

Processing, Microstructure, and Transport Properties in Nanostructured Bi_2Te_3

Nancy Yang, P. A. Sharma, Sandia National Laboratories

Zhihui Zhang, and E. Lavernia, UC Davis

SAND2011-0537C
National Nuclear Security Administration

Nanostructured Bi_2Te_3 based thermoelectric materials have been shown to yield high ZT, through a lower thermal conductivity.

Question: How does processing affect microstructure and thermoelectric performance in these novel nanostructured alloys?

Answer: Processing impacts ZT by controlling grain size, porosity and texture. However, these do not all change ZT in concert.

Scientific approach

TE device: concept and design

Processing and Property

Materials Science for TE modules

Physical properties and microstructure

Test Matrix: feedstock powder sizes and processing parameters

Pure Bi_2Te_3 Sample ID	Nominal powder size (μm)	SPS condition	Extrusion condition	
BT3	100	400	50	N/A
BT10	10	400	50	N/A
NBT20	0.2	400	50	N/A
BT40	0.2	400	300	N/A
BT extrusion	10	400	80	420

Starting powder size dictates final grain size and porosity

- A significant difference in grain size, pore size, distribution and density was observed among the SPS Bi_2Te_3 using 100 μm, 10 μm and 200 nm powders.
- Pore density in the nanostructured NBT20 is ~10 times higher than in the coarse-grained BT3 and BT10.

Texture and TE properties

Texture decreases with decreasing grain size

Nanoscale grains increase electrical resistivity and decrease ZT

High Seebeck coefficient and low thermal conductivity of the nanostructured Bi_2Te_3 did not yield high ZT as expected due to high resistivity.

Source of low ZT: Carrier concentration decreases with grain size

On-going activities

SPS + additional hot extrusion improve ZT

Electrical resistivity reduces with increased SPS pressure and/or additional extrusion.

Conclusions

Nanostructuring Bi_2Te_3 under SPS conditions leads to:

- Higher nanopore density and reduced crystallographic texture.
- Decreased thermal conductivity, but nanopores appear to trap carriers that increase resistivity and decrease ZT.
- Change in texture that may also reduce ZT.

Publications

1. "Structure of the (0001) basal twin boundary in Bi_2Te_3 " D. L. Medlin, N. Yang, J. Snyder etc. JApplPhys, 108, 2010.
2. "Thermoelectric and transport properties of nanostructured Bi_2Te_3 by spark plasma sintering" Zhihui Zhang; P. A. Sharma; N. Yang, ; E. J. Lavernia, Journal of Materials Research, 26(3), 2011, in press.

External Panel Review 2-3-2011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.