SAND2013-9997C

Checkpoint Compression: Its Limitations and
Comparisons with other Optimizations

Dewan Ibtesham and Dorian Arnold
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
{dewan,darnold} @cs.unm.edu

Abstract—Identifying checkpoint size as a significant
factor in checkpoint/restart performance, in this work we
evaluate the limits of a compression-based checkpointing
technique and put the performance of this method into con-
text by comparing against other hardware- and software-
based techniques. Using a model-based approach, we ex-
plore the feasibility and potential impacts of additional
compression and speed improvements to compression algo-
rithms and show that such enhancements may not lead to
performance improvements. We also compare compression
against a number of software and hardware approaches,
showing that it can outperform incremental checkpointing
but that the greatest checkpoint performance is realized
when both techniques are used together. This combination
can perform within 20% of an optimal hardware-based
approach without requiring additional costly non-volatile
local storage and can outperform hardware-based solutions
in terms of work done per dollar spent.

Keywords-Fault tolerance; Checkpoint Compression;

I. INTRODUCTION

In high-performance computing (HPC),
checkpoint/restart is the prevailing approach for
application fault-tolerance. Today, the largest HPC
systems comprise of millions of cores and tens of
millions components. As we approach the exascale
computing era, we expect orders of magnitude
increases in core counts. In these extremely large-scale
environments, a confluence of issues including decreased
mean time between failures (MTBF), increased I/O
pressures and increased checkpoint/restart overheads
have raised concerns about the continued viability of
checkpoint/restart-based fault tolerance [1], [2].

Researchers have shown data compression to be an ef-
fective method to decrease checkpoint/restart overheads
[3], [4]. In this work, we seek a better understanding of

Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-
94AL85000.

Kurt B. Ferreira
Scalable System Software Department
Sandia National Laboratories
Albuquerque, NM 87185-1319
{kbferre} @sandia.gov

checkpoint compression and the performance impacts of
compression factor, compression speed, and I/O commit
rate. In addition, we place the performance of this
technique in context with other checkpoint optimiza-
tions. In particular, we wish to understand: (1) whether
checkpoint-data-specific compression algorithms offer
better compression than standard text-based utilities,
(2) whether faster running compression algorithms offer
better overall application performance, (3) how check-
point compression performs when used in conjunction
with other checkpoint optimizations, (4) how check-
point compression compares against other hardware and
software-based optimizations, ,and (5) whether the best
performing hardware/software checkpointing methods
when considering performance from a time to solution
or monetary

We attempt to answer these questions using current
system parameters as a guide, while being conscience of
how new potential technologies might change the impact
of checkpoint compression going forward. In addition,
we use information theory along with knowledge from an
application-level checkpointing library to evaluate stan-
dard compression utilities. Using previously published
performance data and a checkpointing model [3] based
on Daly’s higher order checkpointing model [5], we
analyze the impact of compression speeds and compres-
sion performance. We then compare the results of this
software compression solution with that of a number
of state-of-the-art hardware and software checkpoint-
ing solutions. Finally, we use these results to evaluate
checkpoint compression performance alongside other
hardware-based checkpoint/restart optimization. Based
on these studies we demonstrate that:

o There is not sufficient improvements possible to
motivate checkpoint-specific compression utilities.
Current text-based algorithms perform close to a
theoretical optimal

o Increasing compression speeds leads to marginal
performance improvements on current systems.

e As checkpoint commit bandwidths increase im-
provement from checkpoint speed increases. How-
ever, even at a factor of 4k increase in commit
bandwidth and 100 times faster compression speeds
results in a less than 15% increase in application
efficiency.

o Compression performs better than an optimal incre-
mental checkpointing approach without any knowl-
edge of the application data

o Composition of both compression and incremen-
tal checkpointing leads to further performance in-
creases.

o Hardware-based checkpoint optimizations are more
efficient that software-based methods.

o However, compression plus incremental check-
pointing can perform within 20% of a state-of-the-
art hardware/multi-level checkpointing techniques.

o Considering performance from a monetary perspec-
tive, compression plus incremental checkpointing is
the most cost efficient method and produces the
most amount of work per unit price as long as per-
node procurement costs are kept low.

The organization of the rest of this paper is as
follows: after a discussion of related checkpoint/restart
research in the next section, we detail our methodology
including our software chain and modeling techniques
in Section III. In Section IV and Section V, we present
our studies of the impact of compression factor and
compression speed respectively. In Section VI, we com-
pare checkpoint compression against other hardware and
software based checkpoint optimizations and present the
cost efficiency comparison of hardware and software
based methods. We conclude in Section VII with a
summary of our results and insights.

II. BACKGROUND AND RELATED RESEARCH

Checkpoint/restart protocols [6] periodically commit
process state to stable storage devices. When failures
occur, a new process can be recovered to the intermediate
state captured in the failed process’ most recent check-
point — thereby reducing lost computation. Checkpoint
optimizations can be classified broadly into two cate-
gories. The first category includes protocols that hide or
reduce (perceived) checkpoint commit latencies without
actually reducing the amount of data to commit. These
strategies include concurrent checkpointing [7], [8], disk
less or multi-level checkpointing [9]-[11], remote check-
pointing [12], [13] and checkpointing filesystems [14].

The second strategy focuses on reducing the volume
of checkpoint data. These strategies include memory

exclusion [15], incremental checkpointing [16]-[21] and
checkpoint compression [3], [4], [22]-[25]

Many recent studies, including this one, have focused
on the later—volume reduction strategies for two main
reasons. First, latency hiding strategies do not allevi-
ate resource contentions. For I/O intensive applications,
generally increasing pressures on 1/O substrates make
this a major issue. In fact, such contentions can make
it hard to hide the perturbation that checkpoint commits
can have on application performance. Furthermore, tech-
niques like concurrent checkpointing are seldom used in
practice due to the complexity and required applications
modifications.

The second reason follows from the observation that
checkpoint data volume appears to be one of the few
relevant factors over which users have direct control.
A first order approximation of the optimal checkpoint
interval is:

\/2 * MTBFsyS * latcommita

where MTBF,, is the system mean time between
failures, and lat.ommi+ 1S the time to commit a check-
point [26]. Therefore, %Wi approximates the
fraction of system time lost due to checkpoints and
restarts. latcommit = % [27] where ||ckpt|| is
size of checkpoint and ﬁd:p: is the checkpoint commit
bandwidth. Generally, MTBF,,, and Bc,: are fixed
and based on hardware technologies, leaving ||ckpt|| to
be our focal point.

III. METHODOLOGY AND TOOL CHAIN

To have a better understanding of the impacts of the
different parameters of checkpoint compression namely
compression factor, compression speed and I/O commit
rate, we modeled checkpoint compression performance
with hypothetical improvements to these parameters.
Figure 1 depicts our approach for executing this study
as well as the set of tools that we use. First, we collect
checkpoint compression performance data using a set
of applications, checkpoint libraries and compression
utilities. Second, we use an extension of Daly’s model
for checkpoint/restart performance that integrates check-
point compression to compute application performance
based on our observed compression data. Last, we use
the output from this performance model to compute the
overall efficiency and answer the following scenarios

o The maximum possible improvement in application
efficiency due to compression factor. Discussed in
detail in Section IV.

o Impact on application efficiency due to faster or
slower compression algorithm. Section V has the

details of our finding.

o Comparison of application efficiency and cost ef-
ficiency between our approach and other software-
hardware based approach. We present our approach
and results in Section VI.

In the rest of this section we describe our tool chain
and the two models that we used to perform our study
in detail.

A. Compression Performance Data Collection

The majority of our checkpoint compression perfor-
mance data collection was performed as a part of a
previous study [3] and used the following setup:

o Applications: We performed our experiments with
a set of mini applications from the Mantevo
Project [28] namely HPCCG, pHPCCG, phdMesh
and miniFE along with LAMMPS [29], a key
simulation workload for Department of Energy.

o Checkpoint Libraries: We used BLCR [30] as
our system level checkpoint library to generate
checkpoints at a small interval uniformly distributed
over application runs. We also used LAMMPS’
capability of generating checkpoints and generated
checkpoints using this application-specific check-
pointing method.

+ Compression Utilities: We chose popular text com-
pression tools from linux’s software stack, for ex-
ample: parallel bzip [31], bzip, zip [32], rzip [33],
7zip [34], etc.

The compression performance results we previously
collected [3] are summarized in Table 1.

B. Application Performance Model

Previously [3], we created a performance model based
on Daly’s higher order model [5] to project the time
to solution for an application using checkpoint/restart
and compression. Daly’s model assumes node failures
are independent and exponentially distributed and takes
as input: the mean time between failures (MTBF) for

-

AT
hpceg
LAMMPS
minife phdmesh | compression [:
phccg performance (1| (2]
- Data

omremevers .

LCR

Job length

MTBF
Jorate Checkpoint size

LAMMPS Builtin ®

Checkpoint Compression Setup

Application Performance Modeling

Application Efficiency

Fig. 1. Our Methodology: Empirically collected checkpoint compres-
sion data is input to an extension of Daly’s Model. The results are
used to compute application efficiency.

the system, the checkpoint commit time, the checkpoint
restart time, the number of nodes used in the application
and the time application would take to complete in a
failure-free environment with no checkpointing . For the
checkpoint commit time, this model includes the time to
compress the checkpoint image as well as the time to
write this compressed image to stable storage. Similarly,
on restart we included the time to read the compressed
checkpoint image and perform the decompression step.

We extended this model to integrate incremental
checkpointing as well. As such, the model takes two
additional parameters. The first new parameter specifies
the size ratio of an incremental checkpoint to a full
checkpoint. We assume that approximately the same
fraction of the address space changes between each
checkpoint. This assumption is based on the results of a
previous incremental checkpointing study [21].

The second new parameter, the number of incremental
checkpoints taken before taking the next full checkpoint,
reflects the periodic desire to take full checkpoints.
Increased recovery latencies and increased storage costs
are two factors that motivate the desire for periodic full
checkpoints. If an application fails and is recovered from
the i*" incremental checkpoint after a full checkpoint,
additional overhead is required to either coalesce the
full checkpoint and the ¢ increments or to recover
the full checkpoint and iteratively recover the state in
each increment. Incremental checkpointing necessarily
increases storage costs since it requires maintaining a
full checkpoint as well as subsequent increments. If
each increment is on average 1/s the size of the full
checkpoint, after s increments, storage costs would have
doubled. We use Naksinehaboon et al’s derivation of
the optimal number of increments n between two full
checkpoints as: n = [4c/ 57 commit — 1|, where ¢ is the
size of a full checkpoint and r¢mmi 15 the rate a file
can be committed to stable storage [35].

For simplicity we assume that taking incremental
checkpoints and reconstructing a checkpoint from the
increments will be free and not incur additional costs.
There are a number of techniques, such as concurrent
coalescing, that make this assumption possible.

C. Application Efficiency

Application efficiency is the ratio of an application’s
time to solution when the application is using some
fault-tolerance mechanism to recover from failures as
they occur to the application’s time to solution as-
suming perfect conditions: no failures and, therefore,
no need for any fault tolerance mechanisms. We use
this simple calculation to compare the effectiveness of

Tool | App. Factor | Comp./Decomp. Speed (MB/s) | Ckpt Bandwidth (MB/s) |
pbzip2 | HPCCG 91.55 23.74/396.06 41.01
pbzip2 | PHPCCG 93.86 22.75/432.85 40.57
pbzip2 | MINIFE 80.91 57.90/228.28 74.74
pbzip2 | PhdMesh 86.16 84.56 307.00 114.25
pbzip2 | LAMMPS | 43.29 44.15/129.90 28.52
Zip HPCCG 86.21 61.77/151.58 75.67
Zip PHPCCG 88.49 67.98/156.63 83.90
Zip MINIFE 68.56 38.11/94.71 37.27
Zip PhdMesh 81.25 59.39/121.38 64.80
Zip LAMMPS | 41.48 27.60/105.25 18.14
TABLE 1

A SUMMARY OF OUR PREVIOUS CHECKPOINT COMPRESSION PERFORMANCE DATA.

different fault tolerance configurations: in the context of
checkpoint/restart, the higher an application’s efficiency,
the greater the time spent executing the application’s
intended computation and the less the time spent taking
checkpoints, recovering from failures or re-doing any
lost computation due to failures.

IV. THE IMPACT OF COMPRESSION FACTOR

As we described in Section II, checkpoint data vol-
ume reduction is arguably the most significant user-
controllable factor that impacts checkpoint-restart perfor-
mance. Therefore, an important question is what are the
limits of checkpoint data volume reduction via compres-
sion. A secondary related question is whether it is worth
considering compression algorithms that specifically tar-
get checkpoint data. In this section, we provide novel
insights into these questions by using information theory
to theorize about the compression performance of off-
the-shelf utilities and evaluate the additional impact of a
custom algorithm that achieves optimal compression. In
this discussion we will use the metric compression factor
which is the inverse of the compression ratio, therefore
higher compression factors are higher performing.

A. An Application-specific Case Study

Based on the data in Table I and our previous work [3],
we focus on checkpoint/restart for the LAMMPS appli-
cation. LAMMPS exhibits the poorest checkpoint com-
pressibility and, hypothetically, the greatest opportunity
for improvement for all the applications tested. We
use knowledge of the LAMMPS on-disk checkpoint
format to translate application-specific checkpoint data
into its composite data elements. Using this, we compute
the entropy of LAMMPS checkpoints using Shannon’s
information theory [36].

Shannon’s theorem tells us the minimal number of
bits needed to represent a certain amount of information.
Using our understanding of the LAMMPS checkpoint
format, we calculated a frequency distribution for the
values in the checkpoint file. We calculated this distribu-
tion in a representation independent way; for example,
the double 0.0 is interpreted to be the same value as
the integer, 0, as they contain the same information.
Using this frequency distribution, we then calculated the
entropy of this newly created “checkpoint language” for
LAMMPS checkpoints. This entropy calculation gives
us a minimal encoding.

Table II shows the results of this minimal checkpoint
encoding. This checkpoint contained about 3.5 million
total symbols of which about 1 million were unique, re-
sulting in an entropy of 10.59 or a theoretically maximal
compression factor of 79.5%. Comparatively, our bzip2-
encoded strings for the same checkpoint (excluding the
bzip2 dictionary and headers, as we do not include
this information in the entropy calculation above) had
a compression factor of 67.6%, a significant difference
in compression performance . Therefore, a hypotheti-
cal optimal checkpoint compression algorithm tailored
specifically for the information contained within it will
compress the checkpoint to 20% of its original size, in
comparison to bzip2, which compressed the checkpoint
to 32%.

Next, we use this LAMMPS checkpoint compression
comparison data to model how LAMMPS performance
would improve with this optimal algorithm that could
better compress its checkpoints. Optimistically, we keep
compression speed constant, assuming that the optimal
algorithm would take no longer to run than bzip2. We
look at three different scenarios, systems with 10K,
50K and 100K total sockets. Figure 2 shows the impact
on application efficiency as compression factor varies,

Total Symbols | Unique Symbols | Entropy | Optimal Compression Factor | Bzip Compression Factor
3,584,043 1,023,367 10.59 79.5% 67.6%
TABLE 11
COMPARING A THEORETICAL MINIMAL ENCODING WITH BZIP2.
PO 100 |
o °
100 OQ% /\‘\0
10k sockets 80 1
50k sockets
100k sockets =
& e 60 4
9)
2 5
§ o L 62.35% g) 40 S A A A
g 56.19% m
i}
S S 4% 20 10k sockets —@—
E=E 38.05% 50k sockets
ks 100k sockets —&—
o3 0 o 17 o 7 7 7 7 7
i ! ! d (7] (@) (2 (2)
= 18.37% 00, O 7 (4 (2] 000
15.08%
Compression/Decompression Rate Improvement
0
¢ % % % % %y 7 Fig. 3. Varying compression/decompression speed

Compression factor

Fig. 2. Varying compression factor

highlighting our observed compression factor and our
theoretic maximum compression factor. For each of the
three scenarios, we observe that optimal compression
would yield a relatively small increases in application
efficiency — the largest being an additional 7.2% of
efficiency in the 100K socket scenario. Therefore, we
conclude that exploring checkpoint-specific compression
algorithms is unlikely to yield significant improvement
over standard text-based compression algorithms. In fact,
with the expected growth of I/O on future systems, these
differences in efficiencies will further decrease, support-
ing our position that current compression algorithms are
sufficient for future systems as well.

V. IMPACT OF COMPRESSION SPEED

While compression factor likely is the biggest deter-
minant of the performance impact of checkpoint com-
pression, it is still prudent to understand the importance
of compression speed. In this section, we evaluate the
benefits of accelerating our top performing (in terms of
compression factor) algorithm, either using algorithmic
enhancements or hardware technologies, for example,
GPUs.

To explore this question, we used our compression-
enhanced application performance model described pre-

viously. Using the compression performance exhibited
by pbzip2 on phpceg checkpoints (our top performer for
compression factor) as a baseline, we varied compression
and decompression rates in a range from a slow-down
of 100X to a speed-up of 10,000X.

The results, shown in Figure 3, show that a four
orders of magnitude improvement in speed would yield
an insignificant improvement in application efficiency
on current systems. While this is an important result,
it is not so surprising: given current checkpoint commit
rates (based on available per process I/O bandwidth
to checkpoint storage), the time spent compressing a
checkpoint is insignificant to the time spent committing
the checkpoint to stable storage. What is unclear is the
impact of compression speed increases with the expected
I/O bandwidth increases expected in future systems.

Figure 4 shows the increase in application efficiency
as a function of the per-node checkpoint commit band-
width. Similar to previous work in this paper, we assume
a 5 year socket MTBF and use optimal compression
factors. The Y-axis in this is the difference in application
efficiency in the accelerated and non-accelerated case.
For the accelerated case, we assume a hypothetical
compression of 100 times the CPU compression speeds.
These optimal speedups have been observed with care-
fully crafted codes and workloads with GPUs [37]. We
model these overheads for a number of node counts be-
tween 10k and 200k. From this figure, we see that a two

o, -
— 50% —— 200k nodes
@ e 100I|: noges
© 50k nodes
"T.J 40 % 1 e 10k nodes
@
3
< 30% |
[0
2
9
L 20%
£
)
& 10%
o
m /—

0%
iMB 4MB 16MB 64MB 256MB 1GB 4GB

Per-node Checkpoint Commit Bandwidth (bytes/sec.)

Fig. 4. Efficiency increase for a number of node counts as a
function per-node checkpoint commit speeds assuming a compres-
sion/decompression speed a factor of 100 greater than what we see on
current systems. The efficiency difference is defined as the accelerated
efficiency minus the efficiency using current speeds

order magnitude increase in compression/decompression
speeds lead to only marginal increases in application
efficiency. This result suggests that the effort involved
in accelerating compression.decompression speeds may
not be worth the performance return.

VI. COMPRESSION AND OTHER OPTIMIZATIONS

Lastly, we put the performance of checkpoint com-
pression in context by comparing against a num-
ber of popular software, hardware, and mixed hard-
ware/software solutions. Also, we investigate the per-
formance of scenarios where checkpoint compression
can be combined with these techniques. More specifi-
cally, we compare checkpoint compression performance
against a software-only, incremental checkpointing solu-
tion, showing performance of the combination of both
incremental checkpointing with compression. We then
compare these software-only checkpointing solutions
against state-of-the-art and considerably more costly
hardware-based solutions: checkpointing to SSDs (solid-
state device) and the multi-level checkpointing solution
Scalable Checkpoint Restart (SCR) [11].

A. Increment and Compression-based Optimizations

First, we use our previously-collected compression
performance data and application performance model
from Section III-B to compare checkpoint methods and
their impact on application efficiency. Based on observed
workloads at Sandia National Laboratories, we again as-
sume each process uses 2GB of memory and checkpoints
L of that memory [21], a five year node MTBF [38]

3
and a per process I/O rate of 1 MB/s. This latter value

was chosen optimistically from a performance study on
Argonne National Laboratory’s 557 TFlop Blue Gene/P
system (Intrepid) [39].

Additionally, we use our best-performing compression
scenario, pbzip on phdmesh, which showed an 86%
compression factor, 84 MB/s compression rate and 307
MB/s decompression rate, and the optimal incremental
checkpointing compression found in [21] (80% com-
pression). An additional assumption in this work is
that incremental checkpoints have similar compression
ratios as the standard full checkpoints. This assumption
has been validated using the incremental checkpointing
library described in [21].

Figure 5 shows these scenarios compared with the
baseline standard coordinated checkpointing and allows
us to make several observations:

1) Perhaps unsurprisingly, all = combinations
of compression-based and increment-based
optimizations outperform standard coordinated
checkpointing (labeled “baseline” in the figure).

2) Compression yields greater application efficiency
than pure, optimal incremental checkpoint (labeled
“ickpt”). This result is more notable than it may
first appear: our model does not include the po-
tentially high-overhead of the mechanisms used in
incremental checkpoints to detect updated memory
regions or introspective application knowledge.
So in environments where this overhead is pro-
hibitively excessive or application characteristics
unknown, checkpoint compression is a simple so-
lution that can achieve better performance and with
no programmer burden.

3) The combination of compression-based and
increment-based optimizations yields the best per-
formance of these software-only methods.

Therefore, checkpoint compression can dramatically
improve application efficiency on large-scale machines.
Most importantly, this method can be combined with
other checkpoint optimizations to further improve appli-
cation efficiency.

B. Hardware and Multi-level Checkpointing

Next, we compare our checkpoint compression tech-
nique against the performance of two hardware-based
checkpoint optimizations. More specifically, we compare
against a local SSD checkpointing solution [40] and
a multi-level solution(SCR) that uses local and remote
memory, SSDs, a parallel file system, and a software
RAID to ensure reliability [11]. It is important to note
that these hardware checkpointing solutions are consid-
erably more expensive than a software only solution such

100
80
S
=~ 60
(]
C
2
L 40
]
20 - ickptrcompress —@—
compress
ickpt —&—
0 baselne —@—
O S % 6 & 2y Ty Ty T8 T O
2, %, D, %, %, %, "0, %, %, %,
> D 0 Y 9 Y 9 % Y Y
Socket Count
Fig. 5. Impact of the software-only optimizations checkpoint com-

pression and incremental Checkpointing on application efficiency.

as incremental and compression-based checkpointing. In
fact, the device reliability required for the SSD only
solution maybe prohibitively expensive even at smaller
scale as recent studies have shown that in 15% of
failures, the checkpoint cannot be recovered from current
SSD technology [11] and may require a highly reliable
backing store like a parallel file system. Also, the SCR
approach, in addition to using additional hardware, uses
a portion of on-node memory to store checkpoints. This
point is especially important for future extreme-scale
systems; with the dramatic core count increases, we are
moving from a compute-scare environment to one where
we have an abundance of compute cycles but a scarcity
of memory.

Again, we assume each process uses 2GB of memory
and checkpoints % of that memory. We also assume a 5
year MTBF and a per-process I/O rate of 1IMB/s for the
compression and incremental checkpointing case. For the
SSD only case, we assume a 2GB/s checkpoint commit
rate and a 8GB/sec checkpoint read rate. Lastly, for SCR,
we assume a per-process mean checkpoint commit rate
of 211MB/s for both read and write. This mean commit
rate is calculated from [41], where the authors presented
a user-space file system, CRUISE, which dramatically
improve the performance of SCR. The take-away here
is that the per-process checkpoint commit rates of these
hardware based solutions are several orders of magnitude
larger than the software solutions.

Figure 6 shows a comparison of compression with
the hardware-based techniques outlined in this section.
For comparison we also include the efficiency of stan-
dard rollback/recovery to the parallel filesystem shown
previously. From this figure we make the following
observations:

100

80 | \
IS
= 60 |
o
c
k]
8 40 |
hiT]
SSD
20 SCR ———
ickpt+compress ————
compress
0 baseline ————
0 Q. % 6 & P S N S
2, %, %, %, %, %, "%, %, %, %,
> > % D % % % b %

Socket Count

Fig. 6. Comparison of hardware/multi-level checkpointing techniques
with pure software techniques like compression and incremental check-
pointing

1) Asexpected, the hardware-based solutions perform
significantly better than the software solutions

2) The SSD only solution has nearly 100% efficiency
through the socket count tested, though as pointed
out previously recent work suggests this solution
may not be achievable.

3) The multi-level checkpointing approach which
uses multiple levels of the system storage and
can recover from all observed failures, performs
similarly to an SSD only approach.

4) The optimal software-only approach
(ickpt+compress), though two orders magnitude
slower commit speeds, only performs 20% worse
than the other approaches.

Not shown in this work is the combination of the SSD
and SCR approach with compression. At compression
rates observed on current architectures, these hardware
approaches perform slightly worse with compression.
This is due to the fact that the compression bandwidths
are considerably slower than the commit bandwidths and
the compression step becomes the performance bottle-
neck. At the compression speeds that might be expected
using an accelerator (e.g. a GPU), the combination
of compression with these hardware approaches shows
only marginal (less than 2%) increases in application
efficiency.

Overall, this shows the benefit of this compression
approach. With no application specific knowledge, no
additional hardware, minimal memory overhead, using
standard and freely available compression algorithms,
and using checkpoint commit bandwidths observed on
today’s systems, we can get within 20% of a costly
hardware solution. Compression based approach can

be made to be readily available to existing systems
while for the hardware based solutions we need to
make changes to existing systems and install hardware
to support it. In the next subsection we are going to
present the cost performance analysis for both the
systems.

C. Evaluating the cost of an SSD-based system

In this section, we examine the cost efficiency of these
hardware, software, and mixed methods. As hardware
based approaches require additional storage, we factor
monetary cost and performance for several NAND-based
SSD storage devices and compare this to the cost of
a software only approach. Although these devices have
higher throughput compared to disks drives, they also
have limited write-erase cycles and must be replaced
after a certain number of write cycles. There are three
types of NAND flash technology used in this compar-
ison: Single layer cell (SLC), Multi-level cell (MLC),
and and Three-level cell (TLC). These technologies vary
in both their storage density and write endurance, two
properties with an inverse relationship. Therefore, while
TLC provides cheap storage capacity, it does so at the
expense of durability and may fail after limited numbers
of writes.

To evaluate the costs for the hardware based solutions
in comparison to the top performing software-based
approach (i.e. incremental checkpointing with compres-
sion), we will compare the cost and amount of work
done for two equivalent systems. One of these systems
will be equipped with on-node SSD devices. For both
the systems we will calculate a total of five years of
operational life and assume that the system is completely
utilized (i.e. 100% utilization rate). As the efficiency
for the software and hardware based checkpoint-restart
optimizations are different, the amount of application
work done for a fixed five years of operation will be
different for both systems.

Each node of our hypothetical cluster contains 2
sockets per node, 8 cores per socket, 2GB/core mem-
ory and to support on node storage for checkpoints a
256GB SSD drive per socket. As the price per node of
future systems is expected to vary, we use a per node
price range from $500 to $3000. For both software and
hardware-based approach we will use the same node
configuration with the only difference in performance
due to the SSD device. The type of flash, name, write-
erase cycle number(f,qting) of the SSD drives used for
this study are given in Table III. In addition, the table
contains the number of weeks(t) till the device will be
saturated and the current maximum write-erase cycle

number (fq.) [42]. Based on this configuration data
and the range of per-node prices, we calculate the total
ownership cost per node for five years. We assume that
the the additional energy costs for the SSD devices
are negligible and both type of systems have equal
operational costs. The multilevel checkpointing solution
(SCR) also suffers an additional cost due to on-node
memory used for staging. We will not include this cost
in our calculations.

To quantify the SSD costs, we construct a simple
model to calculate the number of weeks till saturation
of the SSD device.

Scap X f = Nckpt X Nproc X Sckpt X t

where S.qp is the initial capacity of the SSD drive, f is
the write- erase cycle number, 7.k, is the number of
checkpoints being written for the job per week, np oc
is the number of processes writing the SSD, scip: is
the size of the checkpoint and ¢ is the total number of
weeks we can reliably use the SSD. Since we need to
replace SSD after every t weeks, and we are looking for
a five years operational life for our systems, we present
the total cost per node for a SSD-based system as follows

Ci = Cnode t+ 2 x Cssd X [%W

where c; is the total cost for node i, ¢joq4. 1S the price
of a node without the SSD device and c45q4 is the price
of the SSD device. Using the above two equations, we
calculate the total work done w; per dollar for each
node, 7, using the following equation

wXe
ci

w; =
where w is the total work, in our case 5 years of work
hours and e the efficiency of our system.

For a workload of 196000 processes, checkpointing
one third of 2G B of memory per process, we can use
Daly’s model to calculate that the total number of check-
points taken during a week long job is 760. Similar to
our previous discussion, we assume 8 process per socket
and one 256GB SSD per socket and use the efficiency
number presented in the previous subsection- 90.94% for
hardware-based system(SCR) and 71.025% for software-
based approach(compressed incremental checkpointing).
Using this model, we present the comparative costs of
these methods in Figure 7

Figure 7 shows that for lower per-node costs a soft-
ware based approach produces more work per dollar per
node and is more efficient. As the node prices increases,
however, the overhead due to the added SSD hardware

Type Name frating | t(weeks) | Price(USDA) fmaz

TLC Sansung 840Pro 750 474 200 2500

MLC | OCZ Revo drive 3 | 3000 189.5 460 10,000

SLC OCZ Z drive R2 | 100000 6315 4800 100,000
TABLE III

PRICES AND READ-ERASE CYCLE NUMBERS FOR SSD USED IN OUR MODEL

0.4

—TLC(750) —— TLC(2500)
—— MLC(10000) == SLC(100000)

MLC(3000)
Software-based

0.35

0.3

Work done per unit price per node

500 1000 1500

Node Price(USD)

2000 2500 3000

Fig. 7. Comparison of work done per unit price per node for a system
with different types of SSD device compared against software-based
solution. (higher is better).

is amortized and the hardware-based approaches perform
similar to the software based approach. Note, our model
assumes only checkpoint data is written to the SSD
devices and they wear uniformly and perform according
to their specifications. Several studies have shown that
depending on the write patterns, these devices can wear
out significantly faster; in some cases 10-30 times faster
than the device specified rating [43]. This makes our
model optimistic as SSD devices may need to replaced
more often. As a result, the hardware-based approaches
will have additional overheads.

VII. CONCLUSIONS

In this paper, we studied the performance limits
of checkpoint compression and put the results of this
technique in the context of the current state-of-the-
art in checkpointing. Specifically, we used information
theory to show that current compression techniques are
close enough to a theoretical optimal that no differ-
ence in application efficiency will be seen. In addi-
tion, we showed that a dramatic increases in compres-
sion speeds (factor of 100 or more) results in a less
than 15% increase in application efficiency. We showed
that checkpoint compression outperforms another popu-
lar software-based checkpoint optimization, incremental

checkpointing, and a combination of both leads to further
performance increases. Also, we showed that a compres-
sion+incremental checkpointing technique can get within
20% of the performance of the current state-of-the-art
in checkpointing, while not requiring additional costly
non-volatile storage. Finally, we studied the additional
cost of such non-volatile storage devices and showed
that our software-based checkpoint/restart optimization
produces more work per unit cost than the hardware-
based approaches as long as per-node procurement costs
are kept low. A remaining open question we are cur-
rently investigating is the power/energy considerations
of checkpoint compression and their impact on large-
scale systems.

REFERENCES

[1] B. Schroeder and G. A. Gibson, “A Large-scale Study of Fail-
ures in High-performance Computing Systems,” in Dependable
Systems and Networks (DSN 2006), Philadelphia, PA, June 2006.

[2] K. Ferreira, R. Riesen, P. Bridges, D. Arnold, J. Stearley, J. H. L.
III, R. Oldfield, K. Pedretti, and R. Brightwell, “Evaluating
the Viability of Process Replication Reliability for Exascale
Systems,” in SC. ACM, Nov 2011.

[3] D. Ibtesham, D. Arnold, P. G. Bridges, K. B. Ferreira, and
R. Brightwell, “On the viability of compression for reducing the
overheads of checkpoint/restart-based fault tolerance,” 2012 41st
International Conference on Parallel Processing, vol. 0, pp. 148—
157, 2012.

[4] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. De Supinski,
and R. Eigenmann, “MCRENGINE: A Scalable Checkpointing
System Using Data-Aware Aggregation and Compression,” in
High Performance Computing, Networking, Storage and Analysis
(SC), 2012 International Conference for, 2012.

[5] J. T. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” Future Gener. Comput. Syst., vol. 22,
no. 3, pp. 303-312, 2006.

[6] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A Survey of Rollback-recovery Protocols in Message-passing
Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375408,
2002.

[71 D. Z. Pan and M. A. Linton, “Supporting Reverse Execution
for Parallel Programs,” in 1988 ACM SIGPLAN and SIGOPS
Workshop on Parallel and Distributed Debugging (PADD ’88).
Madison, WI: ACM Press, 1988, pp. 124-129.

[8] K. Li, J. F. Naughton, and J. S. Plank, “Real-time, Concur-
rent Checkpoint for Parallel Programs,” in 2nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPOPP ’90). Seattle, Washington: ACM, 1990, pp. 79-88.

[91 N. H. Vaidya, “A case for two-level distributed recovery
schemes,” in ACM SIGMETRICS Joint International Conference
on Measurement and Modeling of Computer Systems, Ser.
SIGMETRICS ’95/PERFORMANCE °95. New York, NY,

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

USA: ACM, 1995, pp. 64-73. [Online].
//doi.acm.org/10.1145/223587.223596

J. Plank, K. Li, and M. Puening, “Diskless checkpointing,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 9,
no. 10, pp. 972-986, oct 1998.

A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski,
“Design, Modeling, and Evaluation of a Scalable Multi-level
Checkpointing System,” in ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC ’10), 2010, pp. 1-11. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.18

G. Stellner, “CoCheck: Checkpointing and Process Migration for
MPL” in International Parallel Processing Symposium. Hon-
olulu, HI: IEEE Computer Society, April 1996, pp. 526-531.

V. C. Zandy, B. P. Miller, and M. Livny, “Process Hijacking,” in
8th International Symposium on High Performance Distributed
Computing (HPDC "99), Redondo Beach, CA, August 1999, pp.
177-184.

J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint
filesystem for parallel applications,” in Conference on High
Performance Computing Networking, Storage and Analysis
(SC °09), 2009, pp. 21:1-21:12. [Online]. Available: http:
//doi.acm.org/10.1145/1654059.1654081

J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley, “Memory
Exclusion: Optimizing the Performance of Checkpointing Sys-
tems,” Software — Practice & Experience, vol. 29, no. 2, pp.
125-142, 1999.

Y. Chen, K. Li, and J. S. Plank, “CLIP: A Checkpointing Tool
for Message-passing Parallel Programs,” in SuperComputing
’97, San Jose, CA, 1997. [Online]. Available: http://citeseer.ist.
psu.edu/chen97clip.html

E. N. Elnozahy, D. B. Johnson, and W. Zwaenpoel, “The Perfor-
mance of Consistent Checkpointing,” in //th IEEE Symposium
on Reliable Distributed Systems, Houston, TX, 1992. [Online].
Available: http://citeseer.ist.psu.edu/elnozahy92performance.html
G. Bronevetsky, D. Marques, K. Pingali, S. McKee, and R. Rug-
ina, “Compiler-enhanced incremental checkpointing for OpenMP
applications,” in IEEE International Symposium on Paral-
lel&Distributed Processing, 2009, pp. 1-12. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1586640.1587642

K. Li, J. F. Naughton, and J. S. Plank, “Low-Latency, Concurrent
Checkpointing for Parallel Programs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 5, no. 8, pp. 874-879,
August 1994.

J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Trans-
parent Checkpointing under Unix,” in USENIX Winter 1995
Technical Conference, New Orleans, LA, January 1995, pp. 213—
224.

K. B. Ferreira, R. Riesen, R. Brightwell, P. G. Bridges, and
D. Arnold, “Libhashckpt: Hash-based Incremental Checkpointing
Using GPUS,” in Proceedings of the 18th EuroMPI Conference,
Santorini, Greece, September 2011.

C.-C. Li and W. Fuchs, “CATCH-compiler-assisted techniques
for checkpointing,” in Fault-Tolerant Computing, 1990. FTCS-
20. Digest of Papers., 20th International Symposium, jun 1990,
pp. 74-81.

A. Moshovos and A. Kostopoulos, “Cost-Effective, High-
Performance Giga-Scale Checkpoint/Restore,” University of
Toronto, Tech. Rep., November 2004.

J. S. Plank and K. Li, “ickp: A Consistent Checkpointer for
Multicomputers,” Parallel & Distributed Technology: Systems &
Applications, IEEE, vol. 2, no. 2, pp. 62—-67, 1994.

J. S. Plank, J. Xu, and R. H. B. Netzer, “Compressed
Differences: An Algorithm for Fast Incremental Checkpointing,”
University of Tennessee, Tech. Rep. CS-95-302, August 1995.
[Online]. Available: http://web.eecs.utk.edu/~plank/plank/papers/
CS-95-302.html

Available: http:

10

[26]

[27]

[28]

[29]
[30]
[31]
(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. W. Young, “A first order approximation to the optimum
checkpoint interval,” Commun. ACM, vol. 17, no. 9, pp.
530-531, Sep. 1974. [Online]. Available: http://doi.acm.org/10.
1145/361147.361115

A. Geist et al., “Fault management workshop final report,” U.S.
Department of Energy, Tech. Rep., August 2012.

M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving Performance
via Mini-applications,” Sandia National Laboratory, Tech. Rep.
SAND2009-5574, 2009.

S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molec-
ular Dynamics,” Journal Computation Physics, vol. 117, pp. 1-
19, 1995.

P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/restart
(BLCR) for Linux Clusters,” Journal of Physics: Conference
Series, vol. 46, no. 1, 2006.

J. G. Elytra, “Parallel Data Compression With Bzip2.”

P. Deutsch, “Deflate Compressed Data Format Specification.”
[Online]. Available: ftp:/ftp.uu.net/pub/archiving/zip/doc

A. Tridgell, “Efficient Algorithms for Sorting and Synchroniza-
tion,” Ph.D. dissertation, Australian National University, February
1999.

“TZip Project Official
http://www.7-zip.org

N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar,
M. Paun, and S. L. Scott, “Reliability-Aware Approach: An
Incremental Checkpoint/Restart Model in HPC Environments,”
in Proceedings of the 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid, ser. CCGRID
’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 783-788. [Online]. Available: http://dx.doi.org/10.1109/
CCGRID.2008.109

C. E. Shannon, “A mathematical theory of communication,” The
Bell System Technical Journal, vol. 27, pp. 379-423, 623—, july,
october 1948.

A. Colic, H. Kalva, and B. Furht, “Exploring nvidia-cuda for
video coding,” in Proceedings of the first annual ACM SIGMM
conference on Multimedia systems, ser. MMSys ’10. New
York, NY, USA: ACM, 2010, pp. 13-22. [Online]. Available:
http://doi.acm.org/10.1145/1730836.1730839

B. Schroeder and G. A. Gibson, “Understanding Failures in
Petascale Computers,” Journal of Physics Conference Series,
vol. 78, no. 1, 2007.

S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and
W. Allcock, “I/O performance challenges at leadership scale,”
in Conference on High Performance Computing Networking,
Storage and Analysis (SC '09), 2009, pp. 40:1-40:12. [Online].
Available: http://doi.acm.org/10.1145/1654059.1654100

S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Op-
timizing checkpoints using nvm as virtual memory,” in Pro-
ceedings of the nternational Parallel and Distributed Processing
Symposium, ser. IPDPS *13. New York, NY, USA: ACM, 2013.
R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. D. Panda,
“A 1 pb/s file system to checkpoint three million mpi tasks,”
in Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing, 2013, pp. 143—
154.

AnandTech, “Understanding TLC NAND,” 2012, http://www.
anandtech.com/show/5067/understanding-tlc-nand/2.

R. Templeman and A. Kapadia, “Gangrene: Exploring the
mortality of flash memory,” in Proceedings of the 7th USENIX
Conference on Hot Topics in Security, ser. HotSec’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 1-1. [Online].
Available: http://dl.acm.org/citation.cfm?id=2372387.2372388

Home Page.” [Online]. Available:

