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Introduction A Simple Example
. W?Aat itS a Molrllte (?a”? metlhod?f o that « Suppose we want to compute the area of
* Most generally, refers to a class of methods tha - :
use re?peated )rlandom sampling to generate a complex shape without knowing a
results formula,

» By computing on a sufficiently large set of samples, we
can make estimates of probabilities or averages for a
much larger data set

* In molecular simulation, usually refers to
“Metropolis Monte Carlo” method

* Idea of importance sampling is used to generate a

“good” set of sample points

* Estimates can be computed for various ensemble-
average quantities from statistical mechanics

* e.g. area inside blue circle but outside of red:




Still Another Integration Example

* Place points at random inside a square that circumscribes the

A Simple Example

Monte Carlo strategy:

blue circle, and count the fraction that lie inside
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For some cases (high dimensional spaces, complicated domains)
this might be the most efficient way to approximate an integral
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shape —

» But some functions can be very difficult to integrate in
this way, especially if they are very localized:
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Another Integration Example

We can compute an integral in 1D by sampling points at random in

» E.g. compute the average value of a function on the domain [0,1]
(£ ()= fy f (x)a
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Importance Sampling

» Suppose we distribute our points unevenly in space, so
that they’re more concentrated where the integrand is
larger. This is called importance sampling

» Distribute points according to some probability density
function w(x) that is large where f(x) is large

» Formally, we can do this through a change of
variables: Let:

fl(x)=g(x)p(x) (£(x)=[,&(x)p(x)ax
firtas =1 R
P(x)=2(x) L

u(0)=0 zﬁzg(xf)
u(l)=1

The points are randomly distributed in u space,
with uniform probability density, but clustered in x
space where p(x) is large



Importance Sampling Importance Sampling

» Forour earlier example: » Unfortunately, computing the functions p(x) and u(x) requires that we
(051 can compute the integral of p(x), which is similar in difficulty to
f(x)=xe ™" computing the original integral!
o=5x10" + For example, in our “simple” example:
2, 2 erf
p(x)= A7 (4 is a normalization constant) u(x) =ﬁ:p(x')dx' =5t 2(17
X Zerf(—)
g(x)== 20
A B » Importance sampling is useful IF we can write things in terms of a
o wan 0 normalized distribution p(x) AND we have some way of generating
o asr sample points with this distribution
0s s * The latter is what the Metropolis scheme will give us
_os » But why should we even care about computing integrals like this?
os E And what does this have to do with molecular simulation?

» The answer requires some background in statistical mechanics...

40 60 80 100
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Statistical Mechanics Probability Density

Define the probability density P(r,p) such that

* Given a set of N atoms in a volume V, assume that we can P(r,p)drdp = Probability of finding state between

describe the state of the system entirely in terms of the (r,p) and (r+dr,p +dp)

positions and momenta of each atom: ’ ’
7; = position of atom i » Suppose that we know the energy E of the system
p, = momentum of atom » The Hamiltonian H(r,p) is the function that returns the system
m, = mass of atom i ener ¥ |p [

i H(r,p)=l2L+U(r)=E
v, = Pi velocity of atom i ) . L . 2 m
; * Basic assumption of statistical mechanics:
» So, (r,p) gives the state of the system, where r and p are vectors For a system with given number of atoms N

(with length 3N) of all positions and momenta of all atoms

» Set of all possible r and p defines a phase space volume V, and energy £, all states with

energy E are equally probable

» Fundamental question of statistical mechanics: What is the

tant, if =F
probability of finding the system in a given state (r,p)? Py, (r,p)= {COHS ant, if 17(r,p)

0, if H(r,p)=E

Subscript denotes system with given N, V and E



Microcanonical Ensemble,

The Partition Function
- Entropy, and Temperature

constant, 1 r,p ) ) )
Y " The sl ol tate w2 given .V and Efis calld e

Dirac delta functi ) . " . .
ac defta funeion * The microcanonical ensemble partition function Q(N,V,E) is a

So, what is the value of the constant? measure of the number of possible states with a fixed (N, V,E)

Let's make use of the fact that the probability density has . Gi i .
to be normalized; i.e. the total probability of ¥nd|ng ¥1 Gives a meaj\;JrVe Zf a sugace n phase ds;;ace.
state somewhere in phase space has to be unity: ff ( ) rap
Py (r.p)drdp =1 * Note that the definition of the partltlon function sometimes
ff v \[P ) 4Tap includes a constant of proportionality to give correct units, but
1 this is unimportant for our purposes here
ff,g( ~E)drdp * The entropy of a state is related to the microcanonical
ensemble partition function
Define this normalization factor as the partition function S(N,V,E)=k;nQ(N,V,E)
QN.V.E) Q(N.V,E) ff‘s E) drdp where kg is Boltzmann’s constant
s(H(r p) ) * The temperature is iri tur (—;gl ted to the entropy:
PNVE(r’p)=+ —_ =(‘_j
Q(N’ V,E) T aE N,V =const.
The Canonical Ensemble Canonical Ensemble

tsel#r?ggrsa%p: tTV\!)? Ia(ns(;vgtgﬁ, not the + Suppose the energy of the combined system is fixed:

energy E _ _

The ensemble of states with £, = By + E, = const.
common N, V, and T is called the
canonical ensemble

How do we compute the probability

* Note that the two systems can exchange energy, so
neither E, nor E, alone is constant; both may

of a given state (r,p) in the fluctuate

canonlcgl ensemble? » What's the probability that system 1 has a given energy T

To do this, consider a small system E.? 170
(system 1) that is in thermal 1 (NLVLE)= (N, W, E,)

contact with a much larger system
(system 2)

» Because they are in thermal
contact, the two systems have the
same temperature: T,=T, . # of states where system 2 has energy (E - El)

» But the energy of system 2 is much T = -
larger total # of possible states

Q(E_El) Q(E_El)

jf Q ( E- EI')dEI' constant

+ Same as probability that system 2 has energy E,,,-E,

* Remember that Q(E) is a measure of the number of
states with a given energy, so:




Canonical Ensemble Canonical Ensemble Partition

Function
* Sowe have: p, (rp): Q(E-E (r,p)) - Once again we can use the fact that Py, must be
normalized:
» To compute this, remember that E>>E,, and Py (0p) = exp _E(r.p)
expand the logarithm of Q about E,=0: R Z (N, T k,T
a
Q(E-E) =0 (E)- £ - (n(£)) Z(N..T)= ffexp(_ Ej:;’))drdp
_S(E)_E '
Tk, kT
S - * Z(N,V,T) is the canonical ensemble partition function
:Q(E_E')=exP(E)eXp(_kET) « It's common to define the quantity g =1/k;T, so that we
can simply write: {
and so E (r.p) Pyr (r,p)=Eexp(—/3E(r,p))
P\W(r,p)=Cexp(— T )
5 VA =ﬂ'exp(—/3’E(r,p))drdp
Ensemble Averages The Metropolis Method
» Suppose we're interested in knowing the expected value of . )
some property of the system (e.g. the total energy or * For some molecular systems, the partition function and ensemble
momentum) averages can be computed analytically
» To compute this, we need to average over all of the possible + E.g. ideal gases (with no potential energy), harmonic systems (linear
states of the system (i.e. the ensemble) spring potential energy) _
But some states are much more like than others, so we need to » But usually, ensemble averages can only be computed numerically
compute a weighted average, where each state is weighted by its « We can recognize the integral in the ensemble average as a good
probability candidate for importance sampling, because it has the form:

For the canonical ensemble (N, V,T), this is: <
A) =ﬂA(r,p)P(r,p)drdp
(4) =ffA(r’p)PNVT (r-p)drdp where P is already normalized:

=ffA(r,p)exp(—ﬂE(r,p))dl‘dP ﬂ'P(r,p)drdp=l

f eXp(—ﬁE(r,p))drdp
| » Note that this integral would be hard to compute without importance
_ —HA(r,p)exp(—/;’E(r,p))drdp sampling, since P is very Iocallized because of the exponential fun.ction.
Zz » Sowe need a way of generating a large number of sample points in
» The bracket notation <A> denotes an ensemble average phase space (r,p) with a density P(r,p)




The Metropolis Method

The Metropolis method generates a set of sample points
through a simple algorithm using trial moves

Let’'s work with a simple example: Consider a very simple
system with only 4 possible states.

D

Each state has a different energy: E,, Eg, E¢, Ep

The probability of finding the system in each state is related to

the energy:

exp(-BE,)

)= Sopt-pe)

Detailed Balance

Thought experiment: Imagine a large number of simulations running
simultaneously, with some number of simulations (N,, Ng, N¢, Np)
simultaneously in each state
For equilibrium, we need the number of simulations leaving state A to
equal the number of simulations entering state A
* Remember that 7,5 is the transition probability from state A to B,
SO:

number leaving state 4 = number entering state 4

NA”AB + NA”AC + NA”AD = NB”BA + NC”CA + ND”DA

It's easiest to enforce this by imposing a much stronger condition: the
number of moves going from state A to B is exactly canceled by the

number from B to A (and likewise for all other pairs):

» This condition is called detailed balance
» Sometimes called microscopic reversibility

» If detailed balance is enforced, so is the more general condition
above

The Metropolis Method

We want to generate a sequence of states, e.qg.
(A,C,C,A,B,C,D,D,D,A,...), so that the frequency of each state is
proportional to the canonlcal ensemble probability for that state:

N, _P(4) _exp(-AE,)
N P(8) " ew(opy) P AEE)

Each item in the sequence can be thought of as a move from one
state to another

» This includes the possibility that a “move” results in the system
remaining in the same state, e.g. (A,4,4,...)

How do we compute the probability of moving from one state to
another?

» Call this the transition probability:

7,5 = probability of moving from state A to state B
(assuming we start at state A)

Transition Probabilities
Enforcing detailed balance gives us the ratio of transition probabilities:

N, AT ap = Npllyy
I
» So, if the energy of state B is higher than state A (Eg>E,), the ratio is
less than 1 and the transition from B to A is more likely
» The system is more likely to move to lower energy
In the Metropolis method, transitions are implemented in two steps:
« Pick a trial move, a transition from one state to another

* Randomly decide whether to accept the move (with some probability); if
accepted, the move to the new state, but if rejected, remain in the old
state

Let a,g be the probability that the transition AB is chosen as the trial move
Let a,g be the probability that this transition is accepted
Then the total transition probability is the product of these two:

g = ypdyp



Acceptance Probabilities Implementation

* In many cases, we can choose the trial moves with symmetric
probabilities, so that a,g=ag,

» So the ratio of transition probabilities is controlled by the ratio of Ayp =
Ion | exp(-(
acceptance probabilities:

1, ifE, <E,
E,-E,)), ifE,>E,
s _ Qs =aﬂ=exp(—ﬁ(EB -E, ))

Ty Qpglpy  dpy

» To implement this, we need to generate of a random

+ The method introduced by Metropolis et al. (1953) satisfies this ratio by number if EB>EA
choosing: ' P <k * Generate a random number r between 0 and 1
> HEp =L,
= .
» {exp(—ﬁ(EB—EA)), ifE, >E,
accept move, ifr <exp(-B(E, -E,))
» So, a trial move is always accepted if it leads to a decrease in - reject move,  ifr= exp(—/)’(EB -EA))

energy

» But there is still a finite probability of accepting a move if it
increases the energy

+ The acceptance probability goes to zero if 8 (Eg-E,) is very large,
i.e. if the energy change is large compared to kgT

Summary: The Metropolis Algorithm Metropolis Method for Molecular Simulation
» The algorithm is the same for a system of atoms as for our simple
The Metropolis Monte Carlo algorithm: example

» Suppose we want to compute some averaged quantity <F>, where Fis a
function of the state of the system.

+ Specify the temperature of the system, and compute g=1/kgT
* Beginning from some known state:

1. Compute the energy of the current state, E_,on

2. Choose a new state at random; this is the trial move
3. Compute the energy of the new state, E,
4

* Now, the state of the system is defined by positions and momenta,
(rp)

» Atrial move from one state to another therefore changes the position
or momentum of one or more particles

» Usually these are incremented by a random amount less than some
maximum:

new
. If Enew<=Ecurrent, accept the trial move (current state = new state)
and go to step 6

5. Else, choose a random number r between 0 and 1
* If r<exp(-B(E,ewEcurent)), accept the trial move
» Else, reject the trial move
6. Compute F at the current state and update statistics
7. Goto step 1

Xnew = Xoua T g("a"dﬂm - 0.5)
L
Veew = You + E(random -0.5)

Zoow = Zota T %(mndom -0.5)




Metropolis Method for Molecular Simulation

Momentum can be changed in a similar way
However, very often we can work with position changes only. Why?
» The energy function is usually separable into kinetic (depending only on
momenta) and potential (depending only on positions)
» The statistics we care about are often only functions of positions, so:

(4(r) - ﬂ'A r)exp(-p(K (p)+U (r)))drdp
ﬂ'exp( B(K(p)+U (r)))drdp
U'A exp /]U(r))dr)(fexp( (p))dp)
(fexp(=pu (x))ar)(fexp(-pK (v)) o)
!A(r)exp( (r))dr

fexp -BU (r ))dr

Algorithms proceed as before, but trial moves only change atom positions,
and we can work with U(r) instead of E(r,p)

Trial Moves

We've already looked at translational moves, where
the position of an atom is perturbed

For molecular systems, orientational moves are also
possible:

« Rotational: /./' ‘

« Internal molecular degrees of freedom:

o

For mixed systems, identity swaps are also allowed:

RN

Example: A Very Early Application

» Metropolis et al., J Chem Phys 21:1087 (1953)
Introduced the method
» Computed radial distribution function of rigid spheres

Energy of rigid sphere system is either O (for no
overlap between spheres) or infinity (if there’s

Aty
< sl
lojs < do . =
(N = "'t-'l,
¥ ( oo i
ol L 1
ho=FEN R

3 Fi6. 5. The radial distribution function N for y=S5, , (A7)
=131966, K=15. The average of the extrapolated values of
A=l Ny in M-w)l. The resultant value of (PA/NET)—1 ja
AN /N (K — 1) or 6.43. Values after 16 cycles, ®; after 32, X;

F1c. 3. The close-packed arrangement for determining 4o. and after 48,

Trial Moves

e Other important points about trial moves:
— Symmetry
* The probability of choosing (NOT accepting!) a trial move from one
state to another must equal the probability of the reverse move

O yp =Upy

— Ergodicity
* The set of allowed trial moves must allow all regions of phase space
to be reached in a finite number of moves from any point
— Step size
* If the step (e.g. the translation distance) is too large, the energy
change may be so large that very few moves are accepted
 |f the step size is too small, phase space is explored too slowly
* Good rule of thumb: aim for about 50% acceptance of trial moves
— Equilibriation
* The initial configuration may not be near equilibrium, so as in MD,
we often allow the system some time to reach equilibrium before
taking statistics



Monte Carlo in Other Ensembles

We've been looking at the canonical ensemble: constant
(N,V,T)

Other ensembles can be used, by modifying the
probability density (the partition function{and the types
of trial moves

Isobaric-Isothermal Ensemble

* Constant (N,P,T) — number, pressure and
temperature

* Volume can change
Grand-Canonical Ensemble

» Constant (u,V,T) — chemical potential, volume and
temperature

* Number of particles can change

Grand Canonical Ensemble

» Constant (u,V,T)
» Trial moves:
+ Particle displacements (translations and rotations)
+ Particle insertion and removal
* A particle is inserted at a random position, or a
randomly selected particle is removed
* Probability distribution:

L &xp(BuN)

sz (l', N) AN

exp(—ﬂU(r))

2
A= _r = thermal de Broglie wavelength
2mmk,T

Isobaric-lsothermal Ensemble

» Constant (N,P,T)
« Trial moves:
+ Particle displacements (translations and rotations)
* Volume changes
* Particle positions are written in terms of relative coordinate s:
* s remains constant when V (and L) are changed
S, = z’
V=r

* Probability distribution:

Pyr (s,7) o exp(=B[U(s,V)+ PV =N~ V]

Example: Grand Canonical MC Simulation of
lodine Uptake in Metal-Organic Framework

GCMC of 12 in ZIF (Zeolitic Imidazolate Framework) [P.
Crozier]

“

A~ SN
~y & v-
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\-"' - :;
Crystal structure of ZIF-8 with void space

shown in yellow. (Figure credit: Praveen
K. Thallapally)

“—




Further Reading

* Books
e D. Frenkel and B. Smit, Understanding Molecular
Simulation, Academic Press, 1996.

* A great summary of the MC technique, with lots of
details on statistical mechanics and MC in other
ensembles

» Papers
* N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,
A.H. Teller, and E. Teller, “Equation of state
calculations by fast computing machines”, J. Chem
Phys. 21(6):1087

* The original reference for the Metropolis method,

and a very readable paper

Homework

» Syntax for the example problem: mmc.py [K] [betal

» Integrals of spherically symmetric functions can be rewritten in
terms of r:

fj:fj:fj:f(x’%Z)dxdydz =ﬁ:w4ﬁr2f(r)dr

» The following integrals may be useful:

f+°c4mf2 exp —l/J’KrZ dr = 2%

0 2 LK
8

T K

3\/5”3/2

ﬂ5/2K3/2

3/2

ﬁ:m 471 exp ( —%/J’KFZ ) dr

ﬁ:w 2Kt exp(—%[;’l{r2 )dr =

Homework

e Consider a 1-particle system with a harmonic
spring, with spring constant K

* Potential energy:
1
Ulr)=—
(r)=5

/ K ;e /xz+y2+22

* Given temperature T, and 8= 1/k,T

Kr?

(x.7.2)

1. Compute the expected mean values of rand U
analytically, as functions of K and 3 (assume
the canonical ensemble)

2. Using the python script provided, use
Metropolis Monte Carlo to compute <r>and
<U>for K=1.0,and f=0.1,0.2,0.5,1.0, 1.5,
and 2.0. Compare with the analytical values.

Script
pair_style lj/cut/coul/cut 10. ‘ ‘
dielectric 80.0
read_data  relax.data
group NEUTRAL type 1
group POSITIVE type 2
group NEGATIVE type 3
pair_coeff * * 0.2381 3.405
pair_modify shift yes
mass  *39.948
timestep 1.0

PROBABILITY

fix NVEall nve RADIUS
thermo 100

* Do these distributions make sense?
thermo_style custom step temp pe

* Why is there a gap?
compute RDF allrdf 40212223 « Why is the blue curve peaked?
fix RDF all ave/time 1000 1 1000 c_RDF file * Why are the curves ordered the way

rdf.dat mode vector
run 100000

they are?
Is this data converged?
Does the system size matter?



* Change the neutral species in the fluid 54

* Make a fluid confined by two walls. Will

* Observe the differences in point defect

* Reverse the loading of the nanobeam,

* Add stress as an output does it tell you

BONUS e

system for a water model like TIP4P and
observe the differences in the solvation
structure

the RDF change? Will it be uniform?
structures obtained using a Stillinger-
Weber potential vs Tersoff

will the response change?

anything?

Reading Suggestions for Lec. 11

Chapter 6 of LeSar
Chapter 4 of Frenkel & Smit
Chapter 3 & 6 of Evans & Morriss

http://en.wikipedia.org/wiki/Molecular_dynamics

http://lammps.sandia.gov/

WIKIPEDIA

The Free Encyclopedia

| INTRODUCTION TO

Computational
Materials

Lecture 11

Week 7: Analyzing Inhomogeneous Systems

Identification and visualization of defects and structures

Metrics, e.g. radial distribution function, common neighbor analysis,
centrosymmetry

Available tools

Homework: Calculation of centrosymmetry and slip vector around a
defect

Week 8 : Molecular Dynamics

Newton’s 2" Law

Time integration algorithms (Verlet, SHAKE, Gear)
Conserved quantities

Ensembles (NVE, NVT, NPT, NPH) & equations of motion
Thermostats, e.g. Nose-Hoover

Initial conditions and velocity distributions

Homework: NVT average of pressure.



