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Abstract

We consider the design of a sensor network to serve as an early warning system
against a potential suite of contamination incidents. Given any measure for evaluating
the quality of a sensor placement, there are two ways to model the objective. One is to
minimize the impact or damage to the network, the other is to maximize the reduction
in impact compared to the network without sensors. These objectives are the same
when the problem is solved optimally. But when given equally-good approximation
algorithms for each of this pair of complementary objectives, either one might be a
better choice. The choice generally depends upon the quality of the approximation
algorithms, the impact when there are no sensors, and the number of sensors available.
We examine when each objective is better than the other by examining multiple real
world networks. When assuming perfect sensors, minimizing impact is frequently su-
perior for virulent contaminants. But when there are long response delays, or it is very
difficult to reduce impact, maximizing impact reduction may be better.
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1 Introduction

Optimization-based methods for determining placements for sensors in municipal water dis-
tribution networks depend critically on the precise objective function, i.e. how one measures
the quality of a sensor placement. A typical single objective for the sensor placement problem
attempts to minimize the impact, or damage, caused by a suite of potential contamination
events. The way impact is measured can determine the preferred or feasible solution methods
and the nature and quality of the resulting sensor placements.
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Previous studies have considered multiple multiple ways to measure the impact from a
single contamination incident. These usually quantify human health affects or damage/clean-
up expense to the network itself. For example, the EPA’s TEVA-SPOT (Threat Ensemble
Vulnerability Analysis Sensor Placement Optimization Toolkit) can measure a single contam-
ination impact using the number of people exposed to a dangerous level of contamination,
number of people killed, the volume of contamination released from the network, the pipe-
feet of network contaminated, etc. Given impacts from a single contamination incident, the
objective also specifies how to combine these into a single incident. TEVA-SPOT includes
average, worst-case, and various tail-bounding metrics. Models of sensor performance such
as sensor failures or uncertainties in parameters affect the timing and quality of detection
and hence the objective function. In this paper we explore the effect of a different aspect of
the objective: complementarity.

The goal of sensor placement is to minimize impact. The complement of this objective is
to maximize impact reduction. So, for example, for the objective “minimize average number
of people exposed” the complement is “maximize number of people saved from exposure,”
where the baseline is the number of people exposed when there are no sensors installed.
The two objectives are equivalent when solved to optimality. However, they are not the
same when solving sensor placement problems approximately where quality is measured by
relative error. The two types of objectives are generally incomparable: there will be some
settings where maximization is better and other settings where minimization is better. For
any way to pick a single objective function from the above choices, the optimizer must also
select an optimization direction, one of the two complementary objectives.

An Example To illustrate the differences, consider a simple example. Suppose our impact
measure is number of people killed on average taken over a suite of potential contamination
incidents. Suppose we have an intelligent enumerative method that can eventually find the
optimal placement of p sensors, but we allow the procedure to stop as soon as it has a solution
that is provably within 10% of the optimal. Although in general the procedure may do better
than 10% error, for this discussion, assume it returns an answer that has precisely 10% error.
That is, we are analyzing the guarantee. Suppose that for a given instance, there are 1000
people killed (on average) if the network has no sensors, and the optimal sensor placement
reduces the average number of deaths to 100. A search that is minimizing the number of
people killed will return a solution in which 110 people are killed. That is, there are 10%
more than the fewest possible number of deaths. A search that is maximizing the number
of people saved will return a solution in which 190 people are killed. That is, the solution
fails to save 10% of the possible 900 that could be saved by an optimal sensor placement.
Thus the solution found using the min-impact objective was better than the solution found
by the max-impact-reduction objective. It was better when measured by either objective.

Now suppose instead that the optimal sensor placement only reduces the number of
fatalities to 900. A search based on minimizing impact with a 10% error will return a
placement where 990 people are killed. A search based on maximizing lives saved will return
a placement where 910 people are killed. In this case, the complementary (maximize savings)



objective solution is better when measured by either objective.

Approximation Algorithms In practice, many difficult optimization problems are solved
in practice with heuristics. These are methods that run sufficiently quickly and seem to give
good answers. But there is no performance guarantee for heuristics. An approximation algo-
rithm runs quickly in a formal sense. Specifically, its running time is a polynomial function
of the input size. For the sensor placement problem, the input size is the number of nodes in
the network, the number of contamination incidents in the suite, and the number of sensors p
(which is bounded by the number of network nodes). An approximation algorithm also guar-
antees performance. An α-approximation algorithm for α ≥ 1 provably returns a solution
that is no more than α times the optimal for a minimization problem. For a maximization
problem, it returns a solution that is at least 1/α times the optimal (maximum) solution.
In the example above, we described 1.1-approximation algorithms. A 2-approximation al-
gorithm for the min-impact objective always returns a solution with impact no more than
twice the optimal and a 2-approximation for the maximize-impact-reduction objective al-
ways returns a solution that eliminates at least half of the impact eliminated by an optimal
solution.

We are aware of only one approximation algorithm for sensor placement in water net-
works, due to Krause et. al. [5, 4]. Krause et. al. consider the model introduced by Berry
et al. [1]. In this model, an EPANET [7] simulation of a contamination incident tracks the
evolution of the contamination plume through time, assuming “normal” network demand
and control patterns. This shows where and when a sensor could detect that contamination
incident. It also allows computation of the impact over the whole network as a function of
time since the beginning of the contamination incident. If sensors are perfect, they raise
an alarm precisely when there is contamination at their location (no false positives or false
negatives). For perfect sensors, the alarm sounds at the first moment an indwelling sensor
could observe contamination. The utility then issues a general alarm that will stop further
impact, perhaps after a suitable response delay.

Berry et al showed that the resulting optimization problem, which places sensors to
minimize the average impact over all contaminiation incidents, is a p-median problem. This
problem is NP -hard and there are no known approximation algorithms when the impact
values do not satisfy the triangle inequality. Krause et al, however, proved that the greedy
algorithm is an e−1

e
-algorithm (approximately a 1.58-approximation) for the complementary

objective: maximizing the impact reduction compared to having no sensors. This algorithm
will always guarantee some benefit even when it’s difficult to save anyone. However, it is not
an α-approximation for the problem of minimizing impact for any constant α. To see this,
consider a case where there is an arbitrarily large impact D when there are no sensors, but
p sensors can reduce the impact to 1. An α-approximation for impact minimization must
return a solution with at most α impact, but the Krause-et-al algorithm only guarantees an
impact of at most D − D−1

α
, which is greater than α for sufficiently large D.

In this paper we focus on the p-median formulation and its complement. Because even
large-scale problems can be solved in practice, it provides an excellent test case for exploring



when to use each optimization direction in approximately optimizing sensor placement.
We show that for each problem there is some number of sensors pc where approximation

algorithms of equal quality, one for each objective direction, are equivalent. This is the
crossover point. If the utility can place more than pc sensors, then it is best to minimize
impact and if has fewer than pc sensors, it is better to maximize impact reduction. The
crossover point depends upon the quality of the approximation algorithm α and on the
(worst-case) impact when there are no sensors, which we denote by w.

We show how to identify the crossover point and use that to provide guidance on selecting
an objective direction when approximately optimizing a sensor placement. In section 2 we
discuss crossover points and their computation in more detail. In section 3 we describe our
experiments on seven real networks, in section 4 we give the results of the experiments, and
in section 5 we discuss the implications of the experiments for sensor-placement optimization.

2 Crossover Points

In this section we discuss what a crossover point is and how to compute them. Assume
that we have two approximation algorithms, one, A, that attempts to minimize impact and
another, B that attempts to maximize impact reduction. Assume that both offer the same
performance guarantee α ≥ 1. This is appropriate when using, for example, a branch-
and-bound solver with the gap set to α. In general, for algorithms that have a specific error
guarantee, rather than accepting an error parameter, the approximation ratios for algorithms
A and B will not be the same. This is the case for the p-median formulation, for example,
where B has an approximation guarantee of about 1.58 and there is no polynomial-time
algorithm known that gives an approximation bound for A. The following derivation can
be generalized to the case where the approximation ratios for A and B differ. Figure 2
illustrates the discussion in this section.

Given an instance of the p-median sensor placement problem, let w be the impact when
there are no sensors. Let b be the impact for p optimally-placed sensors. Then Algorithm A
guarantees a solution with impact no more than αb. For this instance, the optimal impact
reduction is w− b. Algorithm B guarantees a solution with impact reduction at least (w−b)

α
,

which will therefore have impact no more than w − (w−b)
α

. Either algorithm could do better
than its respective guarantee, but we are analyzing only the guarantee, when each algorithm
returns a solution of precisely the quality promised.

The two algorithms promise the same quality solution when

αb = w − (w − b)
α

α2b = αw − w + b

(α2 − 1)b = (α− 1)w

b =
α− 1

α2 − 1
w.



Figure 1: The crossover point pc is the minimum number of sensors necessary to reduce the
impact to the crossover optimum, shown as I. With pc sensors an α-approximation algorithm
to minimize impact and an α-approximation algorithm to maximize impact reduction offer
the same guarantee. If there are more than pc sensors available, the min-impact algorithm
gives a better guarantee. If there are fewer, the maximum-reduction algorithm gives a better
guarantee.

We call α−1
α2−1

w, the crossover optimum. Let pc be the minimum number of sensors neces-

sary to reduce the impact to at most the crossover optimum α−1
α2−1

w. For ease of discussion,
assume the optimal impact with pc sensors is precisely the crossover optimum. When a
utility can place pc sensors, either algorithm gives the same guarantee, namely

α(α− 1)w

α2 − 1
.

We call pc the crossover point. If we repeat the same algebraic derivation above with inequal-
ity instead of equality, we see that whenever the optimal impact for p sensors is less than the
crossover optimum, algorithm A (min impact) gives a better guarantee and whenever the
optimal impact for p sensors is larger than the crossover optimum, algorithm B (max impact
reduction) gives a better guarantee. Since the optimal impact can only decrease with more
sensors, that means whenever a utility has at least pc sensors to place, Algorithm A gives a
stronger guarantee, and whenever a utility has fewer than pc sensors to place, Algorithm B
gives a stronger guarantee.

When α = 2, the crossover optimum is w/3, where both algorithms guarantee an impact
no more than 2w/3. For the Krause et. al. guarantee on the complementary objective



Name # nodes # contamination response
events delay (hours)

Net1 3196 3020 0
Net2 3358 1621 0
Net3 8139 6766 6
Net4 12587 10552 6
Net5 12624 64554 0
Net6 48164 9162 0
Net7 55144 25720 0

Table 1: Some statistics on our real-world examples.

(α = 1.58), the crossover optimum is 0.39. As α gets smaller (the approximation algorithms
get better), the crossover optimum approaches w/2. For example, when α = 3/2, that is,
a 50% error, the crossover optimum is 2b/5. When α = 1.1, a 10% error, the crossover
optimum is 0.48b. Thus W/2 is approximately the crossover optimum for α = 1 + ε for
arbitrarily small ε > 0.

3 Experimental Design

We computed the crossover point for seven real-world networks which we call networks 1 to
7. The network names are sorted by the number of nodes. Table 1 gives some information
about the example networks and the nature of the contamination incidents. There is one
contamination incident at each non-zero-demand node at a single time of day. In all cases, we
use a detection threshold of zero, an injection duration of one hour, and run the simulation
for 168 hours. We use the population-dosed objective measure, for several dosage levels on
most networks. This is the number of people in the network who received and LD50-level of
exposure. This is a level that has a 50% probability of killing the victim. Davis and Janke [2]
describe this impact measure in more detail. For most cases, we use place the population on
network nodes probabilistically based on the demands at the nodes. However, for Network
3, we spread the population evenly.

Several of these examples are networks Davis and Janke used in their study [2]. Our
networks 1, 2, 3 and ,5 correspond to their network 2, 4, 9, and 6 respectively. Davis and
Janke give additional information on the population and other network features such as the
number of sources. Network 5 is BWSN-2 from the Battle of the Water Sensor Networks [6].
Network 4 is a modified version of BWSN with lower connectivity.

For each example (network and objective), we computed the impact with no sensors and
used that to determine the crossover optimum for three different levels of approximation ratio
α. The first is 1 + ε, which is half the no-sensors impact. This is the crossover for arbitrarily
good approximation algorithms. The second is α = 1.58, the approximation guarantee for
the maximize-impact-reduction objective for the greedy algorithm as proved by Krause et. al.



The third is α = 2. Given the goal impact value, we can calculate the minimum number of
sensors using integer programming or by using an algorithm (or heuristic) for either objective
and doing binary search over the number of sensors.

4 Results

Table 2 shows the results of our computation. For Networks 1 through 5 these results
come from integer programming calculations and therefore have a computational proof of
optimality. Networks 6 and 7 required too much memory for an integer program. The
crossover point (cp) values come from heuristic local search (GRASP) computations using
the heuristic available in TEVA-SPOT[3]. In almost all cases, there is a matching lower
bound from a TEVA-SPOT Lagrangian calculation. This proves the values are optimal. For
Network 6, when cp is very large (e.g. 176 or 639), the lower bound was not high enough to
prove optimality. It is likely that the lower bound is weak because the GRASP heuristic has
consistently found optimal solutions in practice and the Lagrangian computation has not
been extensively tested at high sensor counts.

As the dosage level required for exposure increases, the worst-case impact (with no sen-
sors) goes down and a relatively larger number of sensors are required to drive the impact
lower. For all these networks, dosage levels 0.01 or lower had low crossover points, well
within the limits one might expect a utility to deploy. The cp for dosage level of 0.1 varies
considerably with network. Networks 1 and 6 are still low. Networks 2 and 4 range from
moderate to high. Network 3 already requires more sensors at dosage level 0.1 than most
utilities will deploy. This may be due in part to the 6-hour response delay for Network 3.
Delay adds unavoidable impact. By dosage level 1.0 almost all the networks require far more
sensors than a utility will likely deploy.

5 Discussion

Our examples show that in general there are some cases where, given approximation algo-
rithms of equal quality for complementary objectives, it is sometimes best to use one and
sometimes best to use the other. When the approximation algorithms are particularly good,
the crossover optimum moves toward w/2, which favors the min-impact metric. In practice
for p-median, perfect-sensor formulations, algorithms are sufficiently good in practice to use
the min-impact objective. Though both objective directions are natural, the min-impact bet-
ter reflects the way government and the media evaluate disasters (number of casualties, not
number unaffected). However, there may be stronger reasons to consider the complementary
objective in the future. Poor approximation ratios, as may be the case with more complex
nonlinear objectives including uncertainty, favor the max-reduction method. When the op-
timal value is very large compared to w, it is best to use the maximize-impact-reduction
objective. In some cases, there may be no number of sensors such that it’s best to use
the min-impact objective. This happens, for example, when it is impossible to reduce the



Network dosage (mg) α cp Network dosage (mg) α cp
Net1 0.0001 1 + ε 1 Net4 0.0001 1 + ε 2
Net1 0.0001 1.58 2 Net4 0.0001 1.58 2
Net1 0.0001 2 2 Net4 0.0001 2 2
Net1 0.1 1 + ε 2 Net4 0.001 1 + ε 2
Net1 0.1 1.58 2 Net4 0.001 1.58 2
Net1 0.1 2 2 Net4 0.001 2 3
Net1 1.0 1 + ε 2 Net4 0.01 1 + ε 3
Net1 1.0 1.58 2 Net4 0.01 1.58 4
Net1 1.0 2 3 Net4 0.01 2 6
Net2 0.0001 1 + ε 1 Net4 0.1 1 + ε 7
Net2 0.0001 1.58 1 Net4 0.1 1.58 34
Net2 0.0001 2 1 Net4 0.1 2 83
Net2 0.001 1 + ε 1 Net4 1.0 1 + ε 251
Net2 0.001 1.58 1 Net4 1.0 1.58 606
Net2 0.001 2 1 Net4 1.0 2 919
Net2 0.01 1 + ε 1 Net5 pe 1 + ε 3
Net2 0.01 1.58 2 Net5 pe 1.58 5
Net2 0.01 2 3 Net5 pe 2 7
Net2 0.1 1 + ε 11 Net6 0.0001 1 + ε 2
Net2 0.1 1.58 33 Net6 0.0001 1.58 2
Net2 0.1 2 57 Net6 0.0001 2 3
Net2 1.0 1 + ε 146 Net6 0.001 1 + ε 2
Net2 1.0 1.58 236 Net6 0.001 1.58 3
Net2 1.0 2 293 Net6 0.001 2 3
Net3 0.0001 1 + ε 1 Net6 0.01 1 + ε 3
Net3 0.0001 1.58 2 Net6 0.01 1.58 3
Net3 0.0001 2 2 Net6 0.01 2 4
Net3 0.001 1 + ε 2 Net6 0.1 1 + ε 11
Net3 0.001 1.58 2 Net6 0.1 1.58 23
Net3 0.001 2 3 Net6 0.1 2 36
Net3 0.1 1 + ε 61 Net6 1.0 1 + ε 176
Net3 0.1 1.58 184 Net6 1.0 1.58 424
Net3 0.1 2 303 Net6 1.0 2 639
Net3 1.0 1 + ε 267 Net7 x 1 + ε 1
Net3 1.0 1.58 536 Net7 x 1.58 1
Net3 1.0 2 758 Net7 x 2 1

Net7 y 1 + ε 2 Net7 z 1 + ε 6
Net7 y 1.58 2 Net7 z 1.58 10
Net7 y 2 3 Net7 z 2 14

Table 2: The crossover point for our example set. α is the approximation ratio for a hypo-
thetical pair of approximation algorithms with complementary objectives. cp is the crossover
point. With more than this many sensors, it is best to use the min-impact approximation
algorithm; with fewer it is better to use a maximum-impact-reduction approximation algo-
rithm. For Net7 dosage x < y < z. Dosage information for Network 5 was not available.



average impact below w/2. This might be due to a large response delay, or because some
network locations cannot host a sensor. Since real networks will likely have response delays
and infeasible locations, this favors the maximize-impact-reduction metric, which can always
achieve some benefit if there is any benefit to achieve.
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