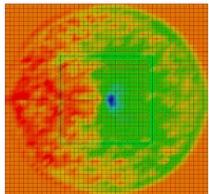


October 2013-January 2014

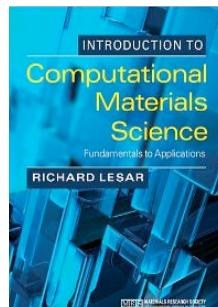
ESP900: Atomistic/Molecular Simulation:

Lecture 10: Monte Carlo methods



Instructor: Reese Jones
rjones@sandia.gov
 (925) 294-4744

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



Introduction

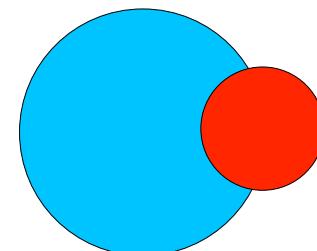
- What is a Monte Carlo method?
 - Most generally, refers to a class of methods that use repeated random sampling to generate results
 - By computing on a sufficiently large set of samples, we can make estimates of probabilities or averages for a much larger data set
 - In molecular simulation, usually refers to “Metropolis Monte Carlo” method
 - Idea of *importance sampling* is used to generate a “good” set of sample points
 - Estimates can be computed for various ensemble-average quantities from statistical mechanics

Outline

- Introduction
- Monte Carlo integration and importance sampling
- Statistical mechanics background
- The Metropolis Monte Carlo method
- Trial moves
- Monte Carlo in various ensembles

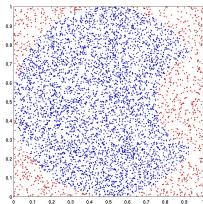
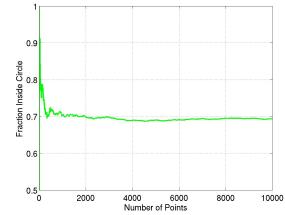
A Simple Example

- Suppose we want to compute the area of a complex shape without knowing a formula,
 - e.g. area inside blue circle but outside of red:



A Simple Example

- Monte Carlo strategy:
 - Place points at random inside a square that circumscribes the blue circle, and count the fraction that lie inside



- For some cases (high dimensional spaces, complicated domains) this might be the most efficient way to approximate an integral

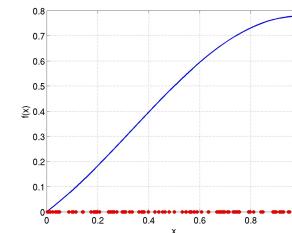
$$A_{shape} = \frac{\text{Points Inside}}{\text{Total Points}} \times A_{square}$$

Another Integration Example

- We can compute an integral in 1D by sampling points at random in the domain
 - E.g. compute the average value of a function on the domain $[0, 1]$

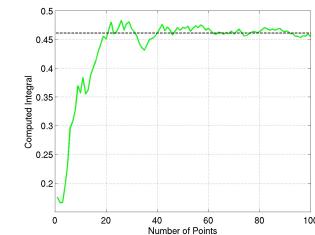
$$\langle f(x) \rangle = \int_0^1 f(x) dx$$

$$\approx \frac{1}{N} \sum_{i=1}^N f(x_i)$$



$$f(x) = xe^{-(x-0.5)^2/\sigma^2}$$

$$\sigma = 1$$

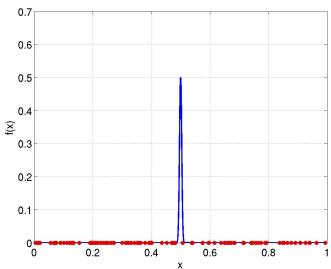
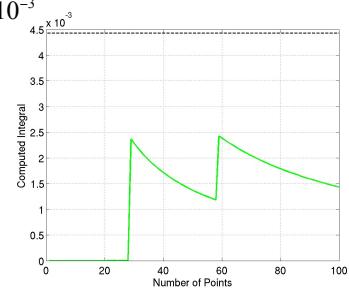


Still Another Integration Example

- But some functions can be very difficult to integrate in this way, especially if they are very localized:

$$f(x) = xe^{-(x-0.5)^2/\sigma^2}$$

$$\sigma = 5 \times 10^{-3}$$



Importance Sampling

- Suppose we distribute our points unevenly in space, so that they're more concentrated where the integrand is larger. This is called **importance sampling**
- Distribute points according to some probability density function $w(x)$ that is large where $f(x)$ is large

- Formally, we can do this through a change of variables: Let:

$$\begin{aligned} f(x) &= g(x)p(x) & \langle f(x) \rangle &= \int_0^1 g(x)p(x)dx \\ \int_0^1 p(x)dx &= 1 & &= \int_0^1 g(x)du \\ p(x) &= \frac{du}{dx}(x) & g(x) &= \frac{1}{\int_0^1 p(x)dx} \\ u(0) &= 0 & & \approx \frac{1}{N} \sum_{i=1}^N g(x_i) \\ u(1) &= 1 & & \end{aligned}$$

The points are randomly distributed in u space, with uniform probability density, but clustered in x space where $p(x)$ is large

Importance Sampling

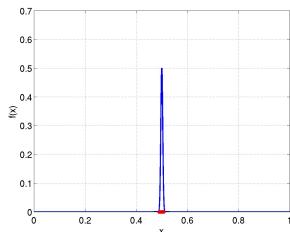
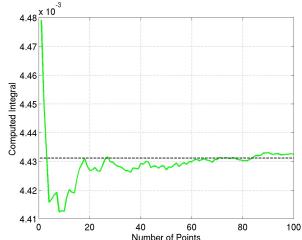
- For our earlier example:

$$f(x) = xe^{-(x-0.5)^2/\sigma^2}$$

$$\sigma = 5 \times 10^{-3}$$

$$p(x) = Ae^{-(x-0.5)^2/\sigma^2} \quad (A \text{ is a normalization constant})$$

$$g(x) = \frac{x}{A}$$



Importance Sampling

- Unfortunately, computing the functions $p(x)$ and $u(x)$ requires that we can compute the integral of $p(x)$, which is similar in difficulty to computing the original integral!
- For example, in our “simple” example:

$$u(x) = \int_0^x p(x') dx' = \frac{1}{2} + \frac{\operatorname{erf}\left(\frac{2x-1}{2\sigma}\right)}{2\operatorname{erf}\left(\frac{1}{2\sigma}\right)}$$

- Importance sampling is useful IF we can write things in terms of a normalized distribution $p(x)$ AND we have some way of generating sample points with this distribution
 - The latter is what the **Metropolis scheme** will give us
- But why should we even care about computing integrals like this? And what does this have to do with molecular simulation?
 - The answer requires some background in statistical mechanics...

Statistical Mechanics

- Given a set of N atoms in a volume V , assume that we can describe the **state** of the system entirely in terms of the positions and momenta of each atom:

r_i = position of atom i

p_i = momentum of atom i

m_i = mass of atom i

$v_i = \frac{p_i}{m_i}$ = velocity of atom i

- So, (\mathbf{r}, \mathbf{p}) gives the state of the system, where \mathbf{r} and \mathbf{p} are vectors (with length $3N$) of all positions and momenta of all atoms
- Set of all possible \mathbf{r} and \mathbf{p} defines a **phase space**
- Fundamental question of statistical mechanics: What is the probability of finding the system in a given state (\mathbf{r}, \mathbf{p}) ?

Probability Density

- Define the *probability density* $P(\mathbf{r}, \mathbf{p})$ such that

$$P(\mathbf{r}, \mathbf{p}) d\mathbf{r} d\mathbf{p} = \text{Probability of finding state between } (\mathbf{r}, \mathbf{p}) \text{ and } (\mathbf{r} + d\mathbf{r}, \mathbf{p} + d\mathbf{p})$$

- Suppose that we know the energy E of the system
 - The **Hamiltonian** $H(\mathbf{r}, \mathbf{p})$ is the function that returns the system energy

$$H(\mathbf{r}, \mathbf{p}) = \frac{1}{2} \sum_{i=1}^N \frac{|\mathbf{p}_i|^2}{m_i} + U(\mathbf{r}) = E$$

- Basic assumption of statistical mechanics:

For a system with given number of atoms N , volume V , and energy E , **all states with energy E are equally probable**

$$P_{NVE}(\mathbf{r}, \mathbf{p}) = \begin{cases} \text{constant, if } H(\mathbf{r}, \mathbf{p}) = E \\ 0, \quad \text{if } H(\mathbf{r}, \mathbf{p}) \neq E \end{cases}$$

Subscript denotes system with given N , V and E

The Partition Function

$$P_{NVE}(\mathbf{r}, \mathbf{p}) = \begin{cases} \text{constant, if } H(\mathbf{r}, \mathbf{p}) = E \\ 0, \quad \text{if } H(\mathbf{r}, \mathbf{p}) \neq E \end{cases} = C \delta(H(\mathbf{r}, \mathbf{p}) - E)$$

Dirac delta function

- So, what is the value of the constant?
- Let's make use of the fact that the probability density has to be normalized; i.e. the total probability of finding the state *somewhere* in phase space has to be unity:

$$\iint P_{NVE}(\mathbf{r}, \mathbf{p}) d\mathbf{r} d\mathbf{p} = 1$$

$$\Rightarrow C = \frac{1}{\iint \delta(H(\mathbf{r}, \mathbf{p}) - E) d\mathbf{r} d\mathbf{p}}$$

- Define this normalization factor as the **partition function** $\Omega(N, V, E)$

$$\Omega(N, V, E) = \iint \delta(H(\mathbf{r}, \mathbf{p}) - E) d\mathbf{r} d\mathbf{p}$$

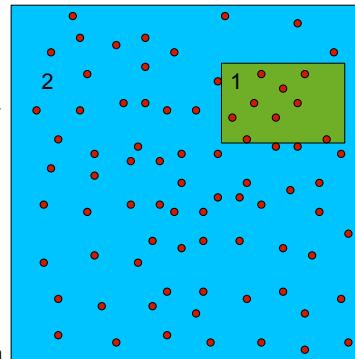
$$P_{NVE}(\mathbf{r}, \mathbf{p}) = \frac{\delta(H(\mathbf{r}, \mathbf{p}) - E)}{\Omega(N, V, E)}$$

Microcanonical Ensemble, Entropy, and Temperature

- The set of states with a given N , V , and E is called the **microcanonical ensemble**
- The microcanonical ensemble partition function $\Omega(N, V, E)$ is a measure of the number of possible states with a fixed (N, V, E)
 - Gives a measure of a surface in phase space:
- Note that the definition of the partition function sometimes includes a constant of proportionality to give correct units, but this is unimportant for our purposes here
- The **entropy** of a state is related to the microcanonical ensemble partition function $S(N, V, E) = k_B \ln \Omega(N, V, E)$ where k_B is Boltzmann's constant
- The **temperature** is in turn related to the entropy: $\frac{1}{T} = \left(\frac{\partial S}{\partial E} \right)_{N, V = \text{const.}}$

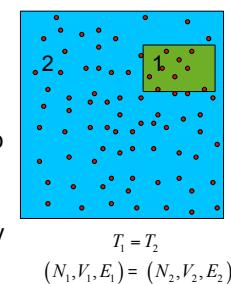
The Canonical Ensemble

- Suppose that we know the temperature T of a system, not the energy E
- The ensemble of states with common N , V , and T is called the **canonical ensemble**
- How do we compute the probability of a given state (\mathbf{r}, \mathbf{p}) in the canonical ensemble?
- To do this, consider a small system (system 1) that is in thermal contact with a much larger system (system 2)
 - Because they are in thermal contact, the two systems have the same temperature: $T_1 = T_2$
 - But the energy of system 2 is much larger



Canonical Ensemble

- Suppose the energy of the combined system is fixed: $E_{1+2} = E_1 + E_2 = \text{const.}$
- Note that the two systems can exchange energy, so neither E_1 nor E_2 alone is constant; both may fluctuate
- What's the probability that system 1 has a given energy E_1 ?
 - Same as probability that system 2 has energy $E_{1+2} - E_1$
 - Remember that $\Omega(E)$ is a measure of the number of states with a given energy, so:



$$P_{NVT} = \frac{\# \text{ of states where system 2 has energy } (E - E_1)}{\text{total } \# \text{ of possible states}}$$

$$= \frac{\Omega(E - E_1)}{\int_0^E \Omega(E - E'_1) dE'_1} = \frac{\Omega(E - E_1)}{\text{constant}}$$

Canonical Ensemble

- So we have: $P_{NVT}(\mathbf{r}, \mathbf{p}) \propto \Omega(E - E_1(\mathbf{r}, \mathbf{p}))$
- To compute this, remember that $E \gg E_1$, and expand the logarithm of Ω about $E_1=0$:

$$\begin{aligned} \ln \Omega(E - E_1) &\approx \ln \Omega(E) - E_1 \frac{\partial}{\partial E} (\ln \Omega(E)) \\ &= \frac{S(E)}{k_B} - \frac{E_1}{k_B T} \\ \Rightarrow \Omega(E - E_1) &= \exp\left(\frac{S}{k_B}\right) \exp\left(-\frac{E_1}{k_B T}\right) \end{aligned}$$

and so

$$P_{NVT}(\mathbf{r}, \mathbf{p}) = C \exp\left(-\frac{E_1(\mathbf{r}, \mathbf{p})}{k_B T}\right)$$

Canonical Ensemble Partition Function

- Once again we can use the fact that P_{NVT} must be normalized:

$$\begin{aligned} P_{NVT}(\mathbf{r}, \mathbf{p}) &= \frac{1}{Z(N, V, T)} \exp\left(-\frac{E(\mathbf{r}, \mathbf{p})}{k_B T}\right) \\ Z(N, V, T) &= \iint \exp\left(-\frac{E(\mathbf{r}, \mathbf{p})}{k_B T}\right) d\mathbf{r} d\mathbf{p} \end{aligned}$$

- $Z(N, V, T)$ is the **canonical ensemble partition function**
- It's common to define the quantity $\beta = 1/k_B T$, so that we can simply write:

$$\begin{aligned} P_{NVT}(\mathbf{r}, \mathbf{p}) &= \frac{1}{Z} \exp(-\beta E(\mathbf{r}, \mathbf{p})) \\ Z &= \iint \exp(-\beta E(\mathbf{r}, \mathbf{p})) d\mathbf{r} d\mathbf{p} \end{aligned}$$

Ensemble Averages

- Suppose we're interested in knowing the expected value of some property of the system (e.g. the total energy or momentum)
- To compute this, we need to average over all of the possible states of the system (i.e. the ensemble)
 - But some states are much more likely than others, so we need to compute a *weighted* average, where each state is weighted by its probability
 - For the canonical ensemble (N, V, T) , this is:

$$\begin{aligned} \langle A \rangle &= \iint A(\mathbf{r}, \mathbf{p}) P_{NVT}(\mathbf{r}, \mathbf{p}) d\mathbf{r} d\mathbf{p} \\ &= \frac{\iint A(\mathbf{r}, \mathbf{p}) \exp(-\beta E(\mathbf{r}, \mathbf{p})) d\mathbf{r} d\mathbf{p}}{\iint \exp(-\beta E(\mathbf{r}, \mathbf{p})) d\mathbf{r} d\mathbf{p}} \\ &= \frac{1}{Z} \iint A(\mathbf{r}, \mathbf{p}) \exp(-\beta E(\mathbf{r}, \mathbf{p})) d\mathbf{r} d\mathbf{p} \end{aligned}$$

- The bracket notation $\langle A \rangle$ denotes an ensemble average

The Metropolis Method

- For some molecular systems, the partition function and ensemble averages can be computed analytically
 - E.g. ideal gases (with no potential energy), harmonic systems (linear spring potential energy)
- But usually, ensemble averages can only be computed numerically
- We can recognize the integral in the ensemble average as a good candidate for importance sampling, because it has the form:

$$\langle A \rangle = \iint A(\mathbf{r}, \mathbf{p}) P(\mathbf{r}, \mathbf{p}) d\mathbf{r} d\mathbf{p}$$

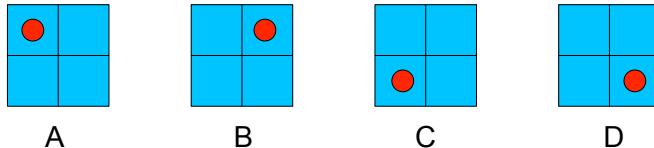
where P is already normalized:

$$\iint P(\mathbf{r}, \mathbf{p}) d\mathbf{r} d\mathbf{p} = 1$$

- Note that this integral would be hard to compute without importance sampling, since P is very localized because of the exponential function
- So we need a way of generating a large number of sample points in phase space (\mathbf{r}, \mathbf{p}) with a density $P(\mathbf{r}, \mathbf{p})$

The Metropolis Method

- The Metropolis method generates a set of sample points through a simple algorithm using **trial moves**
- Let's work with a simple example: Consider a very simple system with only 4 possible states.



- Each state has a different energy: E_A, E_B, E_C, E_D
- The probability of finding the system in each state is related to the energy:

$$P(A) = \frac{\exp(-\beta E_A)}{\sum_i \exp(-\beta E_i)}$$

The Metropolis Method

- We want to generate a sequence of states, e.g. $(A, C, C, A, B, C, D, D, D, A, \dots)$, so that the frequency of each state is proportional to the canonical ensemble probability for that state:

$$\frac{N_A}{N_B} = \frac{P(A)}{P(B)} = \frac{\exp(-\beta E_A)}{\exp(-\beta E_B)} = \exp(-\beta(E_A - E_B))$$

- Each item in the sequence can be thought of as a move from one state to another
 - This includes the possibility that a "move" results in the system remaining in the same state, e.g. (A, A, A, \dots)
- How do we compute the probability of moving from one state to another?
 - Call this the **transition probability**:

π_{AB} = probability of moving from state A to state B
(assuming we start at state A)

Detailed Balance

- Thought experiment: Imagine a large number of simulations running simultaneously, with some number of simulations (N_A, N_B, N_C, N_D) simultaneously in each state
- For equilibrium, we need the number of simulations leaving state A to equal the number of simulations entering state A
 - Remember that π_{AB} is the transition probability from state A to B, so:

$$\text{number leaving state } A = \text{number entering state } A$$

$$N_A \pi_{AB} + N_A \pi_{AC} + N_A \pi_{AD} = N_B \pi_{BA} + N_C \pi_{CA} + N_D \pi_{DA}$$

- It's easiest to enforce this by imposing a much stronger condition: the number of moves going from state A to B is exactly canceled by the number from B to A (and likewise for all other pairs):

$$N_A \pi_{AB} = N_B \pi_{BA}$$

- This condition is called **detailed balance**
 - Sometimes called **microscopic reversibility**
- If detailed balance is enforced, so is the more general condition above

Transition Probabilities

- Enforcing detailed balance gives us the ratio of transition probabilities:

$$\frac{N_A \pi_{AB}}{N_B \pi_{BA}} = \frac{N_B \pi_{BA}}{N_A \pi_{AB}} = \frac{\exp(-\beta E_B)}{\exp(-\beta E_A)} = \exp(-\beta(E_B - E_A))$$

- So, if the energy of state B is higher than state A ($E_B > E_A$), the ratio is less than 1 and the transition from B to A is more likely
- The system is more likely to move to lower energy
- In the Metropolis method, transitions are implemented in two steps:
 - Pick a trial move, a transition from one state to another
 - Randomly decide whether to accept the move (with some probability); if accepted, the move to the new state, but if rejected, remain in the old state
- Let α_{AB} be the probability that the transition AB is chosen as the trial move
- Let a_{AB} be the probability that this transition is accepted
- Then the total transition probability is the product of these two:

$$\pi_{AB} = \alpha_{AB} a_{AB}$$

Acceptance Probabilities

- In many cases, we can choose the trial moves with symmetric probabilities, so that $\alpha_{AB} = \alpha_{BA}$
- So the ratio of transition probabilities is controlled by the ratio of acceptance probabilities:

$$\frac{\pi_{AB}}{\pi_{BA}} = \frac{\alpha_{AB}a_{AB}}{\alpha_{BA}a_{BA}} = \frac{a_{AB}}{a_{BA}} = \exp(-\beta(E_B - E_A))$$

- The method introduced by Metropolis et al. (1953) satisfies this ratio by choosing:

$$a_{AB} = \begin{cases} 1, & \text{if } E_B \leq E_A \\ \exp(-\beta(E_B - E_A)), & \text{if } E_B > E_A \end{cases}$$

- So, a trial move is always accepted if it leads to a decrease in energy
- But there is still a finite probability of accepting a move if it increases the energy
- The acceptance probability goes to zero if $\beta(E_B - E_A)$ is very large, i.e. if the energy change is large compared to $k_B T$

Implementation

$$a_{AB} = \begin{cases} 1, & \text{if } E_B \leq E_A \\ \exp(-\beta(E_B - E_A)), & \text{if } E_B > E_A \end{cases}$$

- To implement this, we need to generate of a random number if $E_B > E_A$
 - Generate a random number r between 0 and 1

$$\rightarrow \begin{cases} \text{accept move,} & \text{if } r < \exp(-\beta(E_B - E_A)) \\ \text{reject move,} & \text{if } r \geq \exp(-\beta(E_B - E_A)) \end{cases}$$

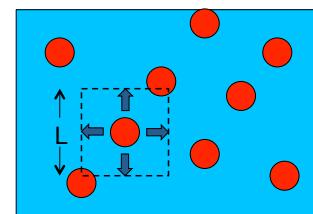
Summary: The Metropolis Algorithm

The Metropolis Monte Carlo algorithm:

- Suppose we want to compute some averaged quantity $\langle F \rangle$, where F is a function of the state of the system.
- Specify the temperature of the system, and compute $\beta = 1/k_B T$
- Beginning from some known state:
 - Compute the energy of the current state, $E_{current}$
 - Choose a new state at random; this is the trial move
 - Compute the energy of the new state, E_{new}
 - If $E_{new} \leq E_{current}$, accept the trial move (current state = new state) and go to step 6
 - Else, choose a random number r between 0 and 1
 - If $r < \exp(-\beta(E_{new} - E_{current}))$, accept the trial move
 - Else, reject the trial move
 - Compute F at the current state and update statistics
 - Go to step 1

Metropolis Method for Molecular Simulation

- The algorithm is the same for a system of atoms as for our simple example
- Now, the state of the system is defined by positions and momenta, (\mathbf{r}, \mathbf{p})
- A trial move from one state to another therefore changes the position or momentum of one or more particles
- Usually these are incremented by a random amount less than some maximum:



$$\begin{aligned} x_{new} &= x_{old} + \frac{L}{2}(random - 0.5) \\ y_{new} &= y_{old} + \frac{L}{2}(random - 0.5) \\ z_{new} &= z_{old} + \frac{L}{2}(random - 0.5) \end{aligned}$$

Metropolis Method for Molecular Simulation

- Momentum can be changed in a similar way
- However, very often we can work with position changes only. Why?
 - The energy function is usually *separable* into kinetic (depending only on momenta) and potential (depending only on positions)
 - The statistics we care about are often only functions of positions, so:

$$\begin{aligned}\langle A(\mathbf{r}) \rangle &= \iint A(\mathbf{r}) \exp(-\beta(K(\mathbf{p}) + U(\mathbf{r}))) d\mathbf{r} d\mathbf{p} \\ &= \frac{\left(\int A(\mathbf{r}) \exp(-\beta U(\mathbf{r})) d\mathbf{r} \right) \left(\int \exp(-\beta K(\mathbf{p})) d\mathbf{p} \right)}{\left(\int \exp(-\beta U(\mathbf{r})) d\mathbf{r} \right) \left(\int \exp(-\beta K(\mathbf{p})) d\mathbf{p} \right)} \\ &= \frac{\int A(\mathbf{r}) \exp(-\beta U(\mathbf{r})) d\mathbf{r}}{\int \exp(-\beta U(\mathbf{r})) d\mathbf{r}}\end{aligned}$$

- Algorithms proceed as before, but trial moves only change atom positions, and we can work with $U(\mathbf{r})$ instead of $E(\mathbf{r}, \mathbf{p})$

Example: A Very Early Application

- Metropolis et al., *J Chem Phys* 21:1087 (1953)
 - Introduced the method
 - Computed radial distribution function of rigid spheres
 - Energy of rigid sphere system is either 0 (for no overlap between spheres) or infinity (if there's overlap)

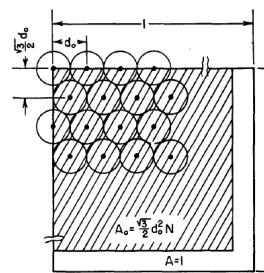


FIG. 3. The close-packed arrangement for determining A_0 .

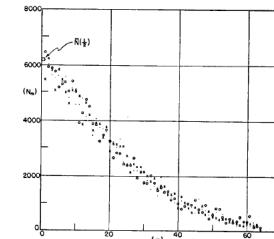
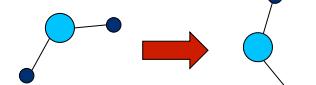


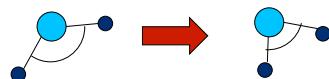
FIG. 5. The radial distribution function N_A for $N=5$, $(A/A_0) = 1.319$, $K = 1.5$. The average of the computational values of N_A is $N_A = 6400$. The resultant value of $(A/A_0)N_A^{1/3} - 1$ is $64N_A^{1/3}(k^2 - 1)$ or 0.48. Values after 16 cycles: \bullet , after 32, \times ; and after 48, \circ .

Trial Moves

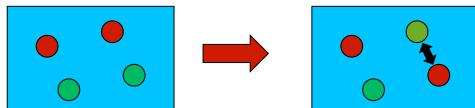
- We've already looked at **translational** moves, where the position of an atom is perturbed
- For molecular systems, **orientational** moves are also possible:
 - Rotational:



- Internal molecular degrees of freedom:



- For mixed systems, identity swaps are also allowed:



Trial Moves

- Other important points about trial moves:
 - Symmetry**
 - The probability of choosing (NOT accepting!) a trial move from one state to another must equal the probability of the reverse move
 - $\alpha_{AB} = \alpha_{BA}$
 - Ergodicity**
 - The set of allowed trial moves must allow all regions of phase space to be reached in a finite number of moves from any point
 - Step size**
 - If the step (e.g. the translation distance) is too large, the energy change may be so large that very few moves are accepted
 - If the step size is too small, phase space is explored too slowly
 - Good rule of thumb: aim for about 50% acceptance of trial moves
 - Equilibration**
 - The initial configuration may not be near equilibrium, so as in MD, we often allow the system some time to reach equilibrium before taking statistics

Monte Carlo in Other Ensembles

- We've been looking at the canonical ensemble: constant (N, V, T)
- Other ensembles can be used, by modifying the probability density (the partition function) and the types of trial moves
- **Isobaric-Isothermal Ensemble**
 - Constant (N, P, T) – number, pressure and temperature
 - Volume can change
- **Grand-Canonical Ensemble**
 - Constant (μ, V, T) – chemical potential, volume and temperature
 - Number of particles can change

Grand Canonical Ensemble

- Constant (μ, V, T)
- Trial moves:
 - Particle displacements (translations and rotations)
 - Particle insertion and removal
 - A particle is inserted at a random position, or a randomly selected particle is removed
- Probability distribution:

$$P_{\mu VT}(\mathbf{r}, N) \propto \frac{\exp(\beta\mu N)}{\Lambda^{3N} N!} \exp(-\beta U(\mathbf{r}))$$

$$\Lambda = \sqrt{\frac{\hbar^2}{2\pi m k_B T}} = \text{thermal de Broglie wavelength}$$

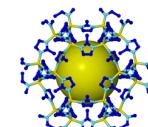
Isobaric-Isothermal Ensemble

- Constant (N, P, T)
- Trial moves:
 - Particle displacements (translations and rotations)
 - Volume changes
 - Particle positions are written in terms of *relative* coordinate \mathbf{s} :
 - \mathbf{s} remains constant when V (and L) are changed
- Probability distribution:

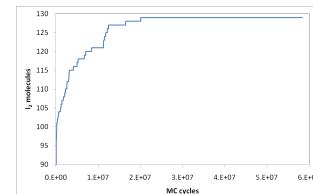
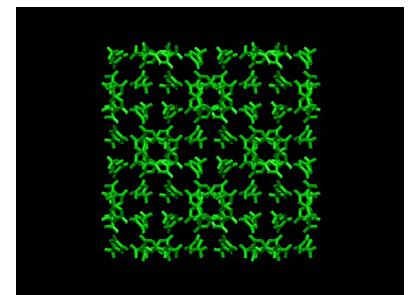
$$P_{NPT}(\mathbf{s}, V) \propto \exp(-\beta [U(\mathbf{s}, V) + PV - N\beta^{-1} \ln V])$$

Example: Grand Canonical MC Simulation of Iodine Uptake in Metal-Organic Framework

GCMC of I₂ in ZIF (Zeolitic Imidazolate Framework) [P. Crozier]



Crystal structure of ZIF-8 with void space shown in yellow. (Figure credit: Praveen K. Thallapally)



Further Reading

- Books
 - D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, 1996.
 - A great summary of the MC technique, with lots of details on statistical mechanics and MC in other ensembles
- Papers
 - N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, "Equation of state calculations by fast computing machines", *J. Chem Phys.* **21**(6):1087
 - The original reference for the Metropolis method, and a very readable paper

Homework

- Syntax for the example problem: `mmc.py [K] [beta]`
- Integrals of spherically symmetric functions can be rewritten in terms of r :

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y, z) dx dy dz = \int_0^{+\infty} 4\pi r^2 f(r) dr$$

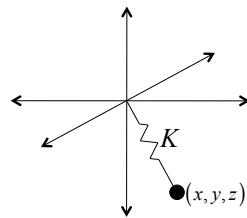
- The following integrals may be useful:

$$\int_0^{+\infty} 4\pi r^2 \exp\left(-\frac{1}{2}\beta Kr^2\right) dr = \left(\frac{2\pi}{\beta K}\right)^{3/2}$$

$$\int_0^{+\infty} 4\pi r^3 \exp\left(-\frac{1}{2}\beta Kr^2\right) dr = \frac{8\pi}{\beta^2 K^2}$$

$$\int_0^{+\infty} 2\pi Kr^4 \exp\left(-\frac{1}{2}\beta Kr^2\right) dr = \frac{3\sqrt{2}\pi^{3/2}}{\beta^{5/2} K^{3/2}}$$

Homework



- Consider a 1-particle system with a harmonic spring, with spring constant K
- Potential energy:

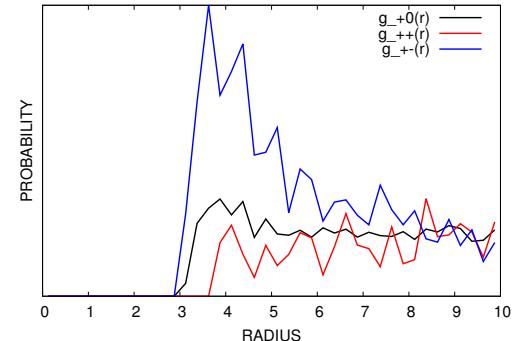
$$U(r) = \frac{1}{2} Kr^2$$

$$r = \sqrt{x^2 + y^2 + z^2}$$
- Given temperature T , and $\beta = 1/k_B T$
- Compute the expected mean values of r and U **analytically**, as functions of K and β (assume the canonical ensemble)
- Using the python script provided, use Metropolis Monte Carlo to compute $\langle r \rangle$ and $\langle U \rangle$ for $K=1.0$, and $\beta = 0.1, 0.2, 0.5, 1.0, 1.5$, and 2.0 . Compare with the analytical values.

Script

```

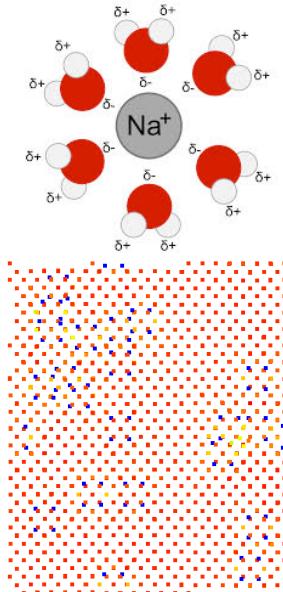
pair_style lj/cut/coul/cut 10.
dielectric 80.0
read_data relax.data
group NEUTRAL type 1
group POSITIVE type 2
group NEGATIVE type 3
pair_coeff ** 0.2381 3.405
pair_modify shift yes
mass * 39.948
timestep 1.0
fix NVE all nve
thermo 100
thermo_style custom step temp pe
compute RDF all rdf 40 2 1 2 2 2 3
fix RDF all ave/time 1000 1 1000 c_RDF file
rdf.dat mode vector
run 100000
  
```



- Do these distributions make sense?
- Why is there a gap?
- Why is the blue curve peaked?
- Why are the curves ordered the way they are?
- Is this data converged?
- Does the system size matter?

BONUS

- Change the neutral species in the fluid system for a water model like TIP4P and observe the differences in the solvation structure
- Make a fluid confined by two walls. Will the RDF change? Will it be uniform?
- Observe the differences in point defect structures obtained using a Stillinger-Weber potential vs Tersoff
- Reverse the loading of the nanobeam, will the response change?
- Add stress as an output does it tell you anything?



Lecture 11

Week 7: Analyzing Inhomogeneous Systems

- Identification and visualization of defects and structures
- Metrics, e.g. radial distribution function, common neighbor analysis, centrosymmetry
- Available tools
- Homework: Calculation of centrosymmetry and slip vector around a defect

Week 8 : Molecular Dynamics

- Newton's 2nd Law
- Time integration algorithms (Verlet, SHAKE, Gear)
- Conserved quantities
- Ensembles (NVE, NVT, NPT, NPH) & equations of motion
- Thermostats, e.g. Nose-Hoover
- Initial conditions and velocity distributions
- Homework: NVT average of pressure.

Reading Suggestions for Lec. 11

- Chapter 6 of LeSar
- Chapter 4 of Frenkel & Smit
- Chapter 3 & 6 of Evans & Morris
- http://en.wikipedia.org/wiki/Molecular_dynamics
- <http://lammps.sandia.gov/>

