
Adaptive Rule-Based Malware Detection Employing
Learning Classifier Systems: A Proof of Concept

Anonymous Anonymous Anonymous

Abstract—Efficient and accurate malware detection is
increasingly becoming a necessity for society to operate.
Existing malware detection systems have excellent perfor-
mance in identifying known malware for which signatures
are available, but poor performance in anomaly detection
for zero day exploits for which signatures have not yet been
made available or targeted attacks against a specific entity.
The primary goal of this paper is to provide evidence
for the potential of learning classifier systems to improve
the accuracy of malware detection. This paper presents a
proof of concept for adaptive rule-based malware detec-
tion employing learning classifier systems, which combine
a rule-based expert system with evolutionary algorithm
based reinforcement learning, thus creating a self-training
adaptive malware detection system which dynamically
evolves detection rules. Experimental results are presented
which demonstrate the system’s ability to learn effective
rules from repeated presentations of a tagged training
set and show the degree of generalization achieved on an
independent test set.

Keywords-Learning Classifier Systems; Malware Detec-
tion

I. INTRODUCTION

Malware is an ever-growing threat to computer sys-
tems, and security researchers are competing with mal-
ware authors to stay ahead of one another. The number of
different strains and types of malicious software has been
on the rise for years. A recent report by PandaLabs, a
malware research laboratory, stated that “in 2010, cyber-
criminals created and distributed a third of all existing
viruses”, 34% of all malware that has ever existed until
2010 was created in those 12 months [1]. Each year
brings an increase in malicious files; the average number
of threats created per day has gone from 55,000 in 2009
to 63,000 in 2010 [1]. There is a variety of ways to detect
malicious software. Malware detection is the primary
step in preventing a computer system from infection,
protecting it from potential information loss and system
compromise. A majority of anti-virus software uses
signature-based techniques that utilize a pre-defined set

of signatures [2]. This is a reactive approach: until a
signature is created for an exploit, the exploit will elude
detection by traditional anti-virus software.

Non-signature based malware detection techniques
include dynamic and static analysis. Dynamic analysis,
including analyzing machine-level code, static calls from
disassembled code, and run-time API calls, suffers from
performance overhead and high false alarm rates [2].
Static analysis can be time consuming, especially when
malware uses code obfuscation techniques.

The goal of the research presented in this paper is to
create a self-training adaptive malware detection system
which dynamically evolves detection rules. A learning
classifier system (LCS) is a rule-based, expert system
with Evolutionary Algorithm (EA) based reinforcement
learning [3]. An EA is a “computational search technique
which manipulates (evolves) a population of individuals
(rules) each representing a potential solution (or piece
of a solution) to a given problem” [3]. The LCS re-
sponds to inputs from the environment by selecting a
response that is expected to maximize environmental
reward [4]. The fitness of the classifiers is adjusted based
on the environmental reward, which is the reinforcement
learning component of the LCS. At set intervals, an
EA evolves the set of classifiers, replacing some of the
weaker classifiers with newly created classifiers, which
comprises the rule discovery component.

The goal of a malware detection system is to identify
as much malware as possible while allowing authorized
software to execute. To test a malware detection system,
known pieces of malware are presented to it, as well
as clean files. The set of software used for testing must
already be tagged in order to grade how well the system
performs. This also provides an idea of how well it
will operate in the real world with unknown, zero-
day exploits. The testing framework for this malware
detection learning classifier system uses known file sets
of malicious and clean files. The files are checked by
a third party website, VirusTotal [5], which tests files
against 43 anti-virus engines. The reinforcement learning

SAND2011-2448C



takes place over a training set, and then the evolved rules
are tested on a non-overlapping test set. This ensures that
the test set is unknown and brand new to the classifiers,
but known to the benchmarking system so it can provide
an accuracy rating.

The remaining sections are organized as follows:
Section II provides background on LCS and malware
detection techniques, Section III introduces the method-
ology of the detection system and how it runs, Section IV
explains the experimental setup, Section V presents
preliminary results, Section VI summarizes the research,
and Section VII details future directions for the work.

II. BACKGROUND

There have been approaches to malware detection
that use non-signature based techniques. By extracting
features of portable executable (PE) files, malicious
executables can be detected [2]. The authors of this paper
first classified a file as packed or non-packed by using
a packer detector. Each set is processed separately by
a decision tree to determine if it is malicious or not.
Different structural models were developed for packed
and non-packed executables. To determine if a binary
is packed, three features were looked at: (1) the name,
number and type of sections, (2) the number of entries
in the import address table, and (3) the entropies of
various portions of an executable. This technique was
shown to overcome a bias shown by structural features
for packed/non-packed executables by using two models:
the non-packed model uses a subset of features for non-
packed files which contain the most information, and the
packed model uses a subset of features which are least
perturbed by packing.

Little research has been published on applying LCS
to malware detection. John Holland created the precur-
sor to the LCS around his Genetic Algorithm, which
later became the LCS when it included a reinforcement
learning component [3], [6], [7]. The basic framework of
an LCS consists of (1) a finite population of classifiers
that represents the current knowledge of the system, (2)
a performance component, which regulates interaction
between the environment and classifier population, (3) a
reinforcement component, which distributes the reward
received from the environment to the classifiers and is
the learning mechanism, and (4) a discovery component
which employs an EA to evolve better rules and improve
existing ones [3]. Each rule in the LCS population has
a fitness values associated with it. The iterative updates
to rules’ fitness drive the LCS learning mechanism; the
environment rewards and punishes rules by incrementing

and decrementing their fitness, respectively. Reinforce-
ment learning serves two purposes: “(1) to identify
classifiers that are useful in obtaining future rewards and
(2) to encourage the discovery of better rules” [3].

A comparative study analyzed evolutionary and non-
evolutionary rule learning algorithms to evaluate perfor-
mance differences [8]. Five types of LCS were compared
with five non-evolutionary rule learners. Four perfor-
mance metrics were used to compare the algorithms:
(1) classification accuracy, (2) the number of rules,
(3) comprehensibility of the rules, and (4) processing
overhead. All algorithm implementations were provided
by a unified framework called Knowledge Extraction
based on Evolutionary Learning (KEEL). The rules were
built from 189 features extracted from the files, but
examples of features were not provided and an unknown
number of features were determined to be redundant.
Each algorithm was run on a subset of 10,339 malicious
executables. The total malicious set of executables was
divided into categories such as backdoor, virus, or trojan.
The size of each subset ranged from a few hundred files
to 2500, with the average below 1500 executables. The
ratio of training set size to test set size was 9:1, so
each category has a test set of only a few hundred files.
The reported classification accuracy for all algorithms
was more than 90%, and 7 out of the 10 algorithms
were above 99%. Their conclusions indicated that the
non-evolutionary rule learning algorithms outperformed
the LCS types. The LCS types still had very high
detection rates, but at the expense of high processing
time. The authors acknowledged that they did not explore
different configuration parameters for the rule learning
algorithms, as well as a plan to combine the datasets into
a single large set in order to create a more challenging
environment. Limiting the sets to a specific category
of malware increases the chances of similarity between
files, providing for an easier environment than a random
collection of malware; this narrow result led to artificially
high accuracy rates which are most likely not represen-
tative of real world performance.

The research presented in this paper demonstrates
promising results for a custom built malware detection
system employing LCS on a dataset more representative
of the real world. Different configurations are tested
and compared to determine which parameters affect the
system’s ability to evolve high quality classifiers. The
test and training sets contained all types of malware, they
were not limited to a specific category. Another step this
research took is to make sure the files in the sets were
actually considered malicious or clean by submitting



them to VirusTotal. Not all samples from the malicious
set were actually malicious.

III. METHODOLOGY

The environment of an LCS is the source of input
data for the LCS. The input data for this research is
a collection of files including both malicious and non-
malicious binaries. Malicious software samples were
obtained from OffensiveComputing [9]. Non-malicious
software was obtained from a fresh install of Windows
XP as well as from a computer laboratory environment
on a university campus computer learning center com-
puter. Clean executables included software created by
Microsoft, Adobe, MathWorks, Oracle, other third par-
ties, and open source software. The samples were divided
into non-overlapping training and test sets. While real
world computer systems (hopefully!) contain more non-
malicious software (goodware) than malware, the unique
pieces of malware that traverse a network outnumber the
unique pieces of goodware. There is a limited number of
legitimate Windows executables that will be sent over a
network or stored on a computer, but many types of mal-
ware propagate and self-modify to avoid detection. The
number of unique executables that are malicious is not
bounded. The training set used for the LCS composed
of 50% malware and 50% goodware. If the training
set were to model an actual computer, the amount of
goodware would be higher, and if it modeled unique
files flowing over a network, malware would represent
a larger percentage. The 50% distribution provides a
middle ground for the training set. The training set is run
through the LCS evolving rules, and the final population
is presented with the testing set to generate results.

There are two parts to the malware detection system,
a pre-processing component and the LCS, an overview
of the process is presented in Figure 1.

A. Pre-processing

The pre-processing stage analyzes all of the sample
files and submits them to VirusTotal [5] for a determina-
tion if a file is considered malicious or not. The malicious
set of samples from OffensiveComputing.net does not
contain just malware. VirusTotal provides a method to
create a subset of samples that are known to be malicious
or not. If more than 25% of the anti-virus vendors
VirusTotal uses to scan a file report malicious, the file is
considered malicious. This eliminates the possibility of a
single anti-virus software misclassifying a file. Each file
was checked to make sure that VirusTotal is consistent
with the dataset the file came from: i.e., a sample from

Fig. 1. Malware LCS Diagram

the malware set not identified as malicious or a sample
from the goodware set not identified as malicious. If
it is not consistent, the sample is considered unknown.
Furthermore, all samples (malicious or not) that are not
in VirusTotal’s database are also considered unknown.
All unknown samples are not used in the system, as
they can not be verified as being definitely malware or
goodware.

The executable datasets consist of software that runs
on the Windows operating system. Windows executables
are written in the PE format. PE files start with a
DOS header, followed by a PE header, and a number
of sections. Each section has a header which describe
its data and resources. A typical Windows application
has nine predefined sections: .text, .bss, .rdata, .data,
.rsrc, .edata, .idata, .pdata, and .debug [10]. Each section
has a different purpose, for example .text is used to
store program code, .data is used for global variables.
One important section of the PE file is the import data
section, .idata. This section contains the Import Address
Table (IAT). The IAT is where every external function
called by an executable is stored. This table includes the
name of the function and the name of the dynamic link
library (DLL) that the function is stored in. This research



assumes that malicious files will be distinguishable from
goodware based upon the structure of the PE file includ-
ing the table of imported functions. While in the real
world this assumption would not always hold, for the
purpose of this research, this is an acceptable assumption
for determining whether an LCS can potentially be used
to improve malware detection. The IAT is used from
each file to generate a feature list containing all of the
imported functions the executable references. The feature
extraction part of the system was implemented using an
open source tool called pefile [11].

B. Learning Classifier System

After pre-processing all of the files in the dataset,
the LCS randomly initializes a population of rules using
the vector of features extracted from malicious files and
non-malicious files. The feature vector includes a list
of functions imported by the files. The LCS uses an
EA to discover new rules from the initial population of
randomly generated rules. For initialization, rules were
created using a list of the most popular imports from the
training set.

1) Environment: The environment of an LCS is the
source of input data to the algorithm. The malware LCS
environment is divided into a training dataset and a
testing dataset. The LCS interacts with the environment
through the use of detectors and effectors. Detectors
encode the current state of the environment and effectors
translate action messages into actions that modify the
state of the environment. For the malware detection
system, the action that effectors apply to the environment
is the decision of whether or not a file is malicious.
In a real world system, the operating system would
then decide to block a download or stop a file from
executing. The environment immediately rewards the
system, by checking whether VirusTotal agrees with the
action performed and giving a corresponding reward or
punishment.

2) Population: The EA in our LCS operates at the
level of individual rules, a Michigan-style LCS. The
entire population represents a solution. As opposed to
a Pittsburgh-style LCS, where the population is made
up of rule-sets, where each one is a solution, and the
EA operates on the level of an entire rule-set [3]. An
individual rule in an LCS has a condition which is
encoded in its genome, an action, a fitness value, and
a prediction value. Each rule’s genome (condition) is a
tree structure where internal nodes are one of the logic
operators AND,OR,NOT and leaf nodes (terminals)
are a single feature. Rules are allowed to grow up to a

maximum tree height, in order to keep processing time
from growing indefinitely. An example portion of a rule’s
genome is shown in Figure 2, the subtree’s internal nodes
are logical operators and leaf nodes are chosen from the
set of features. The action for our malware detection
rules is to decide whether a file is malicious or not.

For the malware detection system presented in this
research, the prediction value of a rule is an accuracy
rating based on how the rule has performed so far. For
each rule, a record is kept of how many files a rule got
correct and incorrect. This record is used to calculate a
rule’s accuracy and is used by the LCS to choose the
action set of rules. During training, if no rules match a
given malicious file, a covering operator creates a rule
that has a matching condition. This rule is inserted into
the population with a chance of spreading its genetic
material to offspring, allowing the population to classify
the file.

3) Mutation: The system uses random variation to
mutate individuals by replacing the subtree starting at a
randomly selected node with a randomly generated tree.
The height of a child created by mutation can exceed the
height of its parent, but it is limited by a maxheight

parameter which was adjusted to determine how tree
height can affect a rule’s performance. Mutation of rules
used the same set of imports as initialization, a list of
the most popular imported functions.

4) Recombination: Recombination takes places by
swapping subtrees between two parents. All rules in
the population are considered for recombination, as a
panmictic population. A subtree starting at a random
node is chosen from each parent, and the subtrees are
swapped to create two new children.

The max height of an individual’s genome is lim-
ited by maxheight, and since recombination has the
possibility of increasing an individual’s height, during
recombination the second parent’s random node selection
was limited to those nodes which would keep the two
created children’s height below the maximum.

5) Fitness: In an LCS, fitness is determined by the
environment, as rewards and punishments are given to
rules that were acted upon. The LCS checks whether
a feature is malicious or not and adjusts the fitness
of individuals who match the feature. Each rule in the
population is a parse tree, and can be compared to the
extracted features from a file. If the parse tree matches
the feature, it is put into the LCS’s match set. For every
file introduced to the LCS, reward is shared among rules
in the match set. If the file is malicious, the rules in the
match set are rewarded and if it is non-malicious they



Fig. 2. Visualization of a subtree of a generated rule

are punished.
The fitness function is run for every file presented

to the LCS, and the number of files presented before
running the EA is a configurable parameter. A random
subset of files are chosen from the training set, and
presented to the LCS. For each generation, a different
random subset is chosen. This ensures file are presented
equally and in a random order.

6) Evolutionary Algorithm: The EA is run periodi-
cally on the rules to create new rules and eliminate poor
performers. The selection mechanism used for parent
and survivor selection is tournament selection. A set
of classifiers are chosen at random and the one with
the highest fitness is chosen to become a parent. The
LCS stochastically chooses mutation or recombination to
create child rules, which are then put into the population.
Every generation of the LCS, the fitness of all individuals
is reset, a number of files are presented, and those
rules that classify the files correctly are rewarded and
incorrect classifiers are punished. An individual’s fitness
may change each generation depending on which files
that are randomly chosen to be presented and the new
children that were introduced. This encourages rules to
correctly classify a majority of the training files.

After determining the fitness of all individuals, tour-
nament selection is used to choose survivors. Once the
the population is trimmed back down to the original size,
the genetic algorithm has finished and the LCS continues
presenting files from the environment.

As the system evolves rules, each was given an
independent fitness which affected whether it was chosen
for parent and survivor selection, as well as an accu-
racy rating based on how it scored malicious and non-

malicious files. The overall system also has an accuracy
rating. Depending on the rules that make up the match
set, the system chooses whether or not to consider a
file malicious. If the rules that mark a presented file
malicious have a higher accuracy than those that do not,
the system treats the files as malicious. Correspondingly,
if the set of rules that vote a file is not malicious,
the LCS chooses that action. This gives each rule a
score, as well as the population as a whole, and as
individual rules evolve to better classify executables, the
accuracy of the system will improve as well. Various
parameter configurations were tested, the results were
analyzed to determine which parameters gave the best
results. The following sections show how adjusting a
single parameter affected the LCS.

IV. EXPERIMENTAL SETUP

The goal of this system is to evolve rules that will
identify malware based on reinforcement learning. The
pre-processing step runs once to extract features from
the files used in the experiment and this collection of
features is divided into a training and testing set. The
LCS evolved rules over the training set, then it evaluated
over the testing set. A number of different parameters
were adjusted to determine the sensitivity of different
configurations.

The main feature that was extracted from the files was
the list of imports from the import address table. This
limited feature was able to produce promising results by
itself, and shows the usefulness of an LCS to enhance
malware detection. The number of imports varied per
file, and there was a noticeable difference between non-
malicious and malicious sets. Figure 3 shows the distri-



Fig. 3. Distribution of number of imports per file

bution of the number of imports per file for both sets.
Malicious files generally have fewer number of imports,
with multiple peaks from 1 − 16 where non-malicious
files peak at 50 imports per file. This is logical as the
non-malicious set contains general DLL files, which are
shared libraries offering a wide range functionality, and
malware is typically written to specifically target one
vulnerability.

V. RESULTS

The LCS was trained on a set of malware and good-
ware and then tested on a non-overlapping set of malware
and goodware. A rule’s classification accuracy on a file
is one of the following four categories:

1) True positive (TP): detects a malicious executable.
2) False negative (FN): does not detect a malicious

executable.
3) True negative (TN): does not detect a non-

malicious executable.
4) False positive (FP): detects a non-malicious exe-

cutable.
Three different metrics were tracked: (1) system clas-

sification accuracy, (2) system detection rate, and (3) sys-
tem false positive rate. These are defined mathematically:

classification accuracy =
TP + TN

TP + TN + FP + FN

detection rate =
TP

TP + FN

false positive rate =
FP

FP + TN

Parameter Name Parameter Value
initialization uniform random

population size 1000
offspring size 100

operators [’and’, ’or’, ’not’]
operator rate 75%

parent tournament size 5
survivor tournament size 3

crossover vs mutation 75% vs 25%
initial tree height 6
max tree height 10

termination 500 generations

TABLE I
EA STRATEGY PARAMETER TABLE

The classification accuracy rates how the system per-
forms in general, while detection rate and false alarm
rate show more specific metrics on the trade-offs between
malware coverage and false positives.

The list of imports from a file is not a very rich feature
set, and there are malicious files which import the same
functions as non-malicious files. Any detection system
would not be able to tell the difference between files
with identical features. The group of such files in this
research consisted of 181 malicious files, which were
removed from the dataset to increase the usefulness of
the rules generated by the LCS. Additional features are
needed to improve the accuracy of this system and these
are discussed in the future work section.

The list of parameters is presented in Table I. During
initialization, each tree is built from the top down.
Every node has a chance of becoming a function or
terminal node, the operator rate is the chance of the
node becoming a function node (operator). If it is, an
operator is randomly chosen from the list of operators,
and the appropriate number of child nodes are created in
the same fashion. If a tree reaches the initial tree height,
the node becomes a terminal node.

Files with corrupt or missing Import Address Tables
could not be analyzed in this system, Table II lists
all encountered PE errors reported by pefile. These
files could be malicious executables that have purposely
modified the content of their PE header to make analysis
harder. 847 files were found to be incompatible for
feature extraction.

A. Number of top imports
The number of imports used from the feature list to

initialize rules is an important parameter that affects how
well a rule can classify the set of malware. The list of top
imports includes the most popular referenced functions



pe instance has no attribute ’directory entry import’
invalid nt headers signature.

no optional header found, invalid pe32 or pe32+ file
data at rva can’t be fetched. corrupt header?
data length less than expected header length.
invalid e lfanew value, probably not a pe file

TABLE II
PE ERRORS ENCOUNTERED

Fig. 4. System Accuracy Rate (200 files, tree height of 6)

from the training set’s malicious and non-malicious files.
Figure 4 shows the results from running the system using
200 files in the training set and 200 files in the test set
and the parameters listed in Table I.

The same test was also run using 300 files in each of
the training and test sets, results are shown in Figure 5.
Another test was run, increasing the maximum tree
height from 6 to 8, shown in Figure 6. The results were
similar as the previous trial, the number of imports does
not appear to significantly influence the performance of
the rules, although the runs where the number of imports
was set to 60 did very well in all cases. Allowing the
rules to choose from a larger number of imports allowed
rules to become more unique and the system accuracy
improves. Each individual rule’s accuracy affects how it
is chosen for parent or survivor selection, but it is the
collection of rules as a population that determines how
well the system performs.

Figure 7 compares the training accuracy versus the
testing accuracy, the training accuracy steadily improves,
while the testing accuracy after an initial improvement
begins to fluctuate without significant improvement.

The system accuracy, detection rate, and false positive

Fig. 5. System Accuracy Rate (300 files, tree height of 6)

Fig. 6. System Accuracy Rate (300 files, tree height of 8)

Imports System Accuracy Detection FPR
30 0.840 0.840 0.160
40 0.845 0.870 0.171
50 0.840 0.840 0.160
60 0.880 0.850 0.096

TABLE III
EXPERIMENTAL RESULTS (200 FILES, TREE HEIGHT OF 6)

rate (FPR) for the runs are shown in Tables III, IV, V.
The best overall accuracy was 88.7% with a detection
rate of 90% and FPR of 12.3% and was for the run that
had 300 files in each of the test and training sets and a
tree height of 8.



Fig. 7. Training vs. testing accuracy rate

Imports System Accuracy Detection FPR
30 0.860 0.873 0.149
40 0.880 0.873 0.115
50 0.847 0.867 0.167
60 0.877 0.880 0.126

TABLE IV
EXPERIMENTAL RESULTS (300 FILES, TREE HEIGHT OF 6)

Imports System Accuracy Detection FPR
30 0.867 0.893 0.152
40 0.847 0.867 0.167
50 0.830 0.853 0.185
60 0.887 0.900 0.123

TABLE V
EXPERIMENTAL RESULTS (300 FILES, TREE HEIGHT OF 8)

VI. CONCLUSION

This research presented a proof of concept for adap-
tive rule-based malware detection employing a learning
classifier system. It combined a rule-based expert system
with EA based reinforcement learning, creating a self-
training adaptive malware detection system which dy-
namically evolves detection rules. The LCS dynamically
evolved detection rules which provided promising initial
results. While the accuracy is not perfect, anti-virus
vendors are constantly battling to stay ahead of malware
writers to improve their accuracy rates. A system which
uses previous knowledge and learning to develop detec-
tion against unknown attacks would be ideal. Evidence
for the feasibility of using a LCS to evolve rules is
provided. With better features, more aspects of PE files
could be analyzed and included in the rules, which

would enhance their detection rates and lower their false
positive rates.

The results reported in this study used malware sam-
ples from the OffensiveComputing website and non-
malicious samples from Windows computers. The set
of known malicious and non-malicious files were pro-
cessed to confirm their maliciousness and features were
extracted to be used for rule evolution. While the feature
set could be expanded, experimental results demonstrate
the system’s ability to evolve effective rules based on a
training set, and generalized to previously unseen sam-
ples contained in a test set: this would be representative
of a system encountering a zero-day exploit.

VII. FUTURE WORK

Future work for this research includes expanding the
feature set to include other aspects of PE files. Besides
the import address table, other features to investigate
include the name and size of all PE sections, the entropy
of sections, and other aspects that can be statically
extracted from PE files.

Additional features would allow files with corrupt or
missing Import Address Tables to be analyzed. Malware
that has corrupted part of its PE file structure may be
still be identifiable depending on what features can be
extracted from it. Packed files were not given special
consideration in this study, but packed files have different
structural features than unpacked files. Future work will
determine how these features affect the detectability of
malicious files.

The current system can not tell the difference between
files that import the same list of functions, and this
decreased the total size of the dataset the system could
run on. By expanding the set of features the LCS uses,
files can be better distinguished, and detection rules will
evolve to be more accurate.

Benchmarking the system on larger and more diverse
datasets will provide additional validation of its potential
for malware detection. Tuning of the LCS may be
expected to further increase system performance.

REFERENCES

[1] PandaLabs, “Annual Report PandaLabs 2010,” Panda Security,
Tech. Rep., 2010.

[2] M. Shafiq, S. Tabish, and M. Farooq, “PE-Probe: Leveraging
Packer Detection and Structural Information to Detect Mali-
cious Portable Executables,” in Virus Bulletin Conference (VB),
Switzerland, 2009.

[3] R. J. Urbanowicz and J. H. Moore, “Learning classifier systems:
a complete introduction, review, and roadmap,” J. Artif. Evol.
App., vol. 2009, pp. 1:1–1:25, January 2009.



[4] A. Eiben and J. Smith, Introduction to Evolutionary Computing.
Springer Verlag, 2003.

[5] VirusTotal - Free Online Virus, Malware and URL Scanner.
http://www.virustotal.com.

[6] J. Holland, “Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and
artificial intelligence,” 1975.

[7] L. Booker, D. Goldberg, and J. Holland, “Classifier systems and
genetic algorithms,” Artificial intelligence, vol. 40, no. 1-3, pp.
235–282, 1989.

[8] M. Shafiq, S. Tabish, and M. Farooq, “On the appropriateness
of evolutionary rule learning algorithms for malware detection,”
in Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late
Breaking Papers. ACM, 2009, pp. 2609–2616.

[9] Offensive Computing. Community Malicious code research and
analysis. http://www.offensivecomputing.net/.

[10] J. Plachy. The Portable Executable File Format. http://www.csn.
ul.ie/∼caolan/publink/winresdump/winresdump/doc/pefile.html.

[11] E. Carrera. pefile - a Python module to read and work with
PE (Portable Executable) files. http://www.code.google.com/p/
pefile/.


