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Abstract—Coordination languages are an established program-
ming model for distributed computing, but have been largely
eclipsed by message passing (MPI) in scientific computing. In
contrast to MPI, parallel workers never directly communicate,
instead “coordinating” indirectly via key-value store puts and
gets. Coordination often focuses on program expressiveness,
making parallel codes easier to implement. However, coordi-
nation also benefits resilience since the key-value store acts as
a virtualization layer. Coordination languages (notably Linda)
were therefore leading candidates for fault-tolerance in the early
’90s. We present the FOX tuple space framework, an extension
of Linda ideas focused primarily on transitioning MPI codes
to coordination programming. We demonstrate the notion of
“MPI Perturbation Theory,” showing how MPI codes can be
naturally generalized to the tuple-space framework. We also
consider details of high-performance interconnects, showing how
intelligent use of RDMA hardware allows virtualization with
minimal added latency. The framework is shown to be resilient
to degradation of individual nodes, automatically rebalancing for
minimal performance loss. Future fault-tolerant extensions are
discussed.

I. INTRODUCTION

Programming models must always confront a trade-off be-
tween imperative and declarative. A more imperative language
gives the programmer more flexibility, but more responsibility.
Since a declarative language merely prescribes what should
be computed and not how, the compiler or runtime may make
non-optimal decisions (or it may make better decisions). No
framework is ever purely imperative, though. Even in C the
programmer declares a loop without actually implementing
every detail. The key question is not either-or, but where
programming models should lie on a spectrum between the
two. The issue is succinctly summarized by the Alan Perlis
quote [1], “A programming language is low level when its
programs require attention to the irrelevant.”

Here we are primarily concerned with distributed memory
parallelism. The most common programming model, message
passing (MPI), [2] is essentially imperative. Communicating
sequential processes (CSPs) explicitly send messages at a
given time to a given place. Resilience often relies on global
checkpoints or asynchronous checkpoints with message log-
ging [3], [4]. Other fault-tolerant extensions have been devel-
oped or are being proposed for MPI+X [5], but the resilience

APIs are still “imperative” in requiring the programmer to
specify a fault response. When referring to MPI here, we
use it synonymously with the most common usage as bulk-
synchronous or send-deterministic. Although it is possible to
implement asynchronous task models using MPI Probe or
non-blocking communication, the term MPI here implies an
actual programming model, not just a transport layer.

Several alternative programming models are more declar-
ative, including Charm++ [6], Concurrent Collections
(CnC) [7], DaGuE [8] or even domain-specific like Uin-
tah [9]. The programmer defines an object interface (chare
in Charm++) or workflow (tuple operations in CnC) which
describes the work to be done. However, the runtime is still
able to make decisions about exactly where and when work
is performed. CnC is inspired largely by Linda [10], pro-
moting coordination languages where workers are “decoupled
in space and time.” Coordination languages such as Linda
involve concurrent workers that never directly communicate,
instead “coordinating” through a key-value store. Declarative
programming models are often implemented as asynchronous
task or data-flow execution models. In many cases, the orig-
inal intent of asynchronous execution was efficiency rather
than resiliency. Decoupling workers can hide the latency of
global collectives in bulk-synchronous models or simplify
load-balancing for irregular computation.

The declarative/imperative spectrum for distributed mem-
ory programming is particularly relevant as high-performance
computing faces new resilience challenges [11]. For program-
ming models, we must choose an abstract view of the machine
that assumes 1) the machine is perfect or 2) the machine can
fail. In general, programming models have relied on hardware
infallibility, assuming that ECC and analogous schemes will
correct all faults. In basic usage, simple C and C++ programs
can be “fault-oblivious,” assuming perfect hardware. For the
next generation of extreme-scale, distributed memory appli-
cations (exascale), we must readdress the practical question
of how fault-oblivious can the programming model be? MPI
can be fault-tolerant, but, by its imperative nature, it is not
fault-oblivious. The programmer specifies actions explicitly
that may or may not succeed. Declarative models, originally
intended to improve coding and execution efficiency, can
potentially provide a resilience advantage. With decoupled
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workers, a distributed runtime separates when work is declared
and when work is executed, providing virtualization. Even if
not completely fault-oblivious, decoupled workers can execute
fault-amelioration or fault-recovery strategies asynchronously
without slowing down the whole computation.

This inherent virtualization of the more declarative coordi-
nation languages lent strong interest to fault-tolerant Linda
extensions in the 1990s [12]. With renewed emphasis on
HPC resilience, we explore here the possibility of a fault-
oblivious programming model. We present here the FOX
(Fault-Oblivious at eXtreme-scale) tuple framework. In FOX,
processes do not perform point-to-point communication with
specific ranks, but instead only request data via global iden-
tifiers (tuples). Work is driven in a data-flow manner via
tasks and data dependencies, increasing efficiency through
asynchronous execution.

In last 20 years, Linda and coordination languages have
lost out to MPI in scientific computing, which we suggest
has two major causes. First, coordination languages can raise
communication costs. Processes do not directly communicate
and may need to query metadata servers to communicate.
MPI rendezvous protocols, however, already require several
messages back and forth to negotiate transfers. Even if re-
quiring indirection through a metadata server, communication
can match MPI efficiency by intelligent use of hardware
primitives. The key-value store frameworks also interfere with
data locality. By putting data into a key-value store, data
might be migrated off-node that would stay local in MPI.
For large arrays, FOX only puts metadata (an RDMA handle)
into the key-value store, leaving the large array in place. Both
communication latency and data locality are preserved despite
indirect coordination through a key-value store. In general, the
FOX runtime is designed around data locality, moving work to
data rather than data to work. Indeed, going forward, optimal
data movement will a critical scheduling concern for HPC.

The second advantage to MPI in scientific computing is
the model itself. Tightly-coupled message passing potentially
maps more naturally to tightly-coupled physics. Additionally,
a runtime may make non-optimal scheduling decisions an
imperative programmer could avoid. In the absence of faults,
assume there is a hand-coded MPI program that follows an
optimal schedule. We argue here that, given simple heuristics
and no failures, a simply affinity scheduler can replicate the
MPI control flow. The programmer can avoid poor scheduling
if she expresses enough information to the scheduler. The FOX
framework, following inspiration from Linda and CnC, focuses
on expressiveness, allowing the programmer to express data
partitioning and scheduling hints to the runtime. We coin the
term here “MPI perturbation theory”, alluding to the famous
physics technique. Here the zeroth order problem is a fault-
free, perfectly-balanced machine for which an SPMD MPI
code is the “solution.” Perturbations (faults, load imbalance)
are treated as minor corrections to the existing solution.

We therefore argue here that a tuple-space coordination lan-
guage can provide virtualization without sacrificing efficiency.
We demonstrate real-world examples of refactoring an MPI
code into tuple-space operations. Excellent performance is
observed for medium-sized runs (750cpu) even when certain

nodes are degraded. We finish by considering fault-tolerance
extensions, discussing how fault-oblivious the framework can
be made.

II. RELATED WORK

Coordination languages involve concurrent workers that
never directly communicate, instead “coordinating” through
a key-value store. In Linda [10], a program is entirely built
from three operations: put, rd, and in. An in operation
reads and removes (takes) the tuple. A simple Linda program
with two workers would be

Worker 1:
int main()
{
...
put(tsA, "hello", 0);
...

}
Worker 2:
int main()
{
...
in(tsA, "hello", i?)
...

}

The first worker outputs a tuple into space A and the second
worker takes the tuple. The in operation can return any valid
tuple through wildcard operators. A programmer can therefore
request any available work rather than a specific task. Common
usage is therefore a “bag-of-tasks” work queue. Concurrent
collections (CnC) [7] is essentially a subset of Linda with
a more extensive runtime. Tasks are enqueued by emitting
control tag tuples with dependencies in a data tuple space.

Fault-tolerance extensions were proposed for Linda, based
primarily on the use of transactions and replicated state
machines. Tuple space transactions could be grouped within
atomic guarded statements (AGS) such that either all state-
ments execute or none do [12]. The AGS therefore ensures that
failures occurring in the middle of the transaction do not leave
the tuple space in a corrupted, intermediate state. Tuple spaces
were almost made redundant as replicated state machines [13].
With redundancy, tuple space operations become more expen-
sive, requiring, e.g., atomic multicast to ensure consistency
and correctness.

Numerous task frameworks exist independent of coordi-
nation programming. DaGuE, originally designed for shared
memory, has been extended to distributed memory [8]. Tasks
and dependencies are declared via a simple DaGuE syntax
with the user explicitly unrolling the DAG gradually at specific
points. DaGuE’s task framework is similar to FOX, but has not
emphasized resilience (to our knowledge).

TASCEL/Scioto are task frameworks that rely heavily on
work stealing for load balance [14], [15]. Many resilience
features have been explored with TASCEL, in particular
ensuring persistence of the task queue with failed nodes and
also idempotent correctness of the computation when failed
tasks are replayed [16]. While a large degree of asynchrony
exists, tasks must be run in collections that are created and
closed synchronously.
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Metadata%Block%(A,0,0):%
Loca7ons%=%[Node%1]%

(A)  %Node%2%computes%hash(A,0,0)%=%0%%
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%
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(A)%Hash(A,0,0)%=%0%

Fig. 1: FOX scheme for reading data in tuple space

Charm++ is essentially an asynchronous task framework,
implemented via distributed objects called chares [6]. Data and
tasks are delivered to processes as remote object function calls,
and the runtime is responsible for load balancing. Resilient
extensions have been explored via in-memory checkpointing
on buddy processors [17]. Chares also lend them themselves
to virtualization in Charm++ since users only specify what
actions an object should take but not necessarily where and
when. There is strong overlap between the functionality and
implementation of Charm++ and the current work, with em-
phasis on hardware optimizations afforded by state-of-the-art
interconnects [18]. The FOX tuple framework differs primarily
in the programming model, offering an alternative way to
express the parallel decomposition of a program.

Globally visible tuple spaces share some similarity with
partitioned global-address space (PGAS) models such as GAS-
Net [19]. APGAS in particular emphasizes asynchronous exe-
cution of tasks on “places” distributed across the machine [20].
The recently introduced “global futures” also emphasize re-
mote procedure calls on remote data, asynchronously moving
work to data [21].

Many other asynchronous task frameworks exist with em-
phasis on shared memory or accelerators including Cilk [22],
X10 [23], SMPs [24], and StarPU [25]. OpenMP [26] and
Intel thread building blocks (TBB) [27] also support some
forms of task parallelism. Cilk additionally has a distributed
memory version Cilk-NOW [28]. X10 has recently introduced
transparent fault tolerance extensions [29].

III. FOX FRAMEWORK

A. Tuple Operations

Similar to Linda, the FOX framework is built entirely on a
limited set of tuple space primitive operations. The application
can put, read, pull, or erase tuples. Here pull is
synonymous with the Linda in operation. read and pull
functions have the prototype

void
read(int ts_id,

Tuple* t,
EventListener* listener);

Each read operation must specify a tuple space ID, the tuple
to be read, and an event listener. In contrast to Linda, there
are no blocking operations in FOX. If the requested tuple is
found, the function returns and the listener will have a join
counter of 0, signaling a successful read. If the requested
tuple is not found, the listener object is registered with the
tuple space. Each listener must implement an activate

method. When a matching put operation occurs, the listener
is activated. This is typically used in task frameworks to signal
data dependencies becoming available. In most FOX use cases,
however, the event listeners are hidden by the task API.

At present, FOX does not support wildcard tuple reads as
done in Linda. Without wildcard support, why do you need to
read a tuple if you already know all its elements? First, tuples
can synchronize computation. You cannot read a tuple unless
it has first been put into the tuple space. Reading a known
tuple can therefore be used as, e.g., a fine-grained barrier.

A known tuple can also be used to read an unknown value.
There are two tuple types in FOX: simple tuples and value
tuples. Simple tuples are just a collection of elements, all of
which are used for labeling the tuple. Value tuples are labeled
by a collection of elements, but the tuple stores an unknown
value. Consider the tuples:

Tuple2<int,int> simple(0,1);
ValueTuple2<int,int,int> value(0,1,2);

Both tuples share the label (0,1), but value can carry a
variable integer. The first two integers in the template refer to
the label while the last integer is the value type. In many use
cases, the value is the FOX ArrayData type, e.g.

ArrayData data;
data.instantiate<double>(size);
ValueTuple2<int,int,ArrayData> value(0,1,data);

B. Threads

FOX is designed to run with only a single process per
physical node. On-node parallelism is provided by explicit
use of pThreads. One or more cores is reserved for a remote
manager (see below), which constantly polls for incoming
tuples. The remaining cores run as task threads. These tasks
continually query a node task queue for any ready tasks.
In the current version, individual tasks run as single threads
and no explicit knowledge of NUMA regions is considered
in assigning tasks. For future versions, we plan to tag data
not only with the node location but also NUMA region so
that scheduling will consider both node and thread affinity.
Additionally, we plan to expand the threading model so that
data-parallel tasks can be run on multiple threads. This will be
particularly important for ensuring that system-level distribu-
tion is coarse-grained enough to amortize task overheads while
thread-level distribution is sufficiently fine-grained to exploit
abundant on-node parallelism.

To ensure thread safety of the tuple space hash tables, each
hash table is partitioned into separate (ca. 1000) thread-safe
bins. Each bin has its own thread lock for ensuring atomicity
of the operations. For a tuple space, many simultaneous
operations can occur, but only one operation can occur for
a specific tuple at any given time. By mapping into a finite
number of bins, we avoid a global tuple space lock and also
avoid requiring every tuple to maintain its own lock. The
number of bins should be chosen to minimize thread conflicts
with reasonable storage requirements.
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C. Remote Manager

In distributed versions of Linda, a tuple space can have
either local or global scope. FOX follows a similar scheme.
Global tuple spaces are implemented as distributed hash tables.
Since the number of tuples should be very large, severe load
imbalance is unlikely. User-specified hash functions could be
incorporated for specific applications to promote locality, e.g.
mapping an (X,Y, Z) tuple to a specific processor on a grid.

For large arrays, putting and reading large amounts of data
from a distributed hash table is clearly inefficient. Instead of
a destination directly reading from a source, data movement
is doubled by going through an intermediary. Additionally,
the distributed hash table scatters tuples across the machine,
potentially putting neighbor data on a far-away node. To
correct this, when putting a tuple with ArrayData, only
the array metadata is actually transferred. Correspondingly,
when reading a tuple with ArrayData, only the metadata is
returned. To fill the array values, the receiving node must use
the metadata to perform a remote read, usually in the form of
an RDMA get. This scheme is shown in Figure 1. The task
API hides all these details (Section IV-B), and most application
programmers will never see the details.

Compared to MPI, first reading metadata from a distributed
hash table might seem to greatly increase communication
latency. However, MPI rendezvous protocols already require
several round trips to complete the send (Figure 2). To use
RDMA, the source must send a metadata header to negotiate
the RDMA transfer and the destination must ack completion.
Since FOX runs tasks asynchronously, it effectively overlaps
communication and computation, further reducing the over-
head of communication latency.

1)#Send#metadata#header##
#####with#RDMA#handle#

2)#RDMA#get#

3)#Move#data##
####to#receiver#

4)#Send#ACK##
####to#complete#

Sender# Receiver#

Fig. 2: RDMA rendezvous protocol for
MPI Send/MPI Recv Pair

IV. SYSTOLIC MATRIX-MATRIX MULTIPLICATION

We initially explore the FOX tuple framework in the context
of matrix-matrix multiplication.

A. Basic MPI Algorithm

We show here one version of 2D systolic matrix-matrix mul-
tiplication (Figure 3) for computing C = AB. For simplicity,

we only consider square matrices. The matrices are partitioned
into an N ×N grid. For each block Cij , it must accumulate
N contributions

Cij =
∑
k

AikBkj (1)

On the first iteration, each product block accumulates a unique
contribution, e.g.

C00+ = A00B00

C01+ = A01B11 (2)
...

Moving to the next iteration, the blocks of A and B shift
as a systolic array (Figure 3) and each product block again
accumulates a unique contribution.

C00+ = A01B10

C01+ = A02B21 (3)
...
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1Fig. 3: Basic systolic matrix multiplication C = AB for 2x2
matrices. The blocks of C (large boxes) accumulate

contributions from A× B (small boxes). (A) The initial
distribution of matrix blocks in the first iteration. (B) The

movement of matrix blocks after the first iteration. (C) The
distribution of matrix blocks on the second iteration.

This algorithm is highly synchronous, making it initially
seem a bad choice for an asynchronous task runtime. However,
shown below, we are still able to construct a sensible task
decomposition in the FOX tuple framework. The MPI code is
shown schematically.

for (int iter=0; iter < niter; ++iter){
MPI_Isend(myBlockA,...);
MPI_Isend(myBlockB,...);
MPI_Irecv(nextBlockA,...);
MPI_Irecv(nextBlockB,...);

/** Matrix multiplication work */

MPI_Wait(...);
myBlockA = nextBlockA;
myBlockB = nextBlockB;

}

To make the performance comparison between FOX and
MPI “fairer,” we prefetch each iteration to try and overlap
communication and computation as much as possible in the
MPI code.
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B. FOX Implementation

We here introduce a FOX project for matrix-multiplication.
In particular, we try to replicate systolic matrix multiplication
within the task-driven framework. Every FOX code has a well-
defined structure, containing minimally these files:

Header Source
declare deps.h define deps.cc
declare tasks.h define tasks.cc

File names are self-explanatory. First, one must declare the
the data types (dependencies) that tasks will use.

#include <libfoxy/fox.h>
fox_dependency_declare(

right_matrix_block, // Dependency name
char, // Matrix label
int, // Iteration number
int, // Row index
int, // Column index
ArrayData // FOX class for arrays);

fox_dependency_declare(left_matrix_block, ...);
fox_dependency_declare(product_matrix_block, ...);

Underneath the hood, FOX uses macros and C++ templates
to generate the code. Any type mismatches between tasks
and dependencies are compile-time errors. All macros and
functions are included via fox.h.

Next we must declare the tasks.

#include "declare_deps.h"
fox_tuple_task_declare(

multiply, // Name of task
int, // Iteration number
fox_dependency(product_matrix_block),
fox_dependency(left_matrix_block),
fox_dependency(right_matrix_block) );

fox_init_declare(sysmxm_params);

Since we are doing matrix multiplication, each task
requires three matrix blocks. The names were declared
in declare_deps.h and must be wrapped in the
fox_dependency macro. Additionally, we declare a task
init that takes as input type sysmxm_params (not shown).
The task is declared as a broadcast. When init is invoked, it
will actually generate many tasks, unrolling the DAG neces-
sary to execute a broadcast collective. The macros implicitly
declare functions multiply_fxn and init_fxn which
must be implemented for the task (see below).

Once tasks and dependencies are declared, they must have
their symbols defined for linking. For convenience, we include
all headers via a project.h

/** define_deps.cc */
#include "project.h"
fox_dependency_define(left_matrix_block);
fox_dependency_define(right_matrix_block);
fox_dependency_define(product_matrix_block);

/** define_tasks.cc */
#include "project.h"
fox_task_define(multiply);
fox_init_define();

Once declarations and definitions are done, the actual main
routine can be implemented.

int main()
{

FoxRuntime::init();

fox_append_reduce_dependency(
multiply,product_matrix_block);

fox_append_migrate_dependency(
multiply,left_matrix_block);

fox_append_migrate_dependency(
multiply,right_matrix_block);

fox_initial_bcast(&get_params);

FoxRuntime::run();
return 0;

}

After the runtime is initialized, dependencies must be ap-
pended to the multiply task. Even though they are declared
in the header file, we currently require them to be explicitly
registered in the code. Many dependencies will be declared
as simple read dependencies. For the systolic matrix-matrix
multiplication C = AB, however, more complicated depen-
dency actions are required. The A and B blocks move such that
on each iteration, a different node “owns” the matrix block.
This pattern we call a migrate dependency. A migrate
dependency initially performs the actions of a pull. However,
after the pull completes, the array on the source node is
deleted and the reader is registered as the new owner. The flow
of operations is shown schematically in Figure 4. The user
does not manage these details, however. The dependency is
just declared as a migrate dependency and the FOX runtime
performs all the operations.

On each iteration, the product block accumulates a new
contribution. It is therefore both an input (reading the old
values) and output (accumulating new values). It must also
be atomic, accumulating only one contribution at a time to
avoid inconsistencies. This dependency can be declared as
a reduce dependency and the FOX runtime will manage
all the read and atomic locking operations. Both migrate
and reduce actually have the same implementation in the
current version of FOX. When the tuple metadata is pulled, it
is no longer visible to other nodes, making the next operation
atomic.

The labeling of dependencies holds some similarities with
parallel algorithmic skeletons [30]. Common parallel data
movement patterns are encapsulated as library functions (or
macros, in this case) implemented entirely on tuple space oper-
ations. We are therefore free to implement as much “template”
functionality in the library, and all fault tolerance techniques
developed for tuple space frameworks automatically apply.

Once all dependencies are appended to tasks, we start the
first set of tasks by calling fox_initial_bcast. The FOX
runtime chooses the root of the broadcast. The broadcast takes
a function pointer as argument, which is conditionally invoked
on the chosen root process to read parameters (presumably
from some input file). Once the broadcast tasks have been
declared, the FOX runtime is started.

Starting work through an initial broadcast is designed to
ease the transition from existing MPI codes. In a init.cc
file, the user must implement the init function.
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Node%0%
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Node%2%

Data%(A,0,0)%

Metadata%(A,0,0):%
Loca4on%=%Node%1%

Pull%

(A)%

Node%0%

Node%1%

Node%2%

Data%(A,0,0)%

Metadata%(A,0,0):%
Loca4on%=%Node%1%

RDMA%Get%

(B)%

Node%0%

Node%1%

Node%2%

Data%(A,0,0)%

Metadata%(A,0,0):%
Loca4on%=%Node%2%

Data%(A,0,0)%Erase%

Put%

(C)%

Node%0%

Node%1%

Node%2%
Metadata%(A,0,0):%
Loca4on%=%Node%2%

Data%(A,0,0)%

(D)%
Fig. 4: Migrate dependency tuple actions. A) The tuple
metadata is pulled from Node 0. The tuple is no longer

globally visible. B) An RDMA get transfers data from Node
1 to Node 2. C) Tuple metadata is put back with the updated

location. The original location is erased. D) The data and
location metadata now refer to Node 2.

void
init_fxn(int me, int nworker,
const sysmxm_params& bcast_params)

{
...
}

The function prototype must include two extra integer parame-
ters me and nworker, which are essentially synonymous with
MPI_Comm_rank and MPI_Comm_size. In most use cases,
work should be over-decomposed, generating many tasks per
process. FOX allows the level of over decomposition to be
specified, potentially generating many virtual ranks per pro-
cess. This bears some similarity to adaptive MPI (AMPI) [31].
However, the notion of rank only applies to that single task
(function). Once a broadcast is received with parameters, the
initialize task can run essentially assuming it is MPI process
with rank me out of nworker processes. This defines an

initial partitioning of the work.
First, the initialization loops through its subset of matrix

blocks (shown in pseudocode) and then allocates and initializes
the data.

int first_iter = 0;
for (row, link) in my left matrix subset {

ArrayData data;
data.instantiate<double>(blocksize);
fox_put_migrate_dependency(

left_matrix_block,
’A’, first_iter, row, link, data);

}

The list of arguments passed to the put dependency func-
tion must match those declared in declare_deps.h. Type
matching is a compile-time check through the C++ template
system. The FOX runtime creates a tuple that describes the
matrix block and contains all necessary metadata. This tuple
is then put into the left_matrix_block tuple space. If
any read or pull operations are waiting on the tuple, their
event listeners will be signaled letting them know the tuple
has been put. Similar code is used for the right matrix blocks.
For subtle reasons, dependencies must be labeled by iteration
number. This would not be necessary if declared as a simple
read dependency, but is required for migrate dependencies.

For the product matrix blocks, we similarly run

for (row, col) in my product matrix subset {
ArrayData data;
data.instantiate<double>(blocksize);
fox_put_reduce_dependency(

product_matrix_block,
’C’, row, col, data);

}

Once the matrix blocks are created, we can create the initial
set of tasks for the first iteration. One could theoretically create
all tasks initially, but (as shown later), we choose to gradually
unroll the task graph iteration-by-iteration.

int first_iter = 0;
for (row, col) in my product matrix subset {

int link = (row+col) % nblocks;
fox_dependency(left_matrix_block)

left(’A’, iter, row, link);

fox_dependency(right_matrix_block)
right(’B’, iter, link, col);

fox_dependency(product_matrix_block)
product(’C’, row, col);

fox_compute(multiply,
first_iter, product, left, right);

}

Here we choose the appropriate dependencies for each prod-
uct block. We then create a multiply task by calling
fox_compute. This completes initialization, creating the
necessary data (input dependencies) and first task. The FOX
runtime can now begin scheduling multiplication tasks. The
task descriptor is just a tuple (or tuple of tuples). The tuple
is put into a task tuple space. As in CnC, the put operation
spawns a task.

To implement the multiply task, the user must implement
multiply_fxn with arguments matching those declared in
declare_deps.h.
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void multiply_fxn(
int iteration,
fox_dependency(product_matrix_block)& prod_tuple,
fox_dependency(left_matrix_block)& left_tuple,
fox_dependency(right_matrix_block)& right_tuple)

{
...

}

Upon entering the function, to actually execute the multi-
plication task, the dependency tuples must be unpacked.

char l_label = left_tuple.first();
int iter = left_tuple.second();
int row = left_tuple.third();
int link = left_tuple.fourth();
ArrayData& arr_data_left = left.value();
double* left_data = (double*) arr_data_left;

Before doing the matrix multiplication work, we further unroll
the task graph

int next_iter = iteration + 1;
if (next_iter < max_iter){

int next_link = (link+1) % nblocks;
fox_dependency(left_matrix_block)

next_left(’A’, next_iter, row, next_link);

fox_dependency(right_matrix_block)
next_right(’B’, next_iter, next_link, col);

fox_compute(multiply,
next_iter, product, next_left, next_right);

}

After unpacking the tuples to get the double* arrays, we
can perform the matrix multiplication work.

To terminate the code, FOX provides a terminate function
to signal the runtime that all tasks have been completed. This
essentially amounts to a binary tree barrier with each tree
node its own task. For more complicated applications, more
involved termination detection would be necessary, usually
involving voting schemes on a spanning tree [32], [33].

/** If the last iteration,
call terminate for
this product block */

if (next_iter == max_iter){
int idx = row * ncols + col;
fox_terminate(idx, nblocks);

}

We must separately signal termination for all blocks.
fox_terminate therefore receives two parameters: the
index of the current block and the total number of blocks.
Once all product blocks have signaled termination, the FOX
runtime broadcasts a terminate signal to all nodes and the code
finishes.

For 3x3 matrix multiplication, the generated task graph
is shown in Figure 5. Although the graph is structured in
levels by iterations, many opportunities for asynchronous
execution exist. The computation terminates by each matrix
block passing votes up a termination tree.

C. MPI Perturbation Theory

In the MPI algorithm outlined in IV-A, product blocks re-
mained local while the multiplying blocks were communicated
in a systolic array. Following the idea of “MPI perturbation

Fig. 5: The generated task graph for matrix multiplication
showing multiply and termination tasks.

theory”, given a simple scheduling heuristic, the FOX sched-
uler should replicate MPI in a fault-free environment. By
default, FOX uses a simple affinity scheduler, sending tasks
where the most dependencies are local (measured in number of
bytes). To replicate MPI in computing C = AB, the scheduler
should give preference to keep product blocks (C) local. The
simplest way to do this in FOX is a slight modification of the
dependency registration.

fox_append_weighted_reduce_dependency(
multiply, product_matrix_block, 3);

fox_append_migrate_dependency(
multiply,left_matrix_block);

fox_append_migrate_dependency(
multiply,right_matrix_block);

This assigns a heavier affinity for product blocks to the sched-
uler. When scheduling tasks, assuming no load imbalance
develops, the FOX scheduler will exactly recreate the systolic
array algorithm, keeping product blocks local and migrating
the input matrix blocks. The use of migrate dependencies
with weighting factors is a weaker version of persistent load
balancing [34]. After a product block is migrated to another
node, it is unlikely to be migrated again. When a chunk
of work is stolen, unless severe load imbalance persists, it
remains stolen across iterations. The thief (semi)-permanently
keeps work taken from the victim.

When faults occur, either from a node completely failing
or a node degrading in performance due to, e.g., overheating,
work must be rebalanced. The FOX task manager automat-
ically checks load balance through a “heartbeat.” At regular
periods, each node sends a tuple to its neighbors with load
balance information. By default, the load balance information
is a measure of thread idle time. If a node sees an idle
neighbor, it shares work, pushing tasks from its queue to the
neighbor (rather than work stealing in the opposite direction).
Custom logger classes can be used to make work sharing
decisions more application-specific. In the current work, we
have also tested an “iteration logger” that tracks the average
iteration number. If a node is working on an iteration much
lower than its neighbors, it will share work. The logger object
can be easily configured to send an arbitrary tuple on each
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heartbeat. Physically meaningful information can therefore be
used in work sharing. Although not done here, a node could
share the most useful work based on physical locality on a
grid learned from the tuple.

V. EXPERIMENTAL SETUP

Tests were run on Hopper, a Cray XE6 system at
the National Energy Research Scientific Computing Center
(NERSC) [35]. The Cray XE6 consists of dual-socket AMD
Magny-Cours compute nodes with a Gemini interconnect.
Each socket contains two NUMA regions (dies) with six
cores each for a total of 24 cores per node. All NUMA
regions are connected by HyperTransport links. The network
interface controller (NIC) is attached to the first die and all
other dies must traverse the HyperTransport links to reach the
NIC. Limited tests were run (192-768 cpu; 8-32 nodes). To
simplify implementation, MPI tests required a square number
of processors. One FOX process ran per socket with ten task
threads and two communication threads per process. MPI was
run both with one MPI process per core and also with one
process per NUMA region with OpenMP.

All communication in FOX directly used the Cray GNI
API for communication [36], [37]. On initialization, short
message (SMSG) mailboxes were created on each node. The
SMSG mailboxes allow single-trip, low-latency sends for
small (<512B) messages, which is optimal for sending many
small tuples. Large messages used RDMA gets, for which
RDMA descriptors were obtained from tuple reads. The SMSG
sends use a fast-memory access (FMA) pathway on the NIC
while RDMA transfers use a separate block-transfer engine
(BTE).

VI. RESULTS

We first compare performance of MPI to FOX (Figure 6).
In general, performance is very similar, being largely deter-
mined by computation. As mentioned above, the MPI code
does overlap communication and computation. For 192 cpu,
however, FOX performs better, suggesting the asynchronous
task framework achieves a better overlap of communication
and computation.

MPI is running 24 worker threads per node, which occasion-
ally pause to complete communication. FOX, however, only
runs 20 worker threads per node, dedicating four threads per
node to communication. Despite the extra workers, MPI does
not show an appreciable speedup. Likely this is due to memory
contention. 20 workers already saturates the memory and 24
workers provides little improvement.

To test how well the task framework can rebalance in
the presence of faults, we tested the performance of FOX
when one of the nodes becomes degraded. This was achieved
by simply repeating tasks N times, resulting in an N-fold
slowdown. Using only the default load balancer based on
idle time, FOX achieved mostly favorable results (Figure 7).
For a 2x slowdown, almost no performance degradation is
observed. Compared to MPI, which cannot rebalance, perfor-
mance is much better. For a 4x slowdown, little performance
loss is seen at 384 cpu. However, at 792 cpu, performance
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Fig. 6: Comparison of FOX matrix-multiplication
performance to MPI

drops significantly. Increasing the number of nodes lowers the
number of tasks per node. For 384 cpu, the problem is still
sufficiently over-decomposed to allow efficient rebalancing of
work. At 792 cpu, there are not enough tasks for the default
load balancer to intelligently rebalance.
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Fig. 7: Performance of FOX matrix-multiplication with
degraded nodes using default load balancer.

The degraded node experiment was repeated using a custom
logger (Figure 8). Load balance decisions were now based on
the average iteration number of the tasks. The degraded node
quickly falls behind and sees that its neighbors are working on
the next iteration. For a 2x slowdown, results are very similar
to the default load balancer. For a 4x slowdown, performance
is still excellent for 384 cpu. The iteration load balancer
performs better than the default load balancer for 768 cpu,
but is still unable to maintain the scaling.

VII. FAULT-OBLIVIOUS EXTENSIONS

We explore a few extensions for the fail-stop case in which a
node is completely lost, along with all tuple space data stored
on it. Some form of replication is therefore required to ensure
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Fig. 8: Performance of FOX matrix-multiplication with
degraded nodes using custom load balancer.

durability of the tuple space and array data. As mentioned
previously, FOX presents a task interface with specific depen-
dency types, but is constructed through tuple space operations.
Fault-tolerance therefore only needs to address tuple space
primitive operations, independent of what functionality is built
on top.

A. Tuple replication

The distributed hash table can easily be extended for repli-
cas, generalizing the hash function to generate N replicas
for each tuple. The primary concern when using replicas
is consistency and correctness. Program execution must be
linearizable [13]. Any parallel execution must be equivalent
to some serialized list of sequential operations. Two general
schemes are possible for replicating operations. First, a tuple
space operation is delivered to all replicas. Some voting proce-
dure is applied to ensure consistency and the elected tuple is
either written or returned. In the second method, a primary
replica is appointed. Tuple space operations are broadcast
to all replicas, but the primary mediates all operations to
ensure consistency. If the primary fails, one of the backups is
promoted. We are pursuing the second approach. Since tuple
spaces are already DHTs, load is distributed across the entire
machine. Additionally, because simple hash functions are used
to map tuples, electing new primaries can by implemented by
simply shifting the original hash.

B. Transactions

The most difficult fault-tolerance aspect is implementing
all-or-nothing transactions. As mentioned in the introduction,
methods based on atomic guarded statements (AGS) were
previously proposed [12] In FOX, data movement operations
(such as migrate) involve a sequence of tuple operations
that represent, in sum, a single transaction. If any step fails, all
steps should be reversed to avoid corrupted, intermediate state.
Read operations do not need to be tracked in transactions,
but put and pull operations must be made “reversible.”

In general, these operations must be tagged as transactions
and be aware of all participants. Until the transaction is
acknowledged, the new tuple state cannot be committed. If
a failure notification for a given node is received, all transac-
tions involving that node must be canceled. Because common
parallel operations are encapsulated in FOX library calls, most
users will not be troubled with transaction details.

C. Data replication

Different data resilience strategies are all compatible with
FOX, including persistent memory (NVRAM), in-memory
checkpoint, or even parity schemes. When ArrayData types
are put into the tuple space, a resilience callback must be ac-
tivated to back up the array. Because FOX emphasizes heavily
asynchronous execution, the latency of creating backups can
be at least partially hidden. On failure, the backup copy must
be used to restore the array data. As shown above, techniques
exist for making the tuple space itself resilient. Suppose we
create an array labeled as Tuple(0,1,2) referencing a
block of X, Y, Z grid points. A backup copy could be written to
NVRAM and the location stored in the tuple space, with the
modified label Tuple("nvram",0,1,2). If the primary
copy fails, the NVRAM backup can be retrieved from the
tuple space.

D. Work rebalancing

When a node fails, three options exist for recovery. The
node can be rebooted and reintegrated. Alternatively, a spare
node could be swapped in. Finally, the node could simply be
removed and work rebalanced across the remaining workers.
Each strategy comes with certain cost tradeoffs which will
need to be explored. While rebooting or swapping, the new
node will not be making any progress on its tasks. However,
the FOX runtime system may hide this problem via load bal-
ancing. When the node launches, depending on the heartbeat
mechanism, the runtime may recognize the node is behind its
neighbors and migrate work. When the node catches up, work
will migrate back.

VIII. CONCLUSIONS

We have presented the FOX tuple framework. Users interact
with a simple API for expressing tasks, dependencies, and
common parallel data movement patterns. Underneath, a C++
template system maps onto standard tuple space operations
from Linda. As HPC faces new resilience challenges in the
future, we are trying to maximally reuse established solutions
from the past. By constructing our task runtime on tuple
operations, we can utilize the large body of fault-tolerance
research that exists for tuple coordination languages. We have
tried to correct two important shortcomings relative to MPI:
communication costs and expressiveness. The FOX framework
matches MPI performance in the absence of faults and exhibits
almost no performance drop when a single node is degraded.
Future work will focus on larger scales and more applications.
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