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Review of Metropolis Monte Carlo

Last lecture, we looked at the Metropolis method.
For each step:
» Pick a move at random: the trial move
» Calculate the change in energy for the trial move
» Compute the probability of accepting the trial move, typically:
1, ifAE<0
Focan = {exp(—AE/kBT), ifAE >0
* Generate a random number r, and accept the move if r < P,c.o
Eventually, people started using this method to look at dynamics of
systems, not just equilibrium states
+ E.g. Stoll et al., Phys. Rev. B 8:3266 (1973)
These could probably be considered to be Kinetic Monte Carlo
simulations... but usually aren’t

KMC in this context usually refers to a change in the algorithm itself,
not just the introduction of dynamics
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The N-Fold Way

In the Metropolis method, for systems close to equilibrium the
acceptance probability for most events is often very low
» Especially true near equilibrium, when AE >> 0 for many events
» Leads to slow evolution and convergence
The n-fold method was introduced to overcome this problem
» Bortz, Kalos and Lebowitz, J. Comp. Phys 17:10 (1975)
+ “BKL’ for short
The new method is equivalent to the Metropolis method, but
changes the order of operations
* Instead of choosing a trial move at random and testing for
acceptance, compute the probability of all possible events

» Obviously, requires that the number of events be finite, which limits the
types of problems this can be used on

+ At each step, ask the question: Which event happens next?



The Ising Model The N-Fold Method

* In the Ising model, each site has just one possible move (or

» BKL worked with the Ising model, a very important model in “event’): flip spin from one value to the other

materials science

+ Lattice of sites, where each site has one of 2 values (“spin”), e.g. 1 ° Goa_l:_ ChOOS? an event at rgndom to execute f\eXt
+ Model used for phase changes, magnetic spin systems, critical * Intuitively, this random choice for each event j should be
phenomena, etc... weighted by its acceptance probability P,
* Imagine arranging all of the events in a line, weighted by
E(s) - _JE 5.3, _HE s, their probabilities:
 First sum is over nearest neighbor pairs ) o
« If J>0, favors like neighbors * Choose a point along this line at random, and execute that
» Second term biases system toward +1 or -1 event -
@ s =+1 (depending on sign of H) Define: Q, = EP/
® s,. -1 * Metropolis Monte Carlo trial move: pick a site at /=
! random and flip its spin to the opposite value Choose random number » €[0,1]
Find and execute event with: O <r< 9
N N

The N-Fold Method The 10-Fold Way
_ * The BKL paper authors found a nice soluti__on for these inefficiencies

i * Note thatthere arereally ¢ =~ =7~ .. " 'he 2D lIsing
Q = 2 f; model: Classifications of Spins in the Ten-Fold Way*
<
« After the chosen event gets executed, we have to recompute this list of events s Soin e P
and probabilities 1 Up 4
» For many systems, most of the possible events and their probabilities remain : o ;
unchanged 4 Up 1
» E.g. for the Ising model, only the flipped site and its nearest neighbors are affected Z Eswn Z
+  However, we still have a couple of inefficiencies here... : o )
*  We need to compute the cumulative sum of all of the events, Q, any time any one @ s, =+1 9 Down !
of them changes @ s =-1 ° Down !
. Tct)1 choose an event, it appears we have to loop over all events to find the one ' From BKL, J Comp Phys (1975)
wnere: . ™
0., 0, » All of the events within the same class have equal probability
Hidl g Zi . . . -
X =r 0, » So we can first select a class at random with weighted probability,

then select an event from that class with uniform probability

* These are both order N operations (not good) « Details on next slide



The 10-Fold Way

Define the probability P¢/ass and cumulative probability Q¢/ass for each of the

10 classes: 0
Qmm - 2 n Pchm

n, = # of events in class i (1 <7 <10)

P = constant probability for each event in class i

Generate random number r between 0 and 1, and find class such that:
Q,( _I?s.v Q{‘Ia.vs

class <rs class
on o
» This operation has cost of order 10, no matter how large the system is
Then choose a random event from this class, with uniform probability
» This operation has cost of order 1
BKL called this the “10-fold way”, and the general method the “n-fold way”

Stochastic Simulation Algorithm

+ Suppose we have a system of chemical reactions taking place
in a fixed volume: X4V —4 07
2¥ —2—7
elc...
» Rate c; for each reaction will be defined more formally later...
» One way to follow changes in the amount of each chemical
species is to write coupled, deterministic ODE’s for them:

dN,
dt

= f(Xx.7,2)

* But in small systems, with small numbers of molecules, this
approach has some flaws:

* Real system is discrete, not continuous (numbers of
molecules are integers)

* Real system is stochastic, not deterministic

Gillespie’s Stochastic Simulation Algorithm (SSA)

A similar but independent method was developed at around the
same time as the BKL paper

D.T. Gillespie, “Exact stochastic simulations of coupled chemical
reactions.” J. Phys. Chem. 81(25):2340

Developed for systems of chemical reactions
Gillespie’s work is more obviously related to dynamics (and kinetics)

Even though the methods are similar in the basic idea, the two
communities don’t seem to have much overlap

» Physicists and mathematicians reference BKL
» Chemists reference Gillespie

It's worth understanding the Stochastic Simulation Algorithm (SSA)
in detail (even for non-chemists!)

Stochastic Simulation Algorithm

Gillespie’s SSA proceeds stochastically, one reaction at a time
Have to answer two questions:

When does the next reaction occur?

What is the next reaction that occurs?
Obviously, these questions can only be answered in some “probabilistic”
way
First, note that reaction rates (the ci constants) can be thought of as
probabilities

E.g. for the reaction:

X+Y——=2Y
The rate is defined such that:

c,dt = average probability that a particular X + Y pair in the system
will undergo reaction 1 in the next infinitesimal time interval dt

The total number of X+Y pairs is NyNy, so:

N, N,c,dt = average probability that some X +Y pair in the system

will undergo reaction 1 in the next infinitesimal time interval dt



Stochastic Simulation Algorithm

* More generally:

¢,dt = average probability that a particular set of reactants for reaction i

will undergo reaction 7 in the next infinitesimal time interval dt

adt = average probability that some set of reactants for reaction i
will undergo reaction 7 in the next infinitesimal time interval dt

» E.g. for our original set of 2 reactions:
X +Y—=2Y
Y ——Z
@, =NyNy¢
1

a, =5N,,(NY -1)

Note that a, has a different form since it involves two atoms of the same species

Stochastic Simulation Algorithm

+ First, let's compute P,(t)dz, the probability that the next
reaction of any type occurs in the interval (t+7,t+1+d7)

t NO REACTION 3 > Time

<1 <

+ To compute this, note that the individual reaction
probabilities can be summed over all reactions (assume
there are M of them), so that:

a,dt = average probability that any reaction will take place
in the next infinitesimal time interval dz

where
M

a4
i=

Stochastic Simulation Algorithm

So we can compute the set of probabilities g; for each reaction i

Note that a; has units of 1/time, and can be thought of as the
expected rate for each reaction

Now define the reaction probability density function P(z,i):
P(r,i ) dt = probability that, starting from time ¢, the next reaction will occur

in the infinitesimal time interval (t +T, L +T + dz') and will be a
reaction of type i

We can break this down into the product of two separate
probabilities:

P(t,i)dt =P (T)P2 (i“r)dt

where

B (r) dt = probability that the next reaction occurs in the interval (t +T,0+T+ dr)

P, (i“r) = probability that the next reaction will be of type i, given that the next
reaction occurs at time ¢ +7

Stochastic Simulation Algorithm

t NO REACTION x > Time
T dr<

* Now the total probability P, can be broken down further:
B (r)dr = B (t)a,dr
where
P

) (T) = probability that NO reaction will occur within time 7

a,d7 = probability that ANY reaction will occur in the subsequent interval dz

* Almost there...
(1 - aod‘r) = probability that NO reaction will occur within an interval dz
F, (r+ dr) = (1— aoa’r)P0 (r)
B(r+dr)-£(0)
dr
F, (r) = exp(—aot)

=-a,F, (T)



Stochastic Simulation Algorithm

+ So:
° B(7)dr = B,(7)a,dr = a, exp(-a,r)dr

* P,(il7) is easier; the probability that the next reaction is of type i
is simply proportional to a;, normalized by the sum over all

types: }z(zﬁ):%

0

0

» So the full reaction probability density, f}lj ction is:
P(t,i)dr = (ao exp(—aor)dr)("r)
a,

=a,exp(-a,r)dr
* In practice, this gets simulated in two steps:
* Use P,(7) to generate the time t to the next reaction
* Use P,(i|7) to select the next reaction i

Computing the Type of the Next Reaction

* Now select the next reaction, exactly as in the n-fold method
» Generate a random number r, on the interval (0,1), and find the type i
such that: i1 i
a./ a/’
Z <K= ’2
0 aﬂ

a,
» After the reaction is selected, the numbers of each species involved
in the reaction get updated, e.g.:
X+Y—=2Y
N, —=N,-1
N, =N, +1
+ Since the reaction probabilities a; depend on the numbers of species

(e.g. a,=NyN,c,), those must be updated for all reactions involving
the modified species (not just the latest reaction)

Computing the Time to Next Reaction

*  We need to select a time 7 from the probability distribution P,(7)

— Butin general, random number generators select from a uniform
distribution, usually on the interval (0,1)

— How do we map from one distribution to another?
* Let x(7) be a random number with uniform distribution on the interval
(0,1); we can compute the mapping by integrating:
ﬁR(T')dTE‘ﬂ:P(,\f(T'))d{
; a,exp(-a,7')dr' =j: dx’'
l—exp(—aﬂ‘r):x
,=LIH(L)
a, \l-x
* Note that if x is uniformly distributed on (0,1), then so is r;=1-x:
r(r.)=iln(l)
a, i

— Note that Twill be on the interval (0,%0), as expected

SSA: Summary of Algorithm

Given: initial numbers of all species, list of M reactions with rates c;
Set system clock to zero: T=0
1. Compute all reaction probabilities a;
2. Compute total reaction rate a,:
M

a, = za,‘
=

3. Generate random number r; on (0,1) and compute time to next reaction:

1 1
7=—In|—
a(! Vi

4. Generate random number r, on (0,1) and select next reaction i such that:

DX
J= J=

<ns

a, a,
“Execute” reaction by updating (ﬁumbers fo(|i all products and reactions of reaction i
Update system clock: T— T+ 7
End if total simulation time has been reached
Go to step 1

© N o



SSA: Example

* Look at an example from Gillespie’s
original paper:

« Solve the 2-reaction example case:
3000

X +Y—=2Y
2Y —“2—=7 2500 L i
where: I
N, is assumed constant 2000 |
N, =5 Z |
¢, =0.005 1500 -
N, (t=0)=3000 N VP SO N L
« Equivalent deterministic system has
a steady state of: 500
c N 0 1 2 3 4 5
N, =X =1000 '
C2
+ SSA solution fluctuates around this
value

KMC Events

+ For many atomistic systems, we can
use transition state theory to

N
. O estimate the rate of a given event
. . . . * We compute the barrier energy E,_ e,
. . . . the amount of energy needed to reach

A surface diffusion atom hop event the saddlg pomt separating two local
energy minima
* The rate is computed from an
Arrhenius equation:
E,,.
k=k exp| - ‘barrier
0 p( T )

B

where k, is the “attempt
frequency” (related to the vibrational
frequency of the system)

Kinetic Monte Carlo

The SSA and BKL methods are essentially equivalent
» The original BKL paper even includes time
dependence and the selection of a timestep, equal to
that in the SSA
This basic algorithm is the method that is usually called
Kinetic Monte Carlo
The algorithm can be used for any system that can be
described by a set of discrete events with known rates/
probabilities
Especially useful for atomic systems where:
» All atoms remain on a set of pre-defined lattice points,
and
» Dynamics is driven by infrequent events
(relative to atomic vibrational timescale)
E.g. crystal growth, surface diffusion

lllustration of potential energy
surface in an infrequent event
system (from Voter, 2005)

KMC Events

Events in atomistic systems can be broadly
classified as Glauber or Kawasaki dynamics

Glauber dynamics

(L
— Atoms/particles are inserted or
removed from the lattice ........- ........

— Number of particles is not conserved

— Can be thought of as exchanging
particles with an external reservoir
(e.g. surrounding gas)

Glauber Dynamics

— Used for simulations of evaporation/
condensation, deposition

Kawasaki dynamics . .

— Atoms/particles moved from one site . . . . ». . . .
to another on the lattice . . . . . . . .

— Number of particles is conserved ) .
Kawasaki Dynamics
— Used for simulations of diffusion

Both types can be combined in the same
simulation



Connection Between Transition State Theory ] )
and the Metropolis Monte Carlo Method Implementation: Search & Update Algorithms

: (Soc:rgfltgggts %Eg Mﬁggggsemgnggg”ttg%n) * For a general simulation with many events, the selection of the event can

is used to simulate dynamics become expensive
* How is this related to “real” dynamics, e.g. — This is the problem that BKL solved using their n-fold way, but this may
transition state theory? not be generally applicable

* Make two assumptions about our set of
events:

1. All events have the same attempt
frequency k,
2. All energetically downhill events have
the same barrier energy E,,, - exp(_ E/)
» Then for all downhill events (like A—B):

e Asimple linear search to find i such that %<r5g
scalesas N N N

* More efficient algorithms are possible, e.g. binary search
— Tree structure allows faster search; scales as log,N

* See Chatterjee & Vlachos (2007) reference for a nice review of various

' c | h
_ algorithms
ko =k, exp(_w) a)
« For uphill events (like B — A): kT i
| I | I IO oo | I I
* The time variable can then be rescaled 1, ifE,<E,
(note that the scale factor depends _ E—E
temperature!) to give in general: - CXP(— £ T 4 ) ifE, > E, Linear vs. binary search algorithm (from
B

Chatterjee and Vlachos, 2007)

KMC in Parallel: SPPARKS SPPARKS

. ggggia‘s SPPARKS code is a freely available, general, parallelized KMC

. . » SPPARKS provides the main computational “engine” to do event
» www.cs.sandia.gov/~sjplimp/spparks.html

+ True KMC is an inherently serial algorithm search and selection
+ Oneeventatatime . . » Handles lattice creation, parallelization of the domain, 1/0, and other
B e R A A S T F S M T RS general functions
. §|%%F?§§e§,ae”nddStn'%%r\}%%ré'%%iégdeﬁ%ﬁtgﬁ‘?ﬁs | Make an approximation that +  Problem-specific information, like the definition of events and their
. rF"cr) ces: I%t%i N ari]ré?g%%rdsivided into sectors to perform events that will probabilities, is specified in a user-supplied application class
« Balance must be achieved between accuracy and efficiency » Application class is an inherited C++ class that must supply at least the
following methods for a KMC simulation:
_ . . N Pm + site energy(): compute the energy associated with the given
Pl 1 lattice site in the current state
—— ——
""""""""""""""" for'? Send * site propensity(): compute the total rate (or probability) at
,,,,,,,,,,,,,,,,,,,,,,,,,,, which events associate with the given site may take place
fowsz N + site_event(): perform an event at the given site and update the
Each processor can perform events on a given list of events and probabilities

sector while other sectors are “frozen”; inter- S . . . . .
cati : . ome basic applications are included with the SPPARKS code,
2D domain partitioned among 20 processors (4x5); processor communication updates boundaries pp!

each sub-domain further divided into 4 sectors including the Ising model, Gillespie's SSA model, and some simple
models for solid diffusion



KMC Example: Nanoporous Material Evolution

The “diffusion” application of the SPPARKS code was used to
compute the time evolution of a nanoporous material

« Initially, atoms occupy random sites in a lattice with 50% volume
fraction

» Atom hop events on the surface model material diffusion

» Surface area decreases as the pore structure coarsens over
time

Area per Volume

o 5000 10000 15000

“On-the-Fly” KMC

The biggest source of inaccuracy in most KMC simulations (when
compared with reality) is our lack of knowledge about the possible
events that might take place

Classic example: adatom diffusion on a (100) metal surface

* |t had been assumed that the relevant events in diffusion involve
hops of an atom from one surface site to another

» Peter Feibelman and coworkers at Sandia discovered using DFT
calculations in 1990 that the lowest energy event is actually an
exchange of atoms with the first layer

» Other possible events might include multiple atom motion, or
other non-intuitive processes

(@ (b) (©]
Adatom exchange process on a (100) surface
(illustration from Voter, 2007)

KMC Example: Grain Growth

A Potts model is often used to model growth of grains in a material
» Similar to an Ising model, except instead of two possible values each
site can have one of N integer values (so, Ising is a special case with
N=2)
» Energy function penalizes unlike neighbors, so large “grains” (volumes
with the same site value everywhere) are energetically favorable

» Each event flips the value of a site to that of one of its neighbors

[a). ‘ .

time = 1000 MCS 10,000 MCS 100,000 MCS

(b) . . < - =

time = 1000 MCS 300,000 MCS 1,000,000 MCS [P“mpton et al. 2009]

“On the Fly” KMC

Henkelman and Jonsson (J. Chem. Phys. 115, 2001) introduced a KMC
method that attempts to automatically find events and their rates by
exploring the potential energy surface

» Called “On the Fly” KMC since it doesn’t require a pre-defined list of
events
Initial  Saddle  Final

i & f o R

(C 0 ‘O (@ : O AE =037V & # ég
v=5-10"s"

Py ) 3_
Y /}j( 1 =0 0008 B0 O

(@ S O‘ )

S - ) _\E 0.44 eV 3 0 88 f,
Exploration of potential energy surface to find nearby local v=3-10"¢"

energy minima (from Henkelman and Jonsson, 2001)

The four lowest energy events found
for an adatom on a (100) surface,
including the exchange event (from
Henkelman and Jonsson, 2001)



Further Reading

* A. Chatterjee and D.G. Vlachos, “An overview of spatial microscopic and
accelerated kinetic Monte Carlo methods,” J. Computer-Aided Mater. Des.
14:253 (2007)

* Anice tutorial and review article on KMC

* A.F. Voter, “Introduction to the Kinetic Monte Carlo Method,” in Radiation
Effects in Solids, edited by K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga
(Springer, Berlin, 2007), p. 1-24

* Another good introduction to some of these topics

* S.J. Plimpton et al., “Crossing the Mesoscale No-Man’s Land via Parallel

Kinetic Monte Carlo”, SAND Report #SAND2009-6226

*  SAND report summarizing the SPPARKS code, with several example
applications

» A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, “A New Algorithm for Monte
Carlo Simulation of Ising Spin Systems”, J. Comp. Phys., 17:10 (1975)
* The “BKL” paper on the n-fold way

+ D.T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical
Reactions,” J. Phys. Chem. 81(25):2340 (1977)

» Development of the SSA

INPUT

clock=0

while clock < totalTime:
al=NX*NY*cl
a2=0.5*NY * (NY-1) *c2
a0=al+a2
rl = random.uniform(0,1)
tau = 1.0/a0 * math.log(1.0/r1)
r2 = random.uniform(0,1)

iType=1

if (r2 >al/a0):
iType =2

if (iType == 1):
NY=NY+1

else:
NY = NY -2

clock = clock + tau

Homework

Another example of an SSA problem from Gillespie’s J Phys
Chem paper:
The Brusselator:

X—=, script, fill in the missing parts of the code, and

X+ —2=Y, 42, reproduce the plots of Y1 and Y2 vs. time from

Your assignment: Download the brusselatorSSA.py

2 +Y,—=—=3Y Gillespie’s paper (below);
Y, —4—7,
with:
w00 SRR
7000 2 7000
X, and X, constant ‘ \
4, o |
X, =5000 o ‘
X, =50 > 4000 \ = 4000
¢, =5x107 000 o
=5 200 2:::
"
¥,(0) =1000 =N A A \
© DANNN NN o
¥, (0) = 2000 ) .

BONUS

* Change the neutral species in the fluid

system for a water model like TIP4P and
observe the differences in the solvation
structure

* Make a fluid confined by two walls. Will

the RDF change? Will it be uniform?

* Observe the differences in point defect

structures obtained using a Stillinger-
Weber potential vs Tersoff

* Reverse the loading of the nanobeam,

will the response change?

* Add stress as an output does it tell you

anything?



Lecture 12 Reading Suggestions for Lec. 12

Week 7: Analyzing Inhomogeneous Systems
* |dentification and visualization of defects and structures

* Metrics, e.g. radial distribution function, common neighbor analysis,
centrosymmetry

* Available tools

* Homework: Calculation of centrosymmetry and slip vector around a
defect

Chapter 6 of LeSar

Chapter 4 of Frenkel & Smit

Chapter 3 & 6 of Evans & Morriss
http://en.wikipedia.org/wiki/Molecular_dynamics

Week 8 : Molecular Dynamics
* Newton’s 2" Law
* Time integration algorithms (Verlet, SHAKE, Gear)

* Conserved quantities s i looucrionTol |
¢ ’ Computational
Materials
Seience

http://lammps.sandia.gov/

* Ensembles (NVE, NVT, NPT, NPH) & equations of motion
* Thermostats, e.g. Nose-Hoover

* Initial conditions and velocity distributions

* Homework: NVT average of pressure.

WIKIPEDIA
The Free Encyclopedia




