelman and Jonsson, 2001)

The four lowest energy events found
for an adatom on a (100) surface,
including the exchange event (from
Henkelman and Jonsson, 2001)

Further Reading
•  A. Chatterjee and D.G. Vlachos, “An overview of spatial microscopic and

accelerated kinetic Monte Carlo methods,” J. Computer-Aided Mater. Des.
14:253 (2007)

•  A nice tutorial and review article on KMC
•  A.F. Voter, “Introduction to the Kinetic Monte Carlo Method,” in Radiation

Effects in Solids, edited by K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga
(Springer, Berlin, 2007), p. 1-24

•  Another good introduction to some of these topics
•  S.J. Plimpton et al., “Crossing the Mesoscale No-Man’s Land via Parallel

Kinetic Monte Carlo”, SAND Report #SAND2009-6226
•  SAND report summarizing the SPPARKS code, with several example

applications
•  A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, “A New Algorithm for Monte

Carlo Simulation of Ising Spin Systems”, J. Comp. Phys., 17:10 (1975)
•  The “BKL” paper on the n-fold way

•  D.T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical
Reactions,” J. Phys. Chem. 81(25):2340 (1977)

•  Development of the SSA

Homework
•  Another example of an SSA problem from Gillespie’s J Phys

Chem paper:
•  The Brusselator:

with:

1

2

3

4

1 1

2 1 2 1

1 2 1

1 2

2 3

c

c

c

c

X Y
X Y Y Z

Y Y Y
Y Z

!!→

+ !!→ +

+ !!→

!!→

()
()

1 2

1 1

2 2

5
3

4

1

2

 and constant

5000

50

5 10
5

0 1000

0 2000

X X
c X
c X
c
c

Y

Y

−

=

=

= ×

=

=

=

Your assignment: Download the brusselatorSSA.py
script, fill in the missing parts of the code, and
reproduce the plots of Y1 and Y2 vs. time from
Gillespie’s paper (below);

INPUT5
clock"="0"

while"clock"<"totalTime:"

""""a1"="NX"*"NY"*"c1"

""""a2"="0.5"*"NY"*"(NY"<"1)"*"c2"

""""a0"="a1"+"a2"

""""r1"="random.uniform(0,1)"

""""tau"="1.0/a0"*"math.log(1.0/r1)"

""""r2"="random.uniform(0,1)"

""""iType"="1"

""""if"(r2">"a1/a0):"

""""""""iType"="2"

"""""if"(iType"=="1):"

""""""""NY"="NY"+"1"

""""else:"

""""""""NY"="NY"–"2"

"""clock"="clock"+"tau"

"

""""""

BONUS5
•  Change"the"neutral"species"in"the"fluid"

system"for"a"water"model"like"TIP4P"and"

observe"the"differences"in"the"solva-on"

structure"

•  Make"a"fluid"confined"by"two"walls."Will"

the"RDF"change?"Will"it"be"uniform?"

"

•  Observe"the"differences"in"point"defect"
structures"obtained"using"a"S-llinger<

Weber"poten-al"vs"Tersoff"

•  Reverse"the"loading"of"the"nanobeam","

will"the"response"change?"

•  Add"stress"as"an"output"does"it"tell"you"
anything?"

Lecture5125
Week"7:"Analyzing5Inhomogeneous5Systems55
•  Iden-fica-on"and"visualiza-on"of"defects"and"structures"

•  Metrics,"e.g."radial"distribu-on"func-on,"common"neighbor"analysis,"
centrosymmetry"

•  Available"tools""

•  Homework:"Calcula-on"of"centrosymmetry"and"slip"vector"around"a"
defect"

Week"8":"Molecular5Dynamics5"
•  Newton’s"2nd"Law"

•  Time"integra-on"algorithms"(Verlet,"SHAKE,"Gear)"

•  Conserved"quan--es"

•  Ensembles"(NVE,"NVT,"NPT,"NPH)"&"equa-ons"of"mo-on""

•  Thermostats,"e.g."Nose<Hoover"

•  Ini-al"condi-ons"and"velocity"distribu-ons"

•  Homework:"NVT"average"of"pressure."
"

"

"

Reading5Sugges,ons5for5Lec.512!
•  Chapter"6"of"LeSar"
•  Chapter"4"of"Frenkel"&"Smit"

•  Chapter"3"&"6"of"Evans"&"Morriss"

•  hip://en.wikipedia.org/wiki/Molecular_dynamics"

•  hip://lammps.sandia.gov/"

