SAND2011-0710C

An Implemented Architecture for Feature
Creation and General Reinforcement Learning

Brandon Rohrer

Sandia National Laboratories,

Intelligent Systems, Robotics, and Cybernetics Group,
Albuquerque, NM, USA
brrohre@sandia.gov
http://www.sandia.gov/~brrohre

Abstract. BECCA is a brain-emulating cognition and control architec-
ture. It was developed in order to perform general reinforcement learning,
that is, to enable unmodeled systems operating in unstructured environ-
ments to perform unfamiliar tasks. It accomplishes this through comple-
mentary feature creation and reinforcement learning (RL) algorithms.
Both of these algorithms are novel and have characteristics that have
not been demonstrated by previously existing algorithms. This paper
contains a description of BECCA and the algorithms that underlie it,
illustrated with a sample implementation.

Keywords: feature creation, deep learning, feature extraction, model-
based, reinforcement learning, robot, unstructured environment

1 Introduction

Creating a general learning machine has been one of the grand goals of artificial
intelligence (AI) since the field was born. Efforts to achieve this goal may be di-
vided into two categories. The first uses a depth-first approach, solving problems
that are complex, yet narrow in scope, such as playing chess. The assumption
underlying these efforts is that an effective solution to one such problem may
eventually be generalized to solve a broad set of problems. The second category
emphasizes breadth over depth, solving large classes of simple problems. The as-
sumption underlying these efforts is that a general solution to simple problems
may be scaled up to address more complex ones. The work described here falls
into the second category, focusing on breadth.

The motivating goal for this work is to find a solution to natural world
interaction, the problem of navigating, manipulating, and interacting with ar-
bitrary physical environments to achieve arbitrary goals. In this context, environ-
ment refers both to the physical embodiment of the agent and to its surroundings,
which may include humans and other embodied agents.

The agent design presented here is loosely based on the structure and func-
tion of the human brain and is referred to optimistically as a brain-emulating

2 Rohrer

cognition and control architecture (BECCA). The remainder of the paper con-
tains an algorithmic description of BECCA, an illustration of its operation on a
simple task, and a discussion of its capabilities and limitations with respect to
other learning algorithms.

2 Method

A BECCA agent interacts with the world by taking in actions, making observa-
tions, and receiving reward. (See Figure 1.) Formulated in this way, natural world
interaction is a general RL problem, [15] and BECCA is a potential solution.
Specifically, at each discrete time step, BECCA performs three functions:

— It reads in an observation, a vector o € R™|0 < 0; < 1.
— It receives a reward, a scalar r e R| — 1 <r < 1.

— It outputs an action, a vector a € R"|0 < a; < 1.

@G BECCAAgent (GG

feature reinforcement- d
based learner lor '

creator
1%}
A " c
c .0
® reward 5 |5
calculation 0 b
© [
(%]
O
fe—-©

Fig. 1. At each timestep, the BECCA agent completes one iteration of the sensing-
learning-planning-acting loop, consisting of six major steps: 1) Reading in observations
and reward. 2) Updating its feature set. 3) Expressing observations in terms of features.
4) Predicting likely outcomes based on an internal model. 5) Selecting an action based
on the expected reward of likely outcomes. 6) Updating its model.

Because BECCA is intended for use in a wide variety of environments and
tasks, it can make very few assumptions about them beforehand. Although it is
a model-based learner, it must learn an appropriate model through experience.
BECCA uses two key algorithms to do this: an unsupervised feature creation
algorithm (See Algorithm 1 and Figure 2.) and a tabular model construction
algorithm (See Algorithm 2 and Figure 3).

An Architecture for General Reinforcement Learning 3

Algorithm 1 FEATURE CREATOR

Input: observation vector
Output: feature_activity vector

1: form input vector by concatenating observation
and previous modified_feature_activity
: update estimate of correlation between inputs
if MAX(correlation) > threshold; then creates a new group
4: add the two input elements achieving the
maximum correlation to the new group
while NOT(stop_condition_met) do

S'.o.Jl\J

5:
6 find mean_correlation between each
remaining input and group members
7 if MAX(mean_correlation)> thresholds then
8: add the corresponding input element to the group
9: else stop_condition_met
10: for each group do
11: if MIN (COSINE DISTANCE (input, features))> thresholds then
12: add normalized input to set of features
13: for each feature do
14: feature_activity = feature - input
15: modified_feature_activity = WINNER-TAKE-ALL(feature_activity)

feature creator
0RO ‘
c 8 XD P >
o
5 8 b 2 EPEE E
s O % S =i S o >
8% group | § | feature ['S % ¥
o= inputs OO activity v
I~ ' 3
© modified feature activity YYY S

observations

Fig. 2. Block diagram of the feature creator, illustrating its operation. Numbered labels
refer to steps in Algorithm 1.

4 Rohrer

The feature creation algorithm breaks elements of the input into groups,
based on the estimates of correlation between them. Each group represents a
subspace of the input space. Features, unit vectors in each group subspace, are
created based on subsequent inputs. Subsequent inputs are also projected along
these features to find the feature activity at each time step, which is in turn
passed on to the reinforcement learner. In addition, the most active feature in
each group inhibits all others, and the resulting feature activity is fed back and
combined with the next observation to form the input for the next time step. The
recursive nature of the feature creation algorithm allows more complex features
to be created from combinations of simpler ones.

Algorithm 2 REINFORCEMENT LEARNER

Input: feature_activity vector
Output: action vector

1: attended_feature is the feature with MAX(feature_activity)
2: decay working_memory and add attended_feature
3: update model, consisting of cause—effect transition pairs

3.1: cause = NORMALIZE(previous_action + previous-working-memory)

3.2: effect = NORMALIZE (attended_feature)

3.3: effect_matches = all transition pairs in model with matching effect

3.4: if MAX(SIMILARITY (effect_matches, cause) < thresholdy)

3.5: add new cause—effect pair to the model

3.6: else

3.7: increment count of nearest cause—effect pair

4: get predictions from model

4.1: for each model entry do

4.2: weighted_effect = effect x LOG(count + 1) X
SIMILARITY (cause, working-memory)

4.3: expected_effect = NORMALIZE(weighted_effects)

5. select action

5.1: expected_reward = expected_effect x reward_map

5.2: find cause—effect pair associated with MAX(expected_reward)

5.2: find action associated with cause—effect pair

5.3: on a fraction, «, of time steps,

generate a random exploratory action
6: update reward_map using modified_feature_activity and reward

The reinforcement learner takes in feature activity and reward and selects an
action to execute. An attention filter selects the most salient feature. Working
memory is a weighted combination of several recent attended features. The at-
tended feature, previous action, and working memory are used to update the
model. Based on the current working memory, the model produces a set of
predictions. Predicted outcomes with high expected reward are found, and the

An Architecture for General Reinforcement Learning 5

reinforcement previous previous
learner ® working mem%y action
® < attended (= J ® -
k=R feature |.£ g 5 ® 52
2 [ol= S @ & | working predictions | T 3 N
2 ® 2 £ | memory 3 2
2)
© ©
L T3 reward
E E u @
2 = modified feature activity map
— —

reward

Fig. 3. Block diagram of the reinforcement learner, illustrating its operation. Numbered
labels refer to steps in Algorithm 2.

action associated with the highest reward is selected. Occasionally a random
exploratory action is substituted for the greedy action.

3 Results

A simple simulation was constructed to demonstrate BECCA in operation. (See
Figure 4.) An agent was allowed to pan a virtual camera along a mural. The
camera produced a 5 X 5 pixel virtual image of its field of view of the mu-
ral, with each pixel taking on a value between 0 (black) and 1 (white). (See
Figure 5.) Each observation comprised the 25 pixel values, v, as well as their
complement, 1 —v. The action vector represented four discrete movement steps
in each direction. When concatenated, each observation and action resulted in
a 58 element vector, which was passed to BECCA at each time step. BECCA
was rewarded for directing its “gaze” at a specific region in the center of the
mural. It learned to do this reasonably well after approximately 6000 time steps.
Complete MATLAB code for the simulation and BECCA implementation can
be found at [13].

Over ninety percent of the 6000 time steps was spent learning a feature rep-
resentation of the inputs. Most of this time was required for the correlation
estimate to reach a sufficiently high level to nucleate a group. The correlation
estimate was calculated on line and incrementally. In order to reduce noise and
avoid spurious groupings, it was incremented very gradually. After a groups was
created, features were learned within several time steps, and the system model
was learned in several hundred time steps after that. In fact, all aspects of learn-
ing (groups, features, and model) were ongoing throughout the simulation, but
individual aspects were most prominent at different times, demarcating stages
of learning.

6 Rohrer

a)
reward
0 1

_

uonisod

piemas abelane

4 6
time steps (thousands)

Fig.4. A one-dimensional visual tracking task. a) The reward signal as a function
of the agent’s gaze direction. b) The task environment. The white field with black
bar provided a visual world. The frame representing the agent’s field of view and the
direction of its gaze is also shown. The agent executed panning movements to adjust
its gaze direction. ¢) The agent’s gaze direction history. Fine lines indicate the region
resulting in maximum reward. After approximately 6000 time steps the gaze focused
more on the high reward region. d) Average reward per time step. After approximately
6000 time steps the average reward roughly doubled.
2 4 6 8 10 12

b) o}
I %*ﬁ
feature number

d)
T T T o
Fig. 5. Feature creation in the visual tracking task. a) BECCA’s visual field at each
time step spanned only a portion of the mural. b) Although the visual field was 200
x 200 pixels, it was pixelized into a 5 x 5 pixel array. ¢) Pixelization was achieved by
averaging the pixel values within each superpixel. d) The visual tracking task resulted
in twelve features. €) The reward associated with each feature in BECCA’s experience

corresponded closely to the reward expected, based on the reward-position function in
Figure 4a.

piemal
paradxs

o

An Architecture for General Reinforcement Learning 7

- T T

Fig. 6. The most common sequences recorded within the model. Each arrow indicates
the direction of gaze shift and results in image motion in the opposite direction.

4 Discussion

In the visual servoing task, BECCA demonstrated its ability to achieve better
than random performance on an RL task with a 58-dimensional observation-
action space, about which it had no prior knowledge.

The visual servoing task was trivial and has many straightforward solutions
that incorporate some knowledge of the task. For instance, after studying the
task, a human designer could hand-select useful features and rules for how to be-
have when those features were observed. The agent custom designed in this way
would likely learn faster and perform better than BECCA in a direct comparison,
but such a comparison would be misleading. In the case of the task-customized
agent, a human performed the feature creation and policy construction func-
tions that BECCA handled itself. Thus BECCA would not be compared to the
task-customized agent, but rather to the agent-designer team. While such a com-
parison might be interesting, it would not accomplish the goal of comparing the
learning agents themselves. In order to have a meaningful comparison, each agent
should have the same set of domain information available to it beforehand.

BECCA was designed to handle a set of natural interaction tasks that is
as broad as possible. The visual servoing task did not adequately illustrate this
breadth; it was selected as a means to illustrate BECCA’s operation as simply as
possible. It should be noted that, simple as it is, a problem with a 58-dimensional
state space is considered very challenging or infeasible for many learning meth-
ods.

The formulation of natural world interaction as a general RL problem was
selected to keep it relevant to physical agents, such as robots, performing a wide
variety of tasks in the physical world. Machine leaning methods focused on nar-
row aspects of learning, such as perception, classification, clustering, and learning
production rules, all require a supporting framework in order to be applied to
produce goal-directed behavior. An RL framework provides this. Specifically,
in the general RL problem formulation used here, only the dimensionality of
the observation and action spaces are known beforehand, and the agent seeks
to maximize its reward. This framework is roughly descriptive of human and
animal agents acting in their environments, suiting it to describe the natural
world interaction problem for machine agents as well. Within such a general RL
framework, more specialized algorithms may then be used in concert to most
effectively seek out reward.

While BECCA has been designed using insights gleaned from experimental
psychology and cognitive neuroscience, it is not intended to be a cognitive or

8 Rohrer

neural model of how a human or animal brain operates. BECCA incorporates
computational mechansisms, such as the dot product or winner-take-all, that
have plausible neuronal implementations, but there is no associated claim, ex-
press or implied, that the brain actually performs those calculations. Put simply,
BECCA'’s purpose is not to describe the brain, but to perform like it.

4.1 Related work: Unsupervised learning

BECCA’s feature creation algorithm is an example of an unsupervised learning
method, in that it learns a structure based only on the observed data. There are
many other examples of algorithms that do this automatically, although none
with the same properties as BECCA. Feature creation can be described as a
state space partitioning problem, where each region of the space corresponds to
a feature. Tree-based algorithms are particularly well-suited to this, and several
have been proposed. The Parti-Game algorithm [11] uses a greedy controller
to crawl through a partitioned state space. The G Algorithm [3], U-Tree [9],
Continuous U-Tree [16], AMPS [6], and decision trees of Pyeatt and Howe [12]
are all approaches used in conjunction with dynamic programming methods or
the popular temporal difference method, Q-learning [17], to estimate the value
function across the state space. Whenever a subspace’s value estimate is shown
to be inadequate, the subspace is divided. The G Algorithm handles binary data,
U-Trees handle discrete data, and Continuous U-Trees, AMPS, and Pyeatt and
Howe’s approach handle continuous data.

Taking a broader view, there are many unsupervised learning methods devel-
oped with different sets of assumptions, but BECCA’s feature creator provides a
novel collection of characteristics. It is on-line, meaning that it incorporates data
points one at a time and modifies its feature representation incrementally. It is
hierarchical in that it can use created features to construct still higher level fea-
tures. It is stable in the sense that feature definitions do not change once they are
created. In contrast to many unsupervised learning algorithms, BECCA’s fea-
ture creator does not assume the number of features that exist in the underlying
data. Once the dimensionality of the state space is defined, the feature creator
always starts from the same initial conditions, so there is no need to carefully
pick initial values for cluster parameters. Only three thresholding constants need
to be selected. Like other unsupervised learning methods in which the number
of clusters is not specified, the validity of the features found depends entirely on
the appropriateness of the measure of feature goodness. And, as with other un-
supervised learning algorithms of its class, there are no theoretical performance
guarantees.

4.2 Related work: Deep learning

The problem of hierachical feature creation is closely related to deep learning. [2]
Deep learning approaches seek to discover and exploit the underlying structure
of a world by creating higher level, lower-dimensional representations of the
system’s input space. Deep learning algorithms include Convolutional Neural

An Architecture for General Reinforcement Learning 9

Networks (CNN) [7], Deep Belief Networks (DBN) [4], and the Deep SpatioTem-
poral Inference Network (DeSTIN) [5]. Deep learning algorithms such as these
are alternative approaches, worthy of consideration for automatic concept acqui-
sition, although they differ somewhat from BECCA’s feature creator. CNNs are
designed to work with two-dimensional data, such as images, and they do not
apply to arbitrarily structured data, as BECCA does. By using several layers
of Restricted Boltzmann Machines, DBNs are capable of generating sophisti-
cated features that allow it to interpret novel inputs. However, they are typi-
cally applied to the supervised learning problem of discrimination, and require a
substantial amount of labeled data in order to be adequately trained. Whether
DBNSs can be applied to the unsupervised learning problem of feature creation is
unclear. DeSTIN incorporates both unsupervised and supervised learning meth-
ods and appears to be fully capable of hierarchical feature creation. It has been
published only recently; future papers describing its operation and performance
will allow a more detailed comparison with BECCA’s feature creator.

4.3 Related work: Reinforcement learning

There are several well known methods for solving the reinforcement learning
problem, that is, given state inputs and a reward at each timestep, choose ac-
tions that maximize the future reward. Some examples that have been applied
in agents include Q-learning [17], the Dyna architecture [14], Associative Mem-
ory [8], and neural-network-based techniques including Brain-Based Devices [10]
and CMAC [1]. BECCA’s reinforcement learner is another such algorithm. It
is on-line and model-based, meaning that as it accumulates experience it cre-
ates and refines an internal model of itself and its environment. It differs from
most previous methods in two ways. First, its internal model is not a first order
Markov model. Instead, by using cause-effect transition pairs in which the cause
is a compressed version of the agent’s recent state history, it creates a com-
pressed higher order Markov model. This potentially allows BECCA to learn
more sophisticated state dynamics and to record distinct sequences more natu-
rally. Second, BECCA’s reinforcement learning algorithm can handle a growing
state space. This is necessary because it must work in tandem with BECCA’s
feature creator, which continues to identify new features throughout the life of
the agent.

Acknowledgements

This work was supported by the Laboratory Directed Research and Development
program at Sandia National Laboratories. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-94AL85000.

10

Rohrer

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

J. Albus. A new approach to manipulator control: Cerebellar model articula-
tion controller (CMAC). Journal of Dynamic Systems, Measurement and Control,
97:220-227, 1975.

. L. Arel, D. C. Rose, and T. P. Karnowski. Deep machine learning—a new fron-

tier in artificial intelligence research. IEEE Computational Intelligence Magazine,
November 2010.

D. Chapman and L. P. Kaelbling. Input generalization in delayed reinforcement
learning. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence (IJCAI-91), pages 726-731, 1991.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527, 2006.

D. Rose I. Arel and B. Coop. Destin: A deep learning architecture with appli-
cation to high-dimensional robust pattern recognition. In Proc. AAAI Workshop
Biologically Inspired Cognitive Architectures (BICA), 2009.

M. J. Kochenderfer. Adaptive Modelling and Planning for Learning Intelligent
Behaviour. PhD thesis, University of Edinburgh, School of Informatics, 2006.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proc. IEEE, 86(11):2278-2324, 1998.

S. E. Levinson. Mathematical Models for Speech Technology. John Wiley and Sons,
Chichester, England, 2005. pp. 238-239.

A. K. McCallum. Reinforcement learning with selective perception and hidden state.
PhD thesis, University of Rochester, Computer Science Department, 1995.

J. L. McKinstry, G. M. Edelman, and J. L. Krichmar. A cerebellar model for
predicitive motor control tested in a brain-based device. Proceedings of the National
Academy of Sciences, 103(9):3387-3392, 2006.

A. W. Moore and C. G. Atkeson. The parti-game algorithm for variable resolu-
tion reinforcement learning in multidimensional state-spaces. Machine Learning,
21:199-233, 1995.

L. D. Pyeatt and A. E. Howe. Decision tree function approximation in reinforce-
ment learning. In Proceedings of the Third International Symposium on Adaptive
Systems: Evolutionary Computationand Probabalistic Graphical Models, pages 70—
77, 2001.

B. Rohrer. BECCA code page. http://www.sandia.gov/ brrohre/code.html, 2010.
R. S. Sutton. Planning by incremental dynamic programming, chapter Proceed-
ings of the Eighth International Workshop on Machine Learning, pages 353—-357.
Morgan Kaufmann, 1991.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, Massachusetts, 1998.

W. T. B. Uther and M. M. Veloso. Tree based discretization for continuous state
space reinforcement learning. In Proceedings of the Sixteenth National Conference
on Artificial Intelligence (AAAI-98), Madison, WI, 1998.

C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning,
8(3-4):279-292, May 1992.

