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Introduction 
•  What is a Monte Carlo method? 

•  Most generally, refers to a class of methods that 
use repeated random sampling to generate 
results 

•  By computing on a sufficiently large set of samples, we 
can make estimates of probabilities or averages for a 
much larger data set 

•  In molecular simulation, usually refers to 
“Metropolis Monte Carlo” method 

•  Idea of importance sampling is used to generate a 
“good” set of sample points 

•  Estimates can be computed for various ensemble-
average quantities from statistical mechanics 

A Simple Example 

•  Suppose we want to compute the area of 
a complex shape without knowing a 
formula,  
•  e.g. area inside blue circle but outside of red: 
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A Simple Example 
•  Monte Carlo strategy:  

•  Place points at random inside a square that circumscribes the 
blue circle, and count the fraction that lie inside 
 
 
 
 
 
 
 
 
 
 
 

 
 

•  For some cases (high dimensional spaces, complicated domains) 
this might be the most efficient way to approximate an integral 
 Points Inside

Total Pointsshape squareA A= ×

Another Integration Example 
•  We can compute an integral in 1D by sampling points at random in 

the domain 
•  E.g. compute the average value of a function on the domain [0,1] 
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Still Another Integration Example 
•  But some functions can be very difficult to integrate in 

this way, especially if they are very localized: 
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Importance Sampling 
•  Suppose we distribute our points unevenly in space, so 

that they’re more concentrated where the integrand is 
larger. This is called importance sampling 

•  Distribute points according to some probability density 
function w(x) that is large where f(x) is large 
•  Formally, we can do this through a change of 

variables: 
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The points are randomly distributed in u space, 
with uniform probability density, but clustered in x 
space where p(x) is large 



Importance Sampling 
•  For our earlier example: 
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Importance Sampling 
•  Unfortunately, computing the functions p(x) and u(x) requires that we 

can compute the integral of p(x), which is similar in difficulty to 
computing the original integral! 

•  For example, in our “simple” example: 
 
 
 
 

•  Importance sampling is useful IF we can write things in terms of a 
normalized distribution p(x) AND we have some way of generating 
sample points with this distribution 
•  The latter is what the Metropolis scheme will give us 

•  But why should we even care about computing integrals like this?  
And what does this have to do with molecular simulation? 
•  The answer requires some background in statistical mechanics… 
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Statistical Mechanics 
•  Given a set of N atoms in a volume V, assume that we can 

describe the state of the system entirely in terms of the 
positions and momenta of each atom: 
 
 
 
 
 
 
 
•  So, (r,p) gives the state of the system, where r and p are vectors 

(with length 3N) of all positions and momenta of all atoms 
•  Set of all possible r and p defines a phase space 

 
•  Fundamental question of statistical mechanics:  What is the 

probability of finding the system in a given state (r,p)? 
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Probability Density 
•  Define the probability density P(r,p) such that 

 
 

•  Suppose that we know the energy E of the system 
•  The Hamiltonian H(r,p) is the function that returns the system 

energy 
 

•  Basic assumption of statistical mechanics: 
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The Partition Function 

•  So, what is the value of the constant? 
•  Let’s make use of the fact that the probability density has 

to be normalized; i.e. the total probability of finding the 
state somewhere in phase space has to be unity: 
 
 
 
 
 

•  Define this normalization factor as the partition function 
Ω(N,V,E)"
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Microcanonical Ensemble, 
Entropy, and Temperature 

•  The set of states with a given N, V, and E is called the 
microcanonical ensemble 

•  The microcanonical ensemble partition function Ω(N,V,E) is a 
measure of the number of possible states with a fixed (N,V,E) 
•  Gives a measure of a surface in phase space: 

 
 

•  Note that the definition of the partition function sometimes 
includes a constant of proportionality to give correct units, but 
this is unimportant for our purposes here 

•  The entropy of a state is related to the microcanonical 
ensemble partition function 

where kB is Boltzmann’s constant  
•  The temperature is in turn related to the entropy: 
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The Canonical Ensemble 
•  Suppose that we know the 

temperature T of a system, not the 
energy E 

•  The ensemble of states with 
common N, V, and T is called the 
canonical ensemble 

•  How do we compute the probability 
of a given state (r,p) in the 
canonical ensemble? 

•  To do this, consider a small system 
(system 1) that is in thermal 
contact with a much larger system 
(system 2) 
•  Because they are in thermal 

contact, the two systems have the 
same temperature: T1=T2 

•  But the energy of system 2 is much 
larger 

1 2 

Canonical Ensemble 
•  Suppose the energy of the combined system is fixed: 

 

•  Note that the two systems can exchange energy, so 
neither E1 nor E2 alone is constant; both may 
fluctuate 

•  What’s the probability that system 1 has a given energy 
E1? 
•  Same as probability that system 2 has energy E1+2-E1 

•  Remember that Ω(E) is a measure of the number of 
states with a given energy, so:  
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Canonical Ensemble 
•  So we have: 

 
•  To compute this, remember that E>>E1, and 

expand the logarithm of Ω about E1=0: 
 
 
 
 
 
 
 
and so 
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Canonical Ensemble Partition 
Function 

•  Once again we can use the fact that PNVT must be 
normalized: 
 
 
 
 
 

•  Z(N,V,T) is the canonical ensemble partition function 
•  It’s common to define the quantity β =1/kBT, so that we 

can simply write: 
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Ensemble Averages 
•  Suppose we’re interested in knowing the expected value of 

some property of the system (e.g. the total energy or 
momentum) 

•  To compute this, we need to average over all of the possible 
states of the system (i.e. the ensemble) 
•  But some states are much more like than others, so we need to 

compute a weighted average, where each state is weighted by its 
probability 

•  For the canonical ensemble (N,V,T), this is: 
 
 
 
 
 
 
 
 
 

•  The bracket notation <A> denotes an ensemble average 
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The Metropolis Method 
•  For some molecular systems, the partition function and ensemble 

averages can be computed analytically 
•  E.g. ideal gases (with no potential energy), harmonic systems (linear 

spring potential energy) 
•  But usually, ensemble averages can only be computed numerically 
•  We can recognize the integral in the ensemble average as a good 

candidate for importance sampling, because it has the form: 
 
 
where P is already normalized: 
 
 
 
•  Note that this integral would be hard to compute without importance 

sampling, since P is very localized because of the exponential function 
•  So we need  a way of generating a large number of sample points in 

phase space (r,p) with a density P(r,p)  
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The Metropolis Method 
•  The Metropolis method generates a set of sample points 

through a simple algorithm using trial moves 
•  Let’s work with a simple example:  Consider a very simple 

system with only 4 possible states. 
 
 
 
 
 
 
 

•  Each state has a different energy: EA, EB, EC, ED  
•  The probability of finding the system in each state is related to 

the energy: 
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The Metropolis Method 
•  We want to generate a sequence of states, e.g. 

(A,C,C,A,B,C,D,D,D,A,…), so that the frequency of each state is 
proportional to the canonical ensemble probability for that state: 
 
 
 

•  Each item in the sequence can be thought of as a move from one 
state to another 
•  This includes the possibility that a “move” results in the system 

remaining in the same state, e.g. (A,A,A,…) 
•  How do we compute the probability of moving from one state to 

another? 
•  Call this the transition probability: 
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Detailed Balance 
•  Thought experiment:  Imagine a large number of simulations running 

simultaneously, with some number of simulations (NA, NB, NC, ND) 
simultaneously in each state 

•  For equilibrium, we need the number of simulations leaving state A to 
equal the number of simulations entering state A 
•  Remember that πAB is the transition probability from state A to B, 

so: 
 
 
 
 

•  It’s easiest to enforce this by imposing a much stronger condition: the 
number of moves going from state A to B is exactly canceled by the 
number from B to A (and likewise for all other pairs): 
 
 
•  This condition is called detailed balance  

•  Sometimes called microscopic reversibility 
•  If detailed balance is enforced, so is the more general condition 

above 
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Transition Probabilities 
•  Enforcing detailed balance gives us the ratio of transition probabilities: 

 
 
 
 
•  So, if the energy of state B is higher than state A (EB>EA), the ratio is 

less than 1 and the transition from B to A is more likely 
•  The system is more likely to move to lower energy 

•  In the Metropolis method, transitions are implemented in two steps: 
•  Pick a trial move, a transition from one state to another 
•  Randomly decide whether to accept the move (with some probability); if 

accepted, the move to the new state, but if rejected, remain in the old 
state 

•  Let αAB be the probability that the transition AB is chosen as the trial move 
•  Let aAB be the probability that this transition is accepted 
•  Then the total transition probability is the product of these two: 
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Acceptance Probabilities 
•  In many cases, we can choose the trial moves with symmetric 

probabilities, so that αAB=αBA  

•  So the ratio of transition probabilities is controlled by the ratio of 
acceptance probabilities: 
 
 
 

•  The method introduced by Metropolis et al. (1953) satisfies this ratio by 
choosing: 
 
 
 
•  So, a trial move is always accepted if it leads to a decrease in 

energy 
•  But there is still a finite probability of accepting a move if it 

increases the energy 
•  The acceptance probability goes to zero if β (EB-EA) is very large, 

i.e. if the energy change is large compared to kBT 
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Implementation 

•  To implement this, we need to generate of a random 
number if EB>EA 

•  Generate a random number r between 0 and 1 
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Summary: The Metropolis Algorithm 
 The Metropolis Monte Carlo algorithm: 
•  Suppose we want to compute some averaged quantity <F>, where F is a 

function of the state of the system. 
•  Specify the temperature of the system, and compute β =1/kBT 
•  Beginning from some known state: 

1.  Compute the energy of the current state, Ecurrent 

2.  Choose a new state at random; this is the trial move 
3.  Compute the energy of the new state, Enew 

4.  If Enew<=Ecurrent, accept the trial move (current state = new state) 
and go to step 6 

5.  Else, choose a random number r between 0 and 1 
•  If r < exp(-β(Enew-Ecurrent)), accept the trial move 
•  Else, reject the trial move 

6.  Compute F at the current state and update statistics 
7.  Go to step 1 

Metropolis Method for Molecular Simulation 
•  The algorithm is the same for a system of atoms as for our simple 

example 
•  Now, the state of the system is defined by positions and momenta, 

(r,p) 
•  A trial move from one state to another therefore changes the position 

or momentum of one or more particles 
•  Usually these are incremented by a random amount less than some 

maximum: 
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Metropolis Method for Molecular Simulation 

•  Momentum can be changed in a similar way 
•  However, very often we can work with position changes only.  Why? 

•  The energy function is usually separable into kinetic (depending only on 
momenta) and potential (depending only on positions) 

•  The statistics we care about are often only functions of positions, so: 
 
 
 
 
 
 
 
 
 
 

•  Algorithms proceed as before, but trial moves only change atom positions, 
and we can work with U(r) instead of E(r,p)  
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Example: A Very Early Application 
•  Metropolis et al., J Chem Phys 21:1087 (1953) 

•  Introduced the method 
•  Computed radial distribution function of rigid spheres 
•  Energy of rigid sphere system is either 0 (for no 

overlap between spheres) or infinity (if there’s 
overlap) 

Trial Moves 
•  We’ve already looked at translational moves, where 

the position of an atom is perturbed 
•  For molecular systems, orientational moves are also 

possible: 
•  Rotational: 
 

 
•  Internal molecular degrees of freedom: 

 
 

 
•  For mixed systems, identity swaps are also allowed: 

Trial Moves 
•  Other"important"points"about"trial"moves:"

–  Symmetry5
•  The"probability"of"choosing"(NOT"accepLng!)"a"trial"move"from"one"
state"to"another"must"equal"the"probability"of"the"reverse"move"
"
"
"

–  Ergodicity5
•  The"set"of"allowed"trial"moves"must"allow"all"regions"of"phase"space"
to"be"reached"in"a"finite"number"of"moves"from"any"point"

–  Step5size5
•  If"the"step"(e.g."the"translaLon"distance)"is"too"large,"the"energy"
change"may"be"so"large"that"very"few"moves"are"accepted"

•  If"the"step"size"is"too"small,"phase"space"is"explored"too"slowly"
•  Good"rule"of"thumb:"aim"for"about"50%"acceptance"of"trial"moves"

–  Equilibria,on5
•  The"iniLal"configuraLon"may"not"be"near"equilibrium,"so"as"in"MD,"
we"o`en"allow"the"system"some"Lme"to"reach"equilibrium"before"
taking"staLsLcs"

AB BAα α=



Monte Carlo in Other Ensembles 
•  We’ve been looking at the canonical ensemble: constant 

(N,V,T) 
•  Other ensembles can be used, by modifying the 

probability density (the partition function) and the types 
of trial moves 

•  Isobaric-Isothermal Ensemble 
•  Constant (N,P,T) – number, pressure and 

temperature 
•  Volume can change 

•  Grand-Canonical Ensemble 
•  Constant (µ,V,T) – chemical potential, volume and 

temperature 
•  Number of particles can change 

 

Isobaric-Isothermal Ensemble 
•  Constant (N,P,T)  
•  Trial moves: 

•  Particle displacements (translations and rotations) 
•  Volume changes 

•  Particle positions are written in terms of relative coordinate s: 
•  s remains constant when V (and L) are changed 

 
 

 
 

•  Probability distribution: 
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Grand Canonical Ensemble 
•  Constant (µ,V,T)  
•  Trial moves: 

•  Particle displacements (translations and rotations) 
•  Particle insertion and removal 

•  A particle is inserted at a random position, or a 
randomly selected particle is removed 

•  Probability distribution: 
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Example: Grand Canonical MC Simulation of 
Iodine Uptake in Metal-Organic Framework 
GCMC of I2 in ZIF (Zeolitic Imidazolate Framework) [P. 
Crozier] 

Crystal"structure"of"ZIF98"with"void"space"
shown"in"yellow."(Figure'credit:'Praveen'
K.'Thallapally)"



Further Reading 
•  Books 

•  D. Frenkel and B. Smit, Understanding Molecular 
Simulation, Academic Press, 1996. 

•  A great summary of the MC technique, with lots of 
details on statistical mechanics and MC in other 
ensembles 

•  Papers 
•  N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, 

A.H. Teller, and E. Teller, “Equation of state 
calculations by fast computing machines”, J. Chem 
Phys. 21(6):1087 

•  The original reference for the Metropolis method, 
and a very readable paper 

Homework 
•  Consider"a"19parLcle"system"with"a"harmonic"

spring,"with"spring"constant"K'
•  PotenLal"energy:"

"
"
"
"
"

•  Given"temperature"T,"and"β ="1/kBT'
'

1.  Compute"the"expected"mean"values"of"r"and"U"
analy,cally,"as"funcLons"of"K"and"β (assume"
the"canonical"ensemble)"

2.  Using"the"python"script"provided,"use"
Metropolis"Monte"Carlo"to"compute"<r>"and"
<U>"for"K=1.0,"and"β = 0.1,"0.2,"0.5,"1.0,"1.5,"
and"2.0.""Compare"with"the"analyLcal"values."
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Homework 
•  Syntax for the example problem:  mmc.py [K] [beta] 
•  Integrals of spherically symmetric functions can be rewritten in 

terms of r : 
 
 
 
 

•  The following integrals may be useful: 
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Script5
pair_style"lj/cut/coul/cut"10."
dielectric"80.0"
read_data"""""""relax.data"
group"NEUTRAL""type"1"
group"POSITIVE"type"2"
group"NEGATIVE"type"3"
pair_coeff"*"*"0.2381"3.405"
pair_modify"shi`"yes"
mass"""""""*"39.948"
Lmestep""""""""1.0"
fix"""""NVE"all"nve"
thermo"100"
thermo_style"custom"step"temp"pe"
compute5RDF5all5rdf5405251525252535

fix5RDF5all5ave/,me5100051510005c_RDF5file5
rdf.dat5mode5vector5

run"100000"
"
"
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•  Do"these"distribuLons"make"sense?"
•  Why"is"there"a"gap?"
•  Why"is"the"blue"curve"peaked?"
•  Why"are"the"curves"ordered"the"way"

they"are?"
•  Is"this"data"converged?"
•  Does"the"system"size"maner?"



BONUS5
•  Change"the"neutral"species"in"the"fluid"

system"for"a"water"model"like"TIP4P"and"
observe"the"differences"in"the"solvaLon"
structure"

•  Make"a"fluid"confined"by"two"walls."Will"
the"RDF"change?"Will"it"be"uniform?"

"
•  Observe"the"differences"in"point"defect"

structures"obtained"using"a"SLllinger9
Weber"potenLal"vs"Tersoff"

•  Reverse"the"loading"of"the"nanobeam","
will"the"response"change?"

•  Add"stress"as"an"output"does"it"tell"you"
anything?"

Lecture5115
Week"7:"Analyzing5Inhomogeneous5Systems55
•  IdenLficaLon"and"visualizaLon"of"defects"and"structures"
•  Metrics,"e.g."radial"distribuLon"funcLon,"common"neighbor"analysis,"

centrosymmetry"
•  Available"tools""
•  Homework:"CalculaLon"of"centrosymmetry"and"slip"vector"around"a"

defect"
Week"8":"Molecular5Dynamics5"
•  Newton’s"2nd"Law"
•  Time"integraLon"algorithms"(Verlet,"SHAKE,"Gear)"
•  Conserved"quanLLes"
•  Ensembles"(NVE,"NVT,"NPT,"NPH)"&"equaLons"of"moLon""
•  Thermostats,"e.g."Nose9Hoover"
•  IniLal"condiLons"and"velocity"distribuLons"
•  Homework:"NVT"average"of"pressure."
"
"
"

Reading5Sugges,ons5for5Lec.511!
•  Chapter"6"of"LeSar"
•  Chapter"4"of"Frenkel"&"Smit"
•  Chapter"3"&"6"of"Evans"&"Morriss"
•  hnp://en.wikipedia.org/wiki/Molecular_dynamics"
•  hnp://lammps.sandia.gov/"


