LA-UR-14-20940

Approved for public release; distribution is unlimited.

Title: UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM
SYMMETRY BREAKING

Author(s): Zurek, Wojciech H.
Del Campo, Adolfo

Intended for: arXiv

Issued: 2014-02-13

e
)
» Los Alamos

MATIONAL LABORATORY
EST.1543

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National

Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to

publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the

U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



1310.1600v3 [cond-mat.stat-mech] 13 Nov 2013

arxXiv

November 14, 2013 1:19 WSPC - Proceedings Trim Size: 9in x 6in  reviewKZMv2

UNIVERSALITY OF PHASE TRANSITION DYNAMICS:
TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING
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I Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

2 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM
87545, USA

To Tom W. B. Kibble, on occasion of his 80" birthday.

In the course of a non-equilibrium continuous phase transition, the dynamics
ceases to be adiabatic in the vicinity of the critical point as a result of the crit-
ical slowing down (the divergence of the relaxation time in the neighborhood
of the critical point). This enforces a local choice of the broken symmetry and
can lead to the formation of topological defects. The Kibble-Zurek mechanism
(KZM) was developed to describe the associated nonequilibrium dynamics and
to estimate the density of defects as a function of the quench rate through
the transition. During recent years, several new experiments investigating for-
mation of defects in phase transitions induced by a quench both in classical
and quantum mechanical systems were carried out. At the same time, some
established results were called into question. We review and analyze the Kibble-
Zurek mechanism focusing in particular on this surge of activity, and suggest
possible directions for further progress.

Keywords: topological defects; phase transitions; Kibble-Zurek mechanism;
spontaneous symmetry breaking.

1. Introduction

The aim of this paper is to provide a limited review of the experiments that
test the Kibble-Zurek mechanism (KZM): we shall focus on the experiments
that test the scaling of the number of topological defects with the quench
rate predicted by the KZM. This self-imposed restriction limits the number
of the relevant experiments to a manageable total. It is also a sign that
the field — that has its roots in the seminal papers of Tom Kibble!? — has
matured, so that the question that was initially most pressing (i.e., whether
topological defects form at all via KZM) has been by now answered in the
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affirmative in a variety of systems, although *He remains a confounding

exception.!”18

The scaling of the defect density with the quench rate — prediction of
the non-equilibrium effect using equilibrium critical exponents'?2° — is the
key testable consequence of the KZM. However, the resulting dependence
of the size of the domains where symmetry can be broken “in unison” is
usually given by a power law with a small fractional exponent. Therefore,
to detect a significant variation in the defect density one needs to vary
quench rates over a large range. This tends to be difficult in the traditional
thermodynamic phase transition experiments. For instance, cooling (that
can lead to a symmetry breaking transition) will typically result in tem-
perature gradients inside the bulk of the system that can suppress defect
formation,?!:2? but it can also drive convection that can create defects, such
as vortex lines in superfluids, independently of the KZM.!718

There are several reviews of the subject starting with?® and more re-
cent monographs?*2® that discuss the KZM, its consequences, and related
phenomena in phase transitions. As is also the case with this review, all of
these reviews cover only selected fragments of the field either because (as
a result of recent developments) they are out of date, or because they are
focused on specific subfields (e.g., quantum phase transitions). We focus on
the (mostly recent) experiments that test scalings predicted by the KZM
and the related theoretical developments.

2. The Kibble-Zurek mechanism

Consider the dynamics of spontaneous symmetry breaking in the course
of a phase transition induced by the change of a control parameter A. A
continuous second-order phase transition is characterized by the divergence
(usually as a power-law) of both the equilibrium correlation length &

€o
£(e) = = (1)
lel”
and equilibrium relaxation time 7
70
T(e) = = (2)
|E|ZV

as a function of the distance to the critical point A.. It is convenient to
define the reduced distance parameter
Ae — A
E =
Ae

(3)
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in terms of which the system initially prepared in the high-symmetry phase
(e < 0) is forced to face a spontaneous symmetry breaking scenario as the
critical point is crossed towards the degenerate vacuum manifold (¢ > 0).

In Eq. (1), v is the correlation length critical exponent, while z in Eq.(2)
is the dynamic critical exponent. Different systems belonging to the same
universality class share the same critical exponents. Above, £ and 7y are
dimensionful constants that depend on the microphysics in contrast with
v and z that depend only on the universality class of the transition. The
Kibble-Zurek mechanism (KZM) describes the dynamics of a continuous
phase transition under a time-dependent change of A across the critical
value. The time-dependence A(t) in the proximity of . can usually be
linearized. Therefore, we assume a linear quench

A(t) = A1 — e (t)] (4)

symmetric around the critical point so that the reduced parameter is char-
acterized by the quench time 7g and varies linearly in time according to

() = — (5)

in ¢t € [-71g, 7g], the critical point being reached at ¢t = 0. Far away from
the critical point |A] > A., the equilibrium relaxation time is very small
with respect to the time remaining until reaching the critical point fol-
lowing the quench (5), and the dynamics is essentially adiabatic. In the
opposite limit, in the close neighbourhood of €(t) = 0, the dynamics is ap-
proximately frozen due to the divergence of the equilibrium relaxation time
(critical slowing down). The system is then unable to adjust to the exter-
nally imposed change of the reduced control parameter €(t). Exploiting this
intuition,'? the KZM splits the dynamics into the sequence of three stages
where the dynamics is adiabatic, effectively frozen, and adiabatic again,
as ¢(t) is varied from () < 0 to e(t) > 0. See figure 1 for a schematic
representation.

This simplification, often referred to as the adiabatic-impulse approxi-
mation, captures the essence of the non-equilibrium dynamics involved in
the crossing of the phase transition at a finite rate. The inability of the col-
lective degree of freedom that defines the order parameter to keep up with
the change imposed from the outside is the essence of the freeze-out. This
does not mean that all of the evolution in the system stops, or even that
the evolution of the order parameter ceases completely: the microstate of
the system will of course evolve as dictated by its (time-dependent) Hamil-
tonian, and even the local thermodynamic equilibrium of the microscopic
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adiabatic adiabatic

Fig. 1. Schematic representation of the freeze-out captured by the adiabatic-impulse
approximation. During a linear quench, the reduced control parameter ¢ = t/7¢ forces
the system to cross the critical point from the high symmetry phase (¢ < 0) to the low
symmetry phase (¢ > 0). Due to divergence of the equilibrium relaxation time, associated
with the critical slowing down in the neighbourhood of € = 0, the order parameter of the
system ceases to follow the equilibrium expectation value and enters an impulse stage
within the time interval [—£,].

degrees of freedom may be maintained. However, the order parameter will
cease to follow its equilibrium value, and it will be able to catch up with
it locally, to the extent allowed by the presence of topological defects, only
after the critical point has been passed, usually with a delay of about , as
illustrated, for example, by numerical simulations of BEC formation.2’
The boundary between the adiabatic and frozen stages can be estimated
by comparing the equilibrium relaxation time with the time elapsed after

crossing the critical point

T(t) = |e/e] = t. (6)
This equation'® yields the time scale

t~ (T()TZV) T , (7)

known as the freeze-out time. The degrees of freedom of the system relevant
for the selection of broken symmetry cannot keep up with the externally
imposed change of ¢, and, consequently, the order parameter of the system
lags behind its equilibrium value corresponding to the instantaneous value
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of & within the interval € € [—¢, €], where

1
= |e(d)| ~ <E) o (8)
TQ

Spontaneous symmetry breaking entails degeneracy of the ground state.
In an extended system, causally disconnected regions will make independent
choices of the vacuum in the new phase. A summary of the topological
classification of the resulting defects using homotopy theory is presented in
the Appendix A. The KZM sets the average size of these domains by the
value of the equilibrium correlation length at &,'°

E=¢ldl =& (:-f) (9)

This is the main prediction of the KZM.

This simple form of a power law of ¢ (and, consequently, of é) arises
only when the relaxation time of the system scales as a power law of e.
This need not always be the case. For example, in the Kosterlitz-Thouless
phase transition universality class, of relevance to 2D Bose gases, the critical
slowing down is described by a more complicated (exponential) dependence
on €. A more complex dependence of ¢ and é on 7 (rather than a simple
power law) would be then predicted as a result.>°

The above estimate of the é is often recast as an estimate for the result-
ing density of topological defects,

éd 1 T0 (Did)ﬁ
SPUR S <—) , (10)
&P & Q
where D and d are the dimensions of the space and of the defects (e.g.,
D = 3 and d = 1 for vortex lines in a 3D superfluid). This order-of-
magnitude prediction usually overestimates the real density of defects ob-
served in numerics. A better estimate is obtained by using a factor f, to
multiply é in the above equations, where f ~ 5— 10 depends on the specific
model.2?:31"35 Thus, while KZM provides an order-of-magnitude estimate
of the density of defects, it does not provide a precise prediction of their
number. However, if one were able to check the power law above, one could
claim that the KZM holds and show that the non-equilibrium dynamics
across the phase transition is also universal. This requires the ability to
measure the average number of excitations after driving the system at a
given quench rate, and repeating this measurement for different quench
rates.
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3. Landau-Zener crossing as a quantum example of the
KZM

Landau®® and Zener3” (see as well Stueckelberg®® and Majorana3?) pro-

vided an analytical description of the diabatic excitation probability in a
two-level quantum mechanical system described by a Hamiltonian Ho in
which the energy gap between the two states varies linearly in time. Using
dimensionless units for all variables,

o t/TQ 1 _io,z s
HO_( 1 —t/TQ(t))_TQ I )

where o%¥# are the usual Pauli matrices, and for which the instantaneous
eigenbasis reads:

[ () = sin(6/2)]1) + sin(6/2) 2),
|1 (1)) = —sin(8/2)[1) + cos(8/2)]2).

The angle 6 € [0, 7] obeys the relations

1
cos@:; sinf =

V142 V142

in terms of the reduced variable

g=—. (12)

The exact energy gap is Eq(t) — E|(t) = V1 + €2. The Landau-Zener (LZ)
formula states that the excitation probability decays exponentially with the
quench time

P=e"%7Q, (13)

Above, time is measured in units given by the inverse of the gap in Eq. (11)
at its minimum. This results has been extended to multi-state problems?% 43
as well as nonlinear modulations of £(t).4445

Damski has shown that the quantum dynamics across a Landau-Zener
(LZ) transition is accurately described by the adiabatic-impulse approxi-
mation, and ultimately, by the KZM.*6 The freeze-out time scale can be
estimated by matching the inverse of the energy gap with the time scale

le/€l
L i (14)
1+ (t/mq)?
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) 5 1/2
where « is a constant. It follows that &€ = ¢/7g = \% { 1+ (L) — 1} .

aTQ
One can then consider the case where the system is initialized at a time
t; < —t and evolved until a final time tr> t. The impulse stage occurs in
the interval [—f,ﬂ and the excitation probability can then be approximated
by

562

P= |t O O = 177 (15)

Using the estimate for £, one finds that P = 1 — arg/2 + (a1g)?/2 + .. ..
The optimal value o = 7/2 can be extracted from the comparison with the
exact solution of the LZ problem.*” This result agrees with the LZ formula
up to third order in 7.

Exploiting the adiabatic impulse approximation, one can consider as
well asymmetric quenches, such as when t; = 0, for which

P= It OILO)F =5 - s (16)

Its expansion, P = 1 — 1, /a7g + %(047'@)3/2 + ..., matches well the exact

result for o ~ /4.4

1
2
7

Density of topological defects

Il
=}

0.0 0.2 0.4 0.6

Fig. 2. Experimental optical simulation of the quantum dynamics across a LZ crossing
supporting the adiabatic-impulse approximation. The measured density of excitations
(green dots) agrees with the exact solution (solid green line) and the estimate based on
the adiabatic-impulse approximation.*® From Xu et al.*8

An experimental demonstration of the KZM-LZ connection,*S the pos-
sibility of describing a LZ crossing using the adiabatic-impulse approxi-
mation which is a core feature of the KZM, has recently been achieved
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using a linear optical quantum simulator at the Key Laboratory of Quan-
tum Information.*® A second experiment in the same center, this time in
a semiconductor electron charge qubit, has further confirmed the universal
validity of the adiabatic-impulse approximation.*?

3.1. Controlling excitations in Landau-Zener crossing

Excitations formed during a LZ crossing at an arbitrary finite-rate can
be completely suppressed by counterdiabatic driving. This method was in-
troduced by Demirplak and Rice,’® and Berry,”' and is also referred to
as the transitionless quantum driving. Provided that one can diagonalize
the Hamiltonian of interest Ho[A(t)] (that is, find its instantaneous eigen-
states [n(\)) and eigenvalues E,, (\)) for every A(t), it is possible to enforce
the dynamics exactly through the adiabatic manifold using counterdiabatic
fields (i.e., the fields that allow one to cross the adiabatic-impulse regime
fast, but without the usually inevitable excitations). Indeed, the adiabatic
approximation

Ynlt) = exp (—;L / NG / t<n|at/n>dt') n®)  (17)

to Ho [A(t)] becomes the exact solution of the time-dependent Schrédinger
equation with the Hamiltonian H = Hg + H1, where
Hy = iXN(8) Y _[|oan)(n| = (n]dxn)|n)(n]]. (18)
Counterdiabatic driving has been demonstrated experimentally in an
effective two-level system realized with a Bose-Einstein condensate in the

1.52 This type of assisted quantum

presence of an optical lattice potentia
adiabatic passage has also been implemented in an electron spin of a single
nitrogen-vacancy center in diamond.”® For the LZ crossing with A(t) =

t/7q, one finds that the counterdiabatic field reduces to
1 A Y
Y.
21 1+ (t/19)?
Counterdiabatic driving is currently finding an increasing number of

applications in quantum control,>* quantum information processing,’® BEC
and ultra cold atom physics,® and other fields.?®

Hy = (19)

4. Quantum phase transitions

We have seen that two-level systems constitute an ideal platform to test the
adiabatic-impulse approximation, a key ingredient of the quantum KZM.
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However, KZM also predicts the typical size of the domains in the bro-
ken symmetry phase resulting from a finite-rate crossing of a critical point,
i.e., it estimates the average distance between topological defects. To an-
alyze this aspect it is required to consider spatially extended systems. A
wide variety of condensed-matter systems and statistical mechanics models
exhibiting quantum phase transitions offer a test-bed for these predictions.
Quantum phase transitions are characterized by abrupt changes in the
ground-state properties of a many-body systems as a control parameter
is tuned.®” In experimental realizations this control parameter is typically
an external field such as a magnetic field acting on spins, a laser field
in trapped ion systems or and optical lattice potential in ultracold atom
quantum simulators.?7>3
The extension of the KZM to quantum phase transitions was eluci-
5962 and is by
now well-documented.?”2® A paradigmatic example is the one-dimensional
quantum Ising chain described by the Hamiltonian

dated by studying the dynamics in quasi-free fermion models,

N
== [9t)oy +oronp], (20)
-1

o

where g(t) plays the role of a magnetic field, which has a critical point
at |g.| = 1. Remarkably, this model describes certain magnetic condensed
matter systems®? and its quantum emulation, e.g., in ion traps, is the sub-
ject of ongoing efforts.®® A quantum phase transition occurs between a
paramagnetic phase (Jg| > 1) and a doubly-degenerate ferromagnetic phase
(lgl < 1).

Consider the time-dependent quench g(t) = —t/7g with t € (—00,0).
One can quantify the breakdown of adiabaticity dictated by the KZM using
the average number of excitations for a given quench rate ending at g = 0,

n= g S~ (oion)] (21)
k=1

Using standard techniques (a combination of the Jordan-Wigner transfor-
mation and Fourier transform), Dziarmaga was able to rewrite the system
as a set of independent Landau-Zener crossings.®’ In the thermodynamic
limit (N > 1), the density of kinks can then be approximated by

1 s

n=— dk, 22

2 J_ . Pk (22)
where py, is the probability of excitation in each mode. In view of the appli-
cability of the adiabatic-impulse approximation to each level, the dynamics
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across the critical point might be expected to be described by the KZM.
The resulting amount of excitations is found to scale as n o 7, 12 This
result is based on an exact solution of the dynamics for the Ising model.*"-6°
However, it can be extended to an arbitrary D dimensional Hamiltonian
H[A(t)], with a quantum critical point characterized by critical exponents

(D—d)v
vz+1

27,28

v and z, leading to the estimate n o 7’(; , seef! and the reviews.

5. Adiabatic crossing of quantum phase transition

Counterdiabatic driving®®®! has been extended to many-body systems and
to quasi-free fermion models exhibiting a quantum phase transitions.%> Con-
sider the family of D dimensional model Hamiltonians,which can be decom-
posed into the sum of uncoupled k-mode Hamiltonians,

Ho =D i [@(M(®)) - ] Y (23)

k
where the Pauli matrices in the mode k are ok = (0f,01,0%).
1/111 = (cLl,cL ,) are fermionic operators. The function ax(\) =

(ag(N),afl(N), ai(N)) is specific for each model.?” Examples of quantum
critical models within this family are the Ising and XY models®” in D = 1,
and the Kitaev model in D = 1,2.56:67 Ag quasi-free fermion models, they
can be written down as a sum of independent Landau-Zener crossings. The
dynamics across the the quantum critical point can be driven through the
adiabatic solution associated with H, under the action of the modified
Hamiltonian H = o + 71, where the counterdiabatic term is given by%>

o= N () Zk: WI(A)I?W‘ (@) % (V) -Gl (24)

The auxiliary Hamiltonian H, involves highly non-local pairwise interac-
tions in the fermionic representation and many-body interactions in the
spin representation, accessible in quantum simulators.%® 70 If the range of
the auxiliary Hamiltonian #; is restricted to a value M (which is equiv-
alent to include up to M-body spin interactions), an efficient suppression
of excitations occurs in modes with k& > 1/M, as explicitly verified in the
1D quantum Ising model.%5 Simpler forms of the auxiliary Hamiltonian
are obtained whenever 7, contains exclusively homogeneous spin interac-
tions,”" as in the Lipkin-Meshkov-Glick model.”



November 14, 2013 1:19 WSPC - Proceedings Trim Size: 9in x 6in  reviewKZMv2

11

6. The KZM and transitions between steady states

As we have noted already in the introduction, experimental tests of the
power law scaling predicted by the KZM are difficult, since the exponent
that governs the dependence of é on 7 is usually fractional, and often
much less than 1. It is therefore no surprise that the earliest experiments
that were devised to test the KZM scaling were carried out in transitions
between distinct non-equilibrium steady states (rather than between dif-

7376 where implementing the quench

ferent equilibria) in driven systems,
is often easier. In such systems — for example, in Rayleigh-Bénard convec-
tion — the broken symmetry can be associated with convective flows driven
by thermal gradients in presence of an external potential (e.g., gravity).
Topological defects are the imperfections in the arrangement of these far
from equilibrium convective patterns. For example, the lattice of normally
hexagonal Bénard cells may exhibit lattice defects.

The effective field theory (such as a suitable version of the Ginzburg-
Landau model) is often used to represent symmetry breaking associated
with the formation of such steady-state structures. One can therefore expect
(based on this Ginzburg-Landau connection) that some of the features of
the dynamics of symmetry breaking predicted by the KZM for equilibrium
phase transitions can be also detected in the transitions between distinct
non-equilibrium steady states that exhibit different symmetries. This was
indeed the case in the nonlinear optical system.”™ However, more recent
experiments (see e. g.77) present a richer and more complicated picture.
Indeed, the very nature of such steady state phenomena (e.g., the fact that
defects appear in an order parameter defined by the lattice of relatively
large, Bénard cell sized structures) suggests caution in applying the KZM
to transitions between distinct non-equilibrium states that exhibit different
broken symmetries. The concepts such as “the relevant speed of sound” or
the “sonic horizon” and, especially, the ideas underlying renormalization
group (that are natural in the equilibrium second-order phase transitions,
where the KZM was developed) are not directly applicable to switching
between distinct non-equilibrium steady states.

This inapplicability of renormalization is not a concern in the thermo-
dynamic or quantum phase transitions where many orders of magnitude
usually separate, e.g., the healing length, from the microscopic scales that
determine the basic physics. This scale separation allows for the indepen-
dence of the physics that governs dynamics of the order parameter (and,
hence, e.g., the size of the sonic horizon) from the underlying microphysics.
However, when one cannot appeal to renormalization, scalings deduced from
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the KZM need not hold, or could be only an approximation.

An interesting and instructive recent example of the extent to which the
KZM can be used as a guide in such more general class of symmetry break-
ing phenomena even when the underlying dynamics does not yield itself to
renormalization (or, indeed, to modeling of the order parameter in terms
of partial differential equations) is offered by experiments™ and computer
simulations.” " In this case what happens is in qualitative agreement with
KZM, but does not follow its predictions in detail. A quantum example of
an oversimplified model of the Bose-Einstein condensation that did seem
to approximately follow the KZM even though the usual BEC order pa-
rameter did not enter the discussion, and the dynamics was represented by
transitions between discrete — as in Ref.”™
time ago.50

In spite of these caveats, the transitions between steady states have
provided suggestive early evidence of KZM “mean field” scalings.”™ Recent
interesting work (see,”®™ and references therein) can be regarded as an
attempt to formulate an extension of KZM that might be, possibly in only
an approximate way, valid even where there is no scaling traceable to renor-

— states was also analyzed some

malization, and even where partial differential equations cannot be used to
represent bifurcation-like processes under study.

7. Winding Numbers in Loops

The earliest prediction!? of scaling of the topologically nontrivial configu-
rations induced by phase transition dynamics concerned winding numbers
(and the resulting flows) in annular superfluid containers, see Fig. 3. The
basic reasoning is straightforward: consider an annulus of circumference C
that contains a substance which, as a result of a change in the external
parameters, becomes a superfluid (or superconductor). When the charac-
teristic healing length set by the phase transition dynamics is é ,and C > é
while the width of the annulus is small so that it can be regarded as effec-
tively one-dimensional loop, there will be

N ~ (25)

s Y

sections of the annulus that independently select the phase of the conden-
sate wavefunction. As a consequence of the resulting random walk of phase
the typical net phase mismatch accumulated over the length C of the loop
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Fig. 3. When a superfluid transition occurs in an annular container with the width
comparable to the frozen-out healing length f , distinct domains will choose the phase of
the superfluid wavefunction independently. There will be then N ~ C/f of such domains
with randomly chosen phase, or, in other words, along the circumference C = 27R a

phase mismatch A© ~ \/C/f will appear as a consequence of such random walk. The
resulting phase gradient implies that a quantized, persistent flow can be induced by the
KZM in a superfluid transition.

will be given by!?

AO ~ /N ~ \/g (26)

This net phase mismatch implies an average winding number:

AO
W~ —. (27)
27
After the phase ordering has smoothed out the domains, the resulting su-
perfluid will flow with the velocity given by the phase gradient:

~— [ —. (28)

In the case of superconductors similar reasoning??® leads to magnetic field
trapped inside C corresponding to the number of quanta given by W.

The basic idea of a random walk in phase resulting in the non-zero
winding number has been successfully tested in the experiment involving
a loop that was deliberately divided into N = 214 superconducting sec-
tions by “weak links”.” When the loop was reconnected into a single super-
conducting ring, flux quanta were trapped inside. Over many runs of this
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experiment, the resulting quantized magnetic flux had an approximately
Gaussian distribution with the dispersion (related to the typical winding
number) well approximated by the KZM-like Eqs. (26) and (27).

By the very nature of the above reconnection experiment, the quench
rate of the transition was irrelevant, and, indeed, not well defined: the size
of the “domains” that can choose the same phase was set by the distance
between the weak links, so that the number of such domains was constant
(N = 214), and hence independent of the quench rate.

The dependence of the typical trapped winding numbers on the quench
rate is difficult to test in the laboratory. The expected power law is even

|14

smaller (by a factor of 2) than the already small fractional power 17 that

governs the size of é . Moreover, the quench should be uniform — it must
happen nearly simultaneously in the whole annulus — for, otherwise, the
speed of the relevant sound may exceed the speed of the transition front, so
the regions that “go superfluid” first will communicate their choice of the
phase selection to the neighborhood, and the resulting winding numbers
can be suppressed.?!:22

Numerical simulations of the stochastic Gross-Pitaevskii equation,?
such as those in figure 4, confirm this general paradigm and verify the
KZM-predicted scalings. They also show how sensitive the resulting wind-
ing number is to the imperfections in the implementation of the transition.
Such difficulties have so far hampered experimental verification of the KZM-
predicted winding number scaling with the transition rate in, e.g., gaseous
BEC’s.

9

7.1. Trapping flux in small loops

An interesting and successful set of increasingly sophisticated experiments
that yielded a power law was carried out in small superconducting systems
with the topology of an annulus: tunnel Josephson junctions and small
superconducting loops.31# In this regime ¢ <« é, so that the winding
numbers other than W = 0, &1 are exceedingly unlikely, and the natural
observable in this case is the frequency of trapping a winding number |W| =
1.

As the random walk takes no more than one step, the square root of
Eq. (26) is no longer relevant, and it is reasonable to expect changes in
the power law scaling with the quench rate. This general conclusion was
reached using field-theoretic methods to predict doublinglof the power law

compared with the C > é regime.®> Thus, when é ~ TQZ (as is expected
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Fig. 4. Sequence of snapshots of isodensity surfaces during the growth of a BEC in a
toroidal trap resulting in the formation of a superfluid current, modeled by the stochastic
Gross-Pitaevskii equation.?? The color coding describes the phase of the condensate
along the ring. An early stage is characterized by large density and phase fluctuations.
As the condensate growth there is a coarsening of both phase and density fluctuations
that result in the appearance of solitons. The final estate exhibits a uniform density and
winding number W = 1.

in low-temperature superconductors), Ref.%> predicted exponent of 1 for
the scaling of typical winding numbers when C < é (as opposed to the
exponent g valid for C > ¢, Eq. (26)).

Initial experiments®! yielded power law of the frequency of trapping a
fluxon consistent with this prediction. However, later (and more refined
and presumably more accurate) experiments®® resulted in a steeper slope
with the exponent close to 0.5 as shown in figure 5, i.e. twice the prediction
of Ref.8® This discrepancy was puzzling. Moreover, experiments on small
superconducting loops by Monaco et al.8¢ reported similar scaling of the
frequency of trapping with the exponent of 0.62 + 0.15. This exponent is
consistent with 0.5, again four times the slope expected for the scaling of
typical W in the C > é regime. The discrepancy with the initially antic-
ipated scaling® in the tunnel Josephson junctions was attributed to the
possible fabrication problems and the resulting “proximity effect”.®3

The resolution of the mystery that does not call on fabrication problems
and resulting complications may be assisted by the recent observation®
that in the regime of small loops, C <« é , dispersion of the winding numbers
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Fig. 5. Scaling of the frequency fi of trapping a single fluxon with winding number
[W| =1 in annular Josephson tunnel junctions as a function of the quench rate 7¢. Each
point is the result of averaging over many thermal cycles. A fit to a power law f1 = a'réa

leads to a = 0.51. From Monaco et al.3 Copyright 2006 American Physical Society.

/(W?) scales differently than (|[W]). Indeed, (|W|) scales as probabilities
(and, hence, frequencies) of WW| = 1 while the dispersion scales as a square
root of that probability. Therefore, it appears to us that the prediction
of doubling of the scaling exponent of Ref.®" is relevant to the dispersion

(W?), while in the experiments that measure frequency of detection of
[W)| = 1 one should expect four times the slope of the dispersion in the large-
loop regime, C > £. With this revision®” of the original expectations,3?
the experiments on tunnel Josephson junctions as well as on the small
superconducting loops are in excellent agreement with the predictions of
the KZM and can be regarded as its verification (albeit in the mean field
case).

The reason for the quadrupling (rather than just a simple doubling) of
the power law for frequencies as well as for typical winding numbers char-
acterized by (W) is straightforward.®” We first note that the charges of
topological defects created by the quench are anticorrelated.®® This is re-
flected in the Egs. (26) and (27) that recognize the phase of the condensate
as the fundamental random variable. By contrast, if charges were assigned
at random, typical VW would be given by the square root of the number of
defects subtended by the circumference C. Thus, for C > é , when the con-
tour contains many defects of both charges, random distribution of charges
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would be directly proportional to the circumference (rather than its square
root, Eq. (26)).

This scaling of typical W with C can be recovered in a simple mode
where pairs of the oppositely charged defects are randomly scattered on a
plane (see Fig. 6). The sizes of the pairs, as well as their separations, are

187

Fig. 6. The winding number for the circumference C (the circle above) due to vortex-
antivortex pairs scattered randomly on a plane. Contribution of the pairs that are com-
pletely outside or completely inside C vanishes: only pairs that straddle the contour
contribute to YW. The number of such pairs is proportional to the circumference C. Note
that pairing illustrated above is in a sense imaginary (as is suggested by the right hand
side of the figure, where pair assignements are invisible), as there is generally no unique
“correct” way to combine vortices and antivortices into pairs. Nevertheless, the recogni-
tion of pairing leads to correct scaling of winding numbers with C. When loops are so
small that typically, at most only one end of a pair “fits inside”, scaling changes, see Fig.
7. From Zurek.8” ©IOP Publishing. Reproduced by permission of IOP Publishing. All
rights reserved.

presumably of the order of f . The typical winding number is then given by
the square root of the number of pairs disected by the C, which leads to the
scaling of Eq. (26).
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The heuristic picture of the generation of the winding number is then
straightforward. The quench results in a random configuration of the order
parameter deposited inside C. Instead, we can imagine an infinite plane
with all configurations of the order parameter left behind by the transition
pockmarked by defects and sampled at random by dropping the contour C
at random locations. When defects are paired up (as their anticorrelations
suggest) and C > £, the scaling of Eq. (26) is easily recovered (see Fig. 7).
By contrast, when C < é , most of the loops tossed on the plane will end

log (winding number W) —»

| | | L 5
>

1 2 3 4
log (number of defects (n)) —

Fig. 7. The tilt of the scaling of the dispersion, 1/(W?), its square, and the average
(JW]) of the winding numbers is expected to change with the number of defects trapped
inside C when (n) ~ 1.87 For loops that trap many defects, (n) > 1, the dispersion

and the average absolute value of W scale similarly, \/(W?2) ~ |[W| ~ 1/C/€. However,
different tilts, corresponding to the exponents that control the slopes of the dispersion

and (JW)), set in as (n) < 1. Compared to 1/C/€, the slope of the dispersion doubles,

VW2 ~ \/Zc/é while the slope of the average absolute value quadruples so that
(W) ~ pjw =1 ~ Ac /€% ~ (W?) when (n) < 1, where A¢ is the area enclosed by the
contour C. (Note that (n) ~ Ac/£2). From Zurek.3” ©IOP Publishing. Reproduced by
permission of IOP Publishing. All rights reserved.

up “empty”, hence, will have YW = 0. Only on rare occasions when the loop
of area Ac ~ C? < £? “traps” a defect inside, the winding number will
be +1 or —1, depending on the defect charge. Moreover, the probability of
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trapping the defects will scale as ~ A¢ % 572, as the density of the KZM
defects is ~ 1/£2. Consequently, the probability (and, hence, the frequency)
of finding a loop with [W| =1 in the case of ([W]) < 1 scales as:

Ac  C?

-
Note that the power with which é appears above is four times the power
law relating typical W and & when C > £, Eq. (26). It follows that the
scaling of the frequency (or of (|W|)) with 7 in this C < € regime is four
times steeper than for large (C > €) loops. Scaling of (W?) in this regime
is equally steep, as (W?) = (W) ~ pyy—s1 ~ C2/£2. On the other hand,
scaling of \/(W?) will only double (which is what may have been predicted

by Ref.®%). It is that discrepancy between the scaling of dispersion and
frequency of detection in case of small loops that may account for the

Pw==£1 ~ (29)

experimental results seen in Fig. 5.

This quadrupling is a combination of two doublings (or, rather, it re-
verses the consequences of two square roots that appear as the size of the
loop increases from C < £ to C > é) For small loops, the frequency of
trapping a single defect is proportional to the area inside C, and this yields
a proportionality to the area for (W?2) = (W) ~ pyy—+1 ~ C2/£2. By con-
trast, for large loops the net winding number is given by the random walk in
the phase (which yields square root #1) of the number of pairs intercepted
by C >> £ rather than the area inside, Ac (which implies square root #2).
This change of the power law that governs the scalings will be reflected in
the power law dependence of the winding number on the quench time 7g.

8. Defect formation in multiferroics

Multiferroics are materials that exhibit more than one primary ferroic order
parameter simultaneously (i.e. in a single phase). Recent measurements in
rare earth multiferroics have provided what may be a compelling evidence
of the KZM.%" The reason for excitement is illustrated in Fig. 8. It shows
snapshots of the surface of ErMnOj3 cooled, at different rates, from about
1200°C (i.e., from above the phase transition that occurs at 1120-1140°C)
to room temperature. The mosaic pattern seen in this figure represents
domains that form as a result of symmetry breaking. These domains are
punctuated by vortex-like defects that appear where several domains meet.
The topological charge of the point defect is determined by the order in
which distinct phases are arranged. Clearly, the scale of the structures (that



November 14, 2013 1:19 WSPC - Proceedings Trim Size: 9in x 6in  reviewKZMv2

20

can be deduced from the density of the point defects) increases with the
cooling time, as is shown in Fig. 8.

Fig. 8. Vortices (present where three dark and three bright domains merge) punctuate
domain patterns formed in chemically-etched ErMnOj3 crystals for different cooling rates.
The characteristic scale extracted from the experiments (e.g., from the density of vortices)
exhibits a scaling with the rate of quench that is consistent with the KZM predictions
for the 3D XY model,% which has v = 0.6717 and vz = 1.3132 calculated using Monte
Carlo simulations.?! From Chae et al.®° Copyright 2012 American Physical Society.

The power-law exponent governing the dependence of the distance be-
tween the point defects in the quench rate is close to 0.25, which suggests a
description in terms of the KZM with, e.g., the mean-field critical exponents
v =1, 2 =2 that would result in £ scaling with the power +— = ;. How-
ever, Griffin et al.” note that the universality class of the phase transition is
the same as of the 3D XY model, which has v = 0.6717 and vz = 1.3132 cal-
culated using Monte Carlo simulations?! (as a caveat, note that the choice
of z depends on the dynamics, which is not well characterized in this case).

Consequently, the predicted KZM exponent would be +; =~ 0.29. This
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is consistent with the experimentally measured value. Indeed, not just the
slope of the power law dependence but also the net defect density are in
approximate agreement with the ab initio calculations.””

While the above discussion can be interpreted as a resounding confirma-
tion of the KZM, there are reasons for caution. To begin with, apart from
the approximate critical temperature, very little is known about the actual
critical behavior of ErMnO3; (and similar rare earth manganites given by
the chemical formula RMnOj3, where R stands for a rare earth element).
This problem is largely due to the very high critical temperature, which
makes, at least to date, the measurements that would allow one to extract
v and z all but impossible. Indeed, at present it is not even completely
clear, experimentally, whether the transition is of first or second order.

The other reason for caution comes from the fast temperature quenches
carried out recently.”’ They have yielded (albeit in YMnOs, and not in
ErMnOj3 where the original study®® was conducted) a surprise: the increase
in the rate of much faster quenches (with cooling rates of up to 102K/s)
actually suppressed defect production, resulting in increasing size of do-
main sizes structures. This has not been yet explained, although several
possibly relevant effects have been discussed.?® At present, it seems reason-
able to wait for experimental confirmation of this ‘anti-KZM’ effect before
attempting to advance a detailed theory.

One might hope that the experimental difficulties and the related uncer-
tainties may be eventually overcome. Precision measurements of the scaling
of é with 7g could be then increased sufficiently so that one might confirm
that it is indeed close to 0.29 predicted by the 3DXY universality class (and
not “mean field”), and that would be a major coup.

9. The inhomogeneous Kibble-Zurek mechanism

Tests of the Kibble-Zurek mechanism in the laboratory often face the sit-
uation in which the phase transition is inhomogeneous as opposed to be-
ing crossed everywhere at once.”> What survives from the Kibble-Zurek
mechanism in inhomogeneous phase transitions is decided by causality.”?
This realization has provided a foundation for an active area of research

in recent years, with theory works?2:3%93 101

accompanied by a substantial
experimental progress!3 ¢ following the pioneering suggestion by Kibble
and Volovik,?! who first focused on the problem of phase ordering behind
a propagating front of a continuous phase transition. This situation can
arise as a result of a inhomogeneous tuning of the control parameter driv-

ing the transition A = A(z,t). Alternatively, it might result from a spatial
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dependence of the critical value A. = A.(z) which often occurs in trapped
systems. Using the local density approximation, one could then replace the
critical value A.[p] for homogeneous density p by A.[p(z)]. We refer the
reader to the recent review for a detailed exposition of the subject.??

Fig. 9. Bose-Einstein condensation by evaporative cooling in a harmonic trap offers an
example of the inhomogeneous phase transition where causality enhances the dependence
of the defect density on the quench rate. (a) Isodensity surface of Bose gas in a trap. Its
density is highest in the center of the trap, and that is where the condensation will start
when the cloud cools e.g. by evaporative cooling. When the region that becomes BEC
first can communicate its choice of the condensate phase to the neighbouring domains,
defects will not form. (b) On the other hand, when the speed of relevant sound § = £/i
is less that the speed vp with which the critical point propagates as a result of cooling,
different phases will be chosen by different domains (as indicated by the color coding) and
grey solitons can be created. From Zurek.?? Copyright 2009 American Physical Society.

Let us assume that the critical point exhibits a spatial dependence \. =
Ac(2) and that the system undergoes a homogeneous quench of the control
parameter with constant rate 1/7g,

At) = A (1 - i) , (30)

TQ

during the time interval ¢ € [—7g, Tg]. As in the homogeneous case, it is
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convenient to introduce the reduced control parameter
Ac(x) — A1)
t) = 31
E(./I:, ) Ac (.I) ) ( )

which takes values e(x,t) < 0 in the high symmetry phase where the system
is initially prepared, it reaches e(x,t) = 0 at the critical point, and the
broken-symmetry phase for e(z,t) > 0.

To establish the relationship with the homogeneous case, it is further
convenient to introduce an effective local quench time,

Oe(x,t)

-1
Q(r) = ’ 5

(32)

The condition e(xp,trp) = 0 allows us to find the time ¢p at which the
propagating front crosses the transition at the location zp =z

Ac()
t = 1— 33
r(a) =01 3933 . (53)
in terms of which the reduced control parameter reads e(z,t) = %
Matching, in the spirit of Eq. (2),
t
rlea,t)] = | 325 = e ) lrota). (349)
one obtains?®99that
1
. T |
é(z) = 35
=] 9

See?? for alternative derivations. We note that &(z) is associated with the
local freeze-out time #(x) = [ro7q (7)"?] 7= measured with respect to tr(x)
(that is, freeze-out will take place in the interval [tp () —t(x), tp(z) +£(2)]).
It follows that the typical size of the domains in the broken symmetry phase
is given by

Ex) = l2(@)] ~ & [ﬂ] . (36)

70

In contrast to the homogeneous scenario, defect formation does not occur
all over the spatial extent L of the system but it is restricted by causality.??
Once a choice of a ground-state of the vacuum manifold is made locally in a
given part of the system, it can be communicated to neighbouring regions.
The characteristic local velocity of the perturbations, which determines the
speed at which this choice can be communicated, is given by the analogue of
the second-sound velocity in “He that can be upper bounded by the ratio
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of the local frozen-out correlation length & () and relaxation time scale
7(x) = 7[¢] = t(x), this is, by?!

e
70 [T () '
When § is larger that the transition front velocity vg, defect formation is
suppressed. The speed of propagation of this front can be estimated to be®?

~Ae(0) [dAe(x) drg(z)
a TQ dCL'F dCL'F

This expression diverges for homogeneous system, or where the system is lo-
cally homogeneous (e.g., whenever \.(z) reaches an extremum). For defects
to be formed, § < vp is required.

Numerical and analytical tests have confirmed this intuition, and thus,
the role of causality in defect formation both in classical??3%9%:100 and
quantum systems.”®?” This inequality is generally satisfied in a fraction
of the system X = i/L, with & = {z|vp > §}. Within #, the number of
defects can be estimated using é (x). The resulting density of defects in the
whole system is then simply given by the total numbers of defects formed
with the homogeneous density in regions where vy > s divided by the total
system size, which in the 1D case reduces to

1/ 1{ 70 ]+—
ne~— — dz. (39)
L Jigjorssy $o L7@(2)

This expression does not generally lead to a power-law in the quench rate.”?

RN

§:

(37)

—1

dLL'F
dtp

Vp =

(38)

A power-law does however result in limiting cases.?>%° Whenever \.(z)
attains an extremum, say at x = 0, it can be linearized as

"
Ae(w) = 2(0) + 25 %2 4 02), (40)
and the front velocity simplifies to
wp oo —2e0)__ (41)

TQlzAL(0)]
which diverges at the origin « = 0. The effective region of the system where
defect formation is allowed by causality can be then estimated by comparing
(37) and (41). Assuming Z is simply connected and small enough, so that
1o () = 7¢(0) within Z, it is found that

2 20 o ]
> o L@m)] ’ (42)
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which increases with the quench rate, as expected. This results in the total
density of defects

142v
1 /\C(O) |: T0 ] Thvz
n~———— , 43
LV O[E [70) )
with a new power-law exponent?® which is a multiple, by a factor 122 of

v

what is predicted for the density (e.g., £~') by the homogenous KZM in 1D,
Eq. (10). This constitutes a testable prediction of the inhomogeneous KZM
(IKZM). Numerical evidence supporting this scaling was first described
in,3%98 see as well.190 A flurry of experimental activity testing the IKZM
has been reported during 2012 and 2013 on the scaling of defect formation
in inhomogeneous system and we now turn our attention to it.

10. Kink formation in ion chains

Coulomb crystals made of ion chains stand out as a platform for quantum
technologies as a result of their potential for quantum information pro-

102 103,104 Coulomb crystals with several
105,106

cessing " and quantum simulation.
millions of ions have been observed both in Paul and Penning traps.
When the inter-ion spacing a is homogeneous, different structural phases
can be accessed by tuning the transverse harmonic confinement. As the
trapping frequency v; is reduced from high to lower values, the Coulomb
crystal undergoes a series of structural phase transitions with phases charac-
terized by linear, zigzag, helicoidal, and more complex structures.'%” These
transitions are generally of first order, with the following exception: the
transition between the linear ion chain and the doubly-degenerate zigzag
phase, shown in Fig. 10(a), is of second order!08 110
ical frequency

and occurs at the crit-

QQ

7
Vie= 5((3)%5 (44)

where ((p) is the Riemann-zeta function and m and @ are the mass and
charge of the ions, respectively. A finite-time crossing of this transition is
expected to result in the formation of topological defects as described by
the KZM,?598 see Fig. 10(b).

The axial confinement in an ion chain makes the inter-ion spacing spa-
tially dependent, a = a(z), as illustrated in Fig. 10(c) and (d). Using the
local density approximation, away from the chain edges the linear density

1

of ions given by the inverse of the distance between them, a(z)™", is well
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Fig. 10. Linear to zigzag phase transition in ion chains. (a) Symmetry breaking in an
homogeneous ion chain following a decompression of the transverse confinement. The vac-
uum manifold consists of two doubly-degenerate disconnected regions, associated with a
Zs-symmetry breaking scenario. (b) Boundaries between disparate choices of the vacuum
lead to the formation of Zg-kinks or domain walls. (c) A sequence of ground state configu-
rations in a harmonically trapped ion chain. As a result of the axial harmonic confinement
the inter-ion spacing a(z) is lowest at the center of the chain and increases sideways.
Under a (homogeneous) decompression of the transverse confinement, the zigzag phase is
first formed in the center of the chain (where Coulomb repulsion is higher) and coexists
with region in the linear phase. (d) The transverse decompression (or axial compression)
of an inhomogeneous ion chain at finite rate can lead to the formation of structural de-
fects. These defects are not stationary and can propagate along the chain and annihilate
by collisions (between a kink and an anti-kink with opposite topological charge) or can
be lost at the edges of the chain.

approximated by the inverted parabola3%®

a(z)™t = %% (1 —~ %Z) , (45)

where N is the number of ions, L is half the length of the chain, and x the
distance from the center. This leads to a spatial modulation of the critical
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frequency along the chain,

7 Q?

) oy (46)

Vi o(n)? =
which ultimately makes the linear to zigzag transition inhomogeneous. In
the thermodynamic limit, the system obeys an effective time-dependent

Ginzburg-Landau equation where the difference v — 1/,527 . governs the tran-

sition from the high-symmetry phase to the broken symmetry phase.3%%8

Consider a quench of the transverse trap frequency vy, such that

w(t)? = 13, o(0)? — 82— (47)
TQ

Around the critical point the transverse frequency can be linearized, v =
vt.c(0) — 5% with & = 62 /[2v4..(0)]. Under such a quench, as a result of the
spatial dependence of vy (), the zigzag phase is not formed everywhere
at once, and it arises first in the center of the chain. To account for the
formation of kinks it is required to extend the KZM to inhomogeneous
scenarios as in section 9, see®>% in this context. The reduced squared-

frequency

_ Vel@)® — (1)

e(z,t) = PP (48)

governs the divergence of the correlation length and the relaxation time at
the critical point

& B )
=7, T=—F, (49)
Ve(z,t) V0e(z, t)]

where & and g are set by the inter-ion spacing a(0) = a and the inverse
of the characteristic Coulomb frequency is given by wg L= /ma3/Q2. We
have assumed that the system is underdamped which is the case whenever
the dissipation strength 7 induced by laser cooling satisfies n° < 83 /7.
This leads to the critical exponents v = 1/2, and z = 1. The front crossing
the transition satisfies e(x,t) = 0 and reaches x at time

vp.o(w)?
t = 1-—= . 50
F(x) TQ ( Vt,c(O)Q) ( )
Relative to this time, it is possible to rewrite the reduced squared-frequency

- t— tF(:Z?)

e(x,t) = (@) (51)



November 14, 2013 1:19 WSPC - Proceedings Trim Size: 9in x 6in  reviewKZMv2

28

in terms of the local quench rate

To(z) =g :zgg; =71o(1 - X?*)73 (52)

where v o(2)? = v4.(0)%[1 — X?]3 and X = x/L. The front velocity reads
52 -

Vp ~ 20
TQ

dve o(z)?
dx

L4 1 2\ -2
= (1 - X .
(0P X ) (53)

TF
The essence of the Inhomogeneous Kibble-Zurek mechanism (IKZM) is the
interplay between the velocity of the front and the sound velocity.?"%3 As
in section 9 (see Eq. (37)), the relevant velocity of perturbations can be
estimated to be
= & ( 70 > - awy. (54)
70 \7e(x)
The last equality holds whenever the dynamic critical exponent z = 1, as
in an underdamped ion chain.

In the IKZM, the condition for kink formation to be possible is given
by the inequality

§:

RS

vp(x) > §, (55)

while the propagation of the pre-selected phase is expected otherwise. As
shown in,”? it is instructive to study the spatial dependence of the ratio
vp(2)/8, which as a function of X = x/L turns out to be parametrized
Mc(é%' Using the Thomas-Fermi
approximation for the axial density, Eq. (45), figure 11 shows that typically
vp(x) > § is satisfied in two disconnected regions. However, the outer region

by the dimensionless quantity A =

can be safely disregarded given that kinks possibly formed there are likely
to leak out to the linear, outer part of the chain. A kink experiences a
Peierls-Nabarro oscillatory potential whose amplitude diminishes with the
transverse amplitude of the zigzag (the order parameter), this is, towards
the edges of the chain.”®''! Langevin dynamics simulations show that kinks
experiencing a gradient of the zigzag amplitude travel towards the edges
of the chain where they disappear. As a result, it suffices to consider the
central region of the chain [, #] for defect formation. Generally 2 has to
be found numerically. However, when the defect formation is restricted to
a region X < 1, then one can set”®

5212

P = |X|L=—2
¥ =X = G0

+O(X?). (56)
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0 0.2 0.4 0.6 0.8 1

Fig. 11. Ratio of the front velocity over the second speed of sound as a function of
the dimensionless coordinate X measured from the center of the chain (X = 0) towards
an edge (X = 1, in the Thomas-Fermi approximation). The ratio is symmetric around
X = 0and only X > 0 is displayed for clarity. Within the approximation of the IKZM we
adopt, formation of defects with KZM densities is only possible there where vp/§ > 1.
L&2
increases from light to dark blue taking the values A = 0.1,0.289,0.8. Above a critical
value A. ~ 0.289 the homogeneous KZM applies. For A < A, domain formation is
expected in two disjoint regions and the inhomogeneous KZM governs the dynamics
of defect formation. Disregarding the outer region (where defect losses are dominant),
whenever the size of the central region is approximately linear in A, the density of defects
scales with a power-law in the quench rate.

The curves correspond to different values of A = with which color coding

Under the assumption X < 1, one finds the estimate predicted in3>%® for
the density of kinks

. 4/3
nn 2oL (%) (57)
L 3vi.(0)2a?wi \ 1q

Note that setting 7o(z) = 7¢ is consistent with X < 1. We note that
without restricting to X < 1, there is no reason to expect a power-law
scaling, see Ref.%?

For sufficiently long quench times, the effective size of a domain set
by the KZM length becomes comparable to the (effective) system size,
2% = 2XL ~ é In this situation, typically one obtains 0 or 1 defects
per realization. It was pointed out some time ago in the discussion of the
winding numbers trapped in loops (see Section 7), that the scaling with
7 is likely to steepen® when the circumference C of the loop becomes
less than é . This prediction has found support in numerical studies of the
dispersion of the winding numbers, /(W?2):86:112:113 the doubling of the
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exponent that governs the scaling of the dispersion of YW when C > é was
seen in the C <« é regime, i.e., when YW = £1 is much less likely than the
probability of W = 0, as \/(WW?) is then dominated by the probability of
taking a single step in the random walk, while the contribution of W > 1
is negligible.57

We have already seen is Section 7 that relating this prediction to experi-
ments requires some care, as doubling of the dispersion of YW with 7¢ in this
C K é regime actually implies quadrupling of the frequency of detections
of [W| = 1,87 and the frequency is then the obvious observable. In the case
of winding number the situation is relatively well understood, at least at
the level of simple models. The quadrupling predicted there (and possibly
already observed, see Fig. 5) is in a sense a product of two doublings. One
of them comes about as a consequence of the square root that is related to
the random walk of the phase that becomes unnecessary in the case when
that random walk has only one step. It is likely relevant only in the case
of loops. The second doubling has to do with the change of the character
of the question: in small loops the focus is trapping a single defect (and
the answer is proportional to the area) while in large loops what matters
is the number of pairs intercepted by the circumference (and the answer
is proportional to the circumference, and, hence, to the square root of the
area). It is not clear whether at least one doubling survives the transition
from loops to open boundary conditions in the case when the size of the
system becomes smaller than é , and excitations becomes rare. Computer
experiments with the experimental parameters'® are consistent with three
regimes: KZM (density scaling with power ~ %), followed by IKZM (den-
sity scaling steepening to ~ %), and, finally — when the density becomes
synonymous with the probability of a single kink — an even steeper power
law that can be interpreted as ~ % of “doubled” TKZM, see Fig. 12. Thus,
assuming a doubling of the IKZM this probability can be estimated to be

23\ 2 L 52\ %3
p1 o~ i ~———— -0 ) (58)
13 v.(0)*awy \ Tg

Three different experimental groups reported tests of the IKZM in the
context of kink formation in trapped ion chains. Experiments'315 fol-

lowed closely the proposal in,3%-98

where critical dynamics was driven by
a finite-rate decompression of the transverse confinement. The experiment
at Mainz'* used instead a compression along the axial direction. The sys-
tem sizes and the accessible quench rates in these experiments correspond

precisely to the onset of adiabatic dynamics, where {0,1} defects are ob-
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Fig. 12. Scaling of the density of spontaneously formed kinks as a function of the
quench rate at which the linear to zigzag structural phase transition is crossed in a
trapped Coulomb crystal. The simulations are based on coupled Langevin equations
using the experimental parameters in.'® The system is underdamped in the presence
of laser cooling. The plotted lines are guidelines to the eye with slopes predicted by
the homogenous KZM (1/3), the IKZM (4/3), and twice the slope predicted by IKZM.
Adapted from.1?

served per realization.!#!® The experiment at Simon Fraser University!?
reported broader kink number distributions but the presence of substantial
kink losses prevented testing any signature of universality in the dynamics
of kink formation. See Table 1 for a summary of these experiments. The
results of 115 suggest an agreement with (58).

Table 1. Experimental results on the topological defect formation in ion Coulomb

crystals.}371% Data was fitted to a power-law in the quench rate Tq of the form
n o Téa.
Group Number of ions  Kink number  Fitted exponent «
Mainz University!'* 16 {0,1} 2.68 £ 0.06
PTB!® 20+ 2 {0,1} 2.7+0.3

Simon Fraser University '3 42 +1 {0,2} 3.3+£0.2
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There are obvious concerns about the extent to which the limited data
behind Table 1 can be regarded as a verification of the KZM (e.g., the
restricted range of quench rates in each regime, the losses of defects, etc.).
However, over and above such experimental issues there are two concerns
related to the applicability of IKZM theory to the ion chains of the size
X < é accessible so far in the experiments.!3 1°

Our discussion in Section 9 was based on the idea (put forward in the
analysis of soliton formation®?)
trap can be cleanly divided into regions where the phase transition front
velocity is faster (or slower) than the relevant speed of sound. As a conse-
quence, one can distinguish regions where the homogeneous KZM holds (or
does not) and defects are created with the local density set by é (or not at
all).

This sharp division is the key assumption underlying the IKZM. How-
ever, in computer simulations and analytic studies the transition between
the “homogeneous KZM” and “no defects at all” is not completely sharp,
and it seems unlikely (e.g., in view of the behavior of the order parameter
in the presence of the gradients®) that it could be less than &. Thus, the

applicability of the IKZM scalings to the ion chains where X < é can be
1315 ¢

that a system in an anisotropic harmonic

questioned at least in the experiments with rather small systems,
the limits on the integral in Eq. (58) are not well defined.

The above concern may apply to the IKZM in all small systems. It
appears in addition to the difficulties involved in testing the KZM in many-
body systems of modest size, where the scaling in the near-critical regime
may not have converged to the values of critical exponents that determine
the universality class. This concern can be of course addressed by carrying
out suitable equilibrium measurements to verify v and z, and determining
that they extend over the range relevant for the KZM.

The KZM is a way to employ equilibrium scalings in predictions of the
consequences of non-equilibrium quenches. Checking if the system in ques-
tion follows the behavior predicted for its equilibrium universality class
seems like a prudent first step when the systems is of modest size and espe-
cially if it is in a trap or any other setting that can potentially complicate
its behavior.

The other way to address such concerns is to work with large homo-
geneous systems. In case of ion traps this is not out of the question: large
“racetrack” traps are in principle possible!®® and could be used to study
phase transitions and symmetry breaking in ion Coulomb crystals in a set-
ting where the homogeneous KZM could be tested.!!*
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10.1. Prospects of ground-state cooling of ton chains

In the theory and experiments just discussed, the ion chain is hot enough
so that thermal fluctuations dominate over quantum fluctuations, and a
classical description applies.

The prospects of achieving ground-state cooling, while experimentally
challenging, might pave the way to study the dynamics of quantum phase
transitions in ion traps and similar settings. The equilibrium and dynamic
properties of the quantum linear to zigzag structural transition have been
investigated. 15119

Accessing the quantum regime would also pave the way to the experi-
mental realization of topological Schrodinger cats, nonlocal quantum super-
positions of conflicting choices of the broken symmetry or quantum phases
of matter.'2? Superposition of macroscopic states have been also explored in
the context of ion Coulomb crystals!?!
tum many-body systems.'?? Quantum solitons are expected to exhibit long

and magnetic fields coupled to quan-

coherence times in the presence of cooling in the Doppler limit, and can be
manipulated thanks to the spectral properties of the internal modes, which
have been proposed as carriers of quantum information.'?3 As a test-bed
for entanglement generation124
ation of quantum structural defects might shed new light on fundamental
issues concerning the relation between decoherence and critical phenom-
ena. 126

and the subsequent decoherence,?® the cre-

11. Soliton formation in Bose-Einstein condensation

One of us has suggested the finite-rate Bose-Einstein condensation of a
thermal cloud in an elongated trap as an inhomogeneous test-bed for the
KZM.% The inhomogeneity of the trap plays the key role in re-setting the
dependence between the quench rate and the number of defects—solitons
in a BEC “cigar” (see Fig 9). The study of Bose-Einstein condensation in
a harmonic trap motivated the development of the IKZM theory we have
presented in Section 9.

This proposal has recently been realized in the laboratory at the BEC
center in Trento.'® The basic idea is that as a thermal cloud of atomic
vapor undergoes evaporative cooling through the critical temperature for
Bose-Einstein condensation, different regions of the newborn condensate
pick up a different condensate phase. When two neighboring regions merge,
the mismatch in the phase of the condensate wavefunction acts as a seed
for the formation of a phase jump and the corresponding density dip: a
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gray soliton is spontaneously formed. Numerical simulations based on the
stochastic Gross-Pitaevskii equation indicate that this scenario in a homo-
geneous cloud is well-described by the Kibble-Zurek mechanism.'0%127 As
an instance of a single realization, figure 13 shows the time evolution of the
density profile of a newborn condensate following an evaporative cooling
ramp. From the trajectory of the density dips, it is apparent that these
excitations constitute spontaneously formed solitons. Note however that in
thermal equilibrium solitons are as well expected to be formed.'?8

50

40

30

20

-30 -20 =10 0 10 20 30

Fig. 13. Time evolution of the density profile in a single realization of the cooling ramp
simulated with the classical field method.!°® The initial state is chosen from a canon-
ical ensemble above the critical temperature for Bose-Einstein condensation. Evapora-
tive cooling is simulated by a linear ramp of the axial trapping potential using a one-
dimensional generalized Gross-Pitaeveskii equation. Courtesy of E. Witkowska and P.
Deuar.

In harmonic traps, the dynamics of Bose-Einstein condensation is more
complex due to the inhomogeneous nature of the system. The atomic cloud
is trapped in an anisotropic three dimensional harmonic confinement U (r, z)
with a cigar-shape, characterized by an axial frequency w and a transverse
one w, (wy > w). The density of the cloud is highest at the center of the
trap. Disregarding the transverse degrees of freedom, one can use the local
density approximation to estimate the value of the critical temperature
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based on the Einstein equation with an axial dependence,
2
27h? [p(r =0, z)] 3
T.(z) = , 59
B = ks | ca2) )

which is obtained by replacing the constant density p by p(r =0, 2) in the
expression for the critical temperature in a homogeneous system.

In the experiment,'® a radio-frequency knife is used to force the evap-
oration of the cloud, by flipping the atomic spin from a trapped state to
an untrapped state. Atoms with a potential energy Ugrp = hvgp measured
with respect to the bottom of the trap are forced to evaporate. The resulting
axial temperature profile is given by

T(z) = %;«02) (60)

a)

in trap
cooling free expansion
—_—

n T>T,
ii) '|'='|'C -

i) T<T - ‘
c

iv)
1

z

Fig. 14. Spontaneous soliton formation under forced evaporative cooling of a cigar-
shaped atomic cloud.’® a) As the temperature (i-iii) is decreased below its critical value
for Bose-Einstein condensation, causally disconnected regions of the newborn conden-
sate cloud pick up different phases of the condensate wavefunction, and the subsequent
dynamics leads to the formation of solitons. Under time of flight (iv-v), an initial cigar-
shaped cloud expands mainly along the transverse direction. b)-g) Snapshots of the den-
sity profile after time of flight of clouds containing 0,1, 2, 3, solitons and two instances
exhibiting bending of the soliton in the transverse direction. Fits to the self-similar ex-
pansion of the Thomas-Fermi density profile (red line) are compared with integrated
density profiles of the central region of the cloud (black line). Reprinted by permission
from Macmillan Publishers Ltd: Nature Physics Ref.,'® copyright (2013).

In-situ optical imaging of solitons is challenging due to the smallness of
the typical values of the healing length, which sets the width of the soliton.
As aresult, experimental measurements often resort to time-of-flight (TOF)
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imaging which magnifies the size of the cloud, see Fig. 14. When interac-
tions can be disregarded during TOF, the dynamics is essentially ballistic,
and the evolution of local correlations such as the density profile is rather
trivial. This is the case when the anisotropy of the trap is not too large.
When the confined cloud acquires an effectively one-dimensional character,
no true BEC is possible,'?? and the presence of phase fluctuations in the
trapped superfluid severely distorts the TOF dynamics. Counting of soli-
tons by imaging the density profile of the cloud after time of flight is then
hindered by the fact that phase fluctuations map to density fluctuations as
suggested in,'*° and experimentally demonstrated in.'! This mapping pre-
cludes establishing a correspondence between the density of fringes in the
expanded cloud and the initial number of solitons, formed spontaneously
as a result of evaporative cooling, presumably described by the IKZM. As a
consequence, the anisotropy should be low enough to minimize phase fluc-
tuations associated with the low-dimensional character of the cloud. At the
same time, it should be high enough to reduce the role of the instability and
decay mechanisms of solitons in elongated three-dimensional clouds, such
as the snake instability. This is the regime of relevance to the experiment.!6
Indeed, TOF snapshots f) and g) in figure 14 suggest bending of the soliton
along the transverse degree of freedom in the trapped cloud. The time of
flight achieved to image the system were particularly large since TOF was
assisted by levitation. We point out that as an alternative, shortcuts to

55,132,133 134,135

adiabatic expansions can be used with similar outcomes.

Table 2. Power laws predicted by the Kibble-Zurek mechanism for the number of soli-
tons N as a function of the cooling rate 1/7¢g induced by forced evaporation through
the critical temperature for Bose-Einstein condensation of a cigar-shaped atomic cloud.
The exponent « of the power-law Ng ~ 76 “ is shown for different critical exponents
(v, z) and trapping potentials.

Critical exponents Homogeneous system  Harmonic trap

Arbitrary (v, z) e }Ii‘z’
Mean-field theory (v = %, z=2) % 1
Experiments/F model™37 (v = %, z= %) % %

The upshot of the counting statistics was a power-law dependence of
the mean number of solitons N, in the cooling rate 1/7¢ induced by forced
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evaporation, i.e., Ny ~ 75 %, The power-law exponent resulting from a fit
to the experimental data was found to be o« = 1.38 £ 0.06, which clearly
deviates from the homogeneous KZM exponent and suggests a possible
agreement with the IKZM, as illustrated in Table 2. This exponent was
shown to be robust against variations of the mean atom number of the
newborn condensate (which was varied from 4 to 25 million atoms), an
indication of universal behavior.

The KZM as well as the IKZM can be used as a tool to determine criti-
127 an application of interest in Bose-Einstein condensation.
The experiment!36 reported deviations from mean-field behavior, v = 1/2.
The BEC transition is believed to belong to the static 3D XY universality
class, for which v = 0.6717(1) according to the theoretical estimate in.%!
Let us ignore for the moment possible systematic experimental errors, and

cal exponents,

assume that the power-law exponent o measured in the Trento experiment
is actually given by the IKZM, o = }ig’;
value of the dynamical critical exponent z ~ 1.04 4+ 0.11, which has not
been directly measured so far in experiments. This would rule out both the
mean-field value z = 2 (by 8-0) as well as the F model z = 2 value'3” (by
4-0), when the experimental data is taken “at the face value”, i.e., with-
out accounting for the possible systematic effects, such as decay of solitons
(that may steepen the dependence), as well as the fact that the number of
solitons created in the trap is of order 1 (which may result in steepening
of the dependence of their number on the quench rate we have discussed
in the previous section). There is also a concern signalled by the authors
of the experiment that the axial temperature in the BEC cloud is not uni-
form, which may further modify the scaling. Experiments in larger traps
that lead to more solitons would be helpful in addressing this concern.

Numerical simulations using the classical field method!%? lead to similar
power-law exponents which would agree with the IKZM, but are based on
a model of evaporation along the axial direction which is not applicable to
the experiments.

. In principle, one can extract the

12. Vortex formation in a newborn Bose-Einstein
condensate

The observation of spontaneous soliton formation during Bose-Einstein
condensation was actually preceded by analogous experiments in pancake-
shaped atomic clouds.!? The process is fairly similar. Consider a thermal
quench between an initial temperature 7; and a final value Ty which is

linear in time, i.e., T(t) = T; — t@. During the cooling of the atomic
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cloud below the critical temperature for Bose-Einstein condensation, coher-
ent patches are created where the phase of the condensate wavefunction is
chosen independently and is approximately constant. When these different
regions merge, there is a chance for the phase to accumulate along a close
loop in (physical) space surrounding a given point. Indeed, it was shown
experimentally that the explicit merging of three independent BEC clouds
results in the formation of a vortex with a certain probability given by
the geodesic rule.!®® Consider the expectation value of the order parameter
(1h)o = |1h|e?®) . The phase accumulated around a loop should be an integer
modulo 27 and can be characterized by the winding number W = # $ 06.
The fundamental (or first) homotopy group is indeed given by the ring of
integers, 71 (U(1)/{1}) = m1(S*) = Z (see Appendix A). Whenever |[W| > 1
a line defect, string or vortex is formed. In a homogeneous system, or for
fast enough quenches in a trapped cloud, the density of vortices is expected
to be given by Eq. (10), i.e., the homogenous KZM scaling,

11 2\
"T e T g (Fm) ®0)

while when the influence of the harmonic confinement is taken into ac-
9399 (now in an approximately 2D BEC “pancake”, rather than

“

coun
a“cigar”),

95 2(1+42v)
7—0 14+vz

62
B (TTAO)) ’ o

as discussed in Section 9. The experiment'® reported as well the sponta-
neous vortex formation in a toroidal trap. This geometry offers the oppor-
tunity to explore a scenario where the condensation is inhomogeneous in
the transverse degree of freedom and homogeneous in the toroidal direction.
The density of vortices is predicted to scale then as”

14+3v
7020 \ THvE
* (TTC(O)> ' (63)

The accurate experimental determination of the power-law exponents in
any pair of these three scenarios, which remain untested to-date, would
allow the independent determination of the critical exponents v and z.

13. Mott Insulator to superfluid transition

A natural testing ground for the KZM in quantum phase transitions is
the transition between a Mott insulator (MI) and a superfluid (SF) phase,
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exhibited by the Bose-Hubbard model'3%140 and accessible to quantum sim-
ulation based on ultracold gases in optical lattices.'4!:142 The Hamiltonian
of the system is

N SN U
- - T ) A I o
HBH = — <E g JZJ (beJ + hC) + 5 E nl(nl - 1) — M E uz (64)

ij ¢ !

where p is the chemical potential, the tunneling matrix element for an
atom to hop from site i to j is given by J;, b; and l;j are respectively the
annihilation and creation operators, and U is the on-site interaction. We
shall simplify the discussion by setting J;; = J. In actual experiments the
optical lattice implementing Hpg is usually contained in a harmonic trap
that will result in, e.g., the couplings J;; that are spatially dependent.

In the limit J/U < 1 the homogeneous system is in the Mott insulator
phase whenever the filling is commensurate with n atoms per site. The
many-body state takes the form |M1T) sz\il (l;j)”|0> The opposite limit

J/U > 1 corresponds to the superfluid phase with a many-body state of
AN
the form |SF) (Zf\il bI) |0), characterized by phase coherence and

large fluctuations in the number of particles per site. The transition from

s(Eg)

14.2 11.8 10.4

>

T

=
0.00 0.02 0.04 0.06
t/U

Fig. 15. Phase diagram of the Bose-Hubbard model illustrate the boundary between
the Mott insulator and superfluid phases. The vertical lines range over the densities and
effective chemical potential i sampled in a single experimental realization. The quench
is driven by a fast modulation of J = in the direction of the black arrow. From Chen
et al.'8 Copyright 2011 American Physical Society.
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the MI to the SF can be driven by increasing the relative coupling (J/U)(¥)
in a finite time 7¢.

The buildup of correlations induced by such a quench has been an-
alyzed in a series of works.?”1437147 In a 3D experimental realization of
the Bose-Hubbard model, an interesting systematic study of the amount
of excitations and energy produced during a quench as a function of the
quench rate was undertaken, and found a power-law dependence suggest-
ing a KZM-like behavior.'#® The amount of excitations was estimated by
comparing the density profile after time of flight (TOF) for an initial cloud
in the ground state (no(x,y;t)) and an out-of-equilibrium cloud prepared
by a quench (n(z,y;t)). The following quantity was used

2, oy Y3 ) = mo (@, y; )]
T N/d _4 no(z, y; t) (65)

where N' = [ dadyn(z,y;t) and ¢ is a constant chosen in agreement with
numerical simulations. The dependence of Y2 was fitted to a power-law
2 7o with a = 0.31 & 0.03. The kinetic energy K = m{r?)/(2tror),
where trop is the time of flight and (r?) = N [ dady(2? + y*)n(z, y; ),
was as well analyzed and fitted to a power law with a comparable exponent
a=0.324+0.02.

According to Chen et al., these exponents deviate from theoretical pre-
dictions for a 3D homogeneous transition. They studied the dependence
on the quench rate of the density fluctuations characterized by %2 and the
kinetic energy, and compared it with a power-law with exponent oo = %_"H,
i.e., which would result when the fluctuations and excess of kinetic energy
are the same in each domain of size &. For v = 1 /2 and z = 2 this would
lead to o = 3/4.148

We shall not attempt to justify these assertions here, nor shall dispute
them. Clearly, if one were to accept validity of the homogeneous KZM for
this relatively modestly sized inhomogeneous system of about 1.6 x 10°
atoms (a BEC-filled optical lattice confined to an inhomogeneous sphere of
radius of only ~10 sites, each occupied by ~ 3 atoms), more detailed anal-
ysis would be useful to explore the conjecture that the applied measures of
the degree of excitation imparted by the quench result in the behavior de-
scribed simply by the same kinetic energy and same departure from homo-
geneity in each ~ £73 volume, which is what the ansatz*® described above
suggests. Moreover, the experimental conditions hindered a direct connec-
tion with this KZM estimate. In particular, the inhomogeneous character
of the system induced by the presence of an external harmonic trap results
in an initial state with Mott insulating layers of different filling factors be-
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Fig. 16. Simulation of a linear quench from the Mott insulator to superfluid phase in
a three dimensional trapped atomic cloud using a discrete Gross- Pitaevskii equation.
The top and medium panel correspond to phase and density in a x — y cross section
across the center of the trap. The integrated density along the perpendicular direction
is shown in the lower panel. The position of a vortex is indicated by an arrow. As noted
in the discussion, the scaling of, e.g., the kinetic energy with the quench rate is similar
to what was observed on the experiment of Chen et al. This coincidence between the
effectively classical simulation (attained in the large occupancy per site limit) and the
experiment (that had about 3 atoms per site) may be a accidental, or may be due to the
fact that BEC in the experiment was decohered*? by, e.g., the finite temperature effects
and the significant normal fraction. From Dziarmaga et al.'4% Copyright 2012 American
Physical Society.
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ing separated by (presumably phase coherent) superfluid layers, see Fig.
15. In addition, the phase boundary is crossed at a range of densities, with
different MI layers (corresponding to different lobes in the phase diagram)
crossing the phase transition at different times. The analysis of this sce-
nario is substantially more complicated than the exposition of the IKZM
discussed in Section 9, where power-law behaviors are expected for a single
critical front. The finite-temperature of the initial cloud in'*® has also not
been taken into account in KZM studies applied to this transition.

We note that the numerical simulations'® in the limit of large occu-
pancy per site yield power laws, e.g., for the kinetic energy, that are similar
to those observed in the experiment. Moreover, topological defects appear
in the superfluid left after the Mott insulator — superfluid phase transition,
see figure 16. It is again far from clear whether this coincidence of scalings
is significant. In the large occupancy regime the system is effectively clas-
sical (which is what makes the computer simulation possible in the first
place). On the other hand, in the actual experiment there was a substantial
(~ 10%) normal fraction and non-negligible temperature. That combina-

149

tion may cause decoherence™®’ and, hence, force a quantum many-body

system to behave in an effectively classical manner.

14. Summary and Outlook

The Kibble-Zurek mechanism reviewed here is based on the combination of
two key ideas. The seminal observation of Tom Kibble!'? made it clear that,
at least in the cosmological context, phase transitions expected to occur
as the Universe cools soon after the Big Bang will result in a mosaic of
domains of the size close to the Hubble radius at the time of the transition.
This is simply a consequence of relativistic causality—domains are forced to
break symmetry independently, and, hence, at random. Moreover, when the
resulting homotopy group is nontrivial, phase ordering cannot completely
smooth out the post-transition configurations of the order parameter, as
the random choices of broken symmetry lead to irreconcilable differences
that crystalize into topological defects.

In the second order phase transitions encountered in the laboratory
relativistic causality does not yield useful limits, but the speed of light can
be effectively replaced by the relevant speed of sound!?-2%:23 leading to an
estimate of the size é of the domains that can consult on how to break the
symmetry, and, hence, that can choose to break symmetry more or less in
unison. The resulting density of topological defects and other excitations,
left behind by phase transitions induced at a finite speed, depends on the
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interplay of the quench rate (the rate at which the critical point is traversed)
and critical slowing down (the rate with which systems can adjust), and as
a result, on the universality class of the transition. The scaling of é with the
quench rate (reflected in the density of defects left behind by the transition)
can be investigated in the laboratory.

Experiments testing KZM scaling were the focus of our review. The
Kibble-Zurek scaling was also tested in classical and quantum phase tran-
sitions in a variety of computer experiments?2:31,86,100,112,113,127,150-166 5y,
analytical works,*6:60:61,167-170 354 found to hold essentially whenever it
was expected to apply. Laboratory experiments are, of course, more diffi-
cult. Above all, it is hard to vary the quench rate over several orders of
magnitude (needed to detect the fractional power laws predicted for é as a
function of 7o) while avoiding effects that can either suppress generation of
topological defects (e.g., inhomogeneities) or result in formation of defects
in processes (e.g., convection in superfluids) independent of KZM that could
obscure KZM-predicted scaling. Moreover, defects formed in the course of
the transition can annihilate during the phase ordering that follows the
transition.

A brief summary of the present day “experimental KZM landscape” is
that there are now several experiments that have found, in various sys-
tems, results consistent with KZM scalings. However, all of them require at
present caveats and additional assumptions for interpretation.

Switching between non-equilibrium steady states provided early evi-
dence for KZM scaling.” Nonetheless, subsequent experiments as well as
numerics indicated that in such situations where the renormalization the-
ory cannot be invoked KZM scalings may be only an approximation or not
apply.™ Still, such efforts have led to the earliest experimental indications
of the KZM scaling, and may offer intriguing opportunities for extension of
KZM to transitions that are not described by renormalization or even by
partial differential equations.

Trapping of flux quanta in tunnel Josephson junctions yielded scaling
that appears to be reliable, but the detected exponent of ~ 0.5 was twice
what was initially expected. That expectation was based on the prediction
of the doubling of the power law for large winding numbers.®> Recent anal-
ysis®” of the winding numbers in the case of small loops (C < é) indicates
that, while one would indeed expect the exponent that governs the disper-
sion of W to double in the regime where |WW| > 1 is vanishingly unlikely, the
frequency of trapping of [W| = 1 scales with four times the power predicted
for large |W|. This suggests that the KZM accounts for the experimental
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results. This quadrupling may be also relevant for small superconducting
loops, where the observed frequency of trapping a flux quantum scales with
the exponent ~ 0.62 4 0.15,% consistent with 0.5 seen in tunnel Josephson
junctions®* (although possibly suggestive of %, which is—one might be even
tempted to speculate—four times %, the exponent expected for the scaling

of typical winding numbers trapped by large loops for v = % and z =1 or

a superfluid with v = % and z = %, where é ~ TQ%)

We note that all these discussions of doubling and quadrupling ignore
the role of the magnetic field, which, as was pointed out in the case of
loops?3 and demonstrated much more clearly in 2D systems with the help
1527154 may play a significant role in flux trapping
and defect formation in systems with local gauge invariance.

Defect formation in multiferroics is a new frontier. Experiment in
ErMnOs yields a compelling power law,3? but its interpretation in terms
of KZM depends on the nature of the critical region of the transition that
is inaccessible to, e.g., susceptibility measurements, as a result of the high
critical temperature. Still, theoretical analysis®® based on the 3D XY model
yields an impressive agreement of KZM with the experiments. Nevertheless,
a more precise determination of the exponent that governs the power law
scaling that would clearly establish the connection with the v and z pre-
dicted for the 3D XY universality class would be welcome: it would amount
to the first experimental confirmation of KZM scaling in a setting that is
not mean field.

Generalization of the KZM to inhomogeneous systems is usually needed
to interpret experiments in harmonically trapped ions and BEC’s. Forma-
tion of kinks in ion Coulomb crystals!®>!® and solitons in Bose-Einstein
condensation'® has been recently reported. It has been argued in both ion
crystals and BECs that the data are consistent with the KZM when one
recognizes both the consequences of inhomogeneity and (in the case of the
ion chains) small size of the system. Dependence of the conclusions about
scaling on these additional assumptions complicates the interpretation es-
pecially in the case of kinks in ion chains, but the results are consistent
with the suitably modified versions of the KZM.

In the case of BEC solitons the measured power laws are close to the
analytic predictions,”® and the remaining discrepancy may be due to the dif-
ference between the simpliefied effect of the harmonic trap analyzed theoret-
ically®® and the experimental reality.'® Indeed, corrections to a power-law
scaling can be expected in inhomogeneous systems.???? Additional exper-
imental results and theoretical as well as numerical efforts would certainly

of numerical simulations
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be useful.

The presence of vortices in a newborn BEC has also been detecte
They have appeared presumably as the result of the KZM. However, ob-
taining reliable power laws in this case is even harder. The experiments are
carried out, e. g., in approximately 2D BEC pancakes, so inhomogeneities
and small systems sizes will play a role and complicate the analysis.

An experiment, that has not been completed as yet but is under
way in the group of Markus Oberthaler,!”™ probes a quantum miscibility-
immiscibility phase transition in a Bose-Einstein condensate.'"?
simulations in an effectively 1D toroidal trap yield scalings of the size of do-
mains of the two hyperfine BEC states that are in good agreement with the
KZM prediction.'5%:160 In the harmonic trap (where the actual experiments
will likely take place) inhomogeneity modifies domain sizes in a way that

d.10,138

Numerical

influences the observed power law, again complicating direct comparisons
with the KZM predictions, although numerical simulations may help.

Experimental investigations of the quantum KZM (exemplified by the
miscibility-immiscibility transition) are only beginning. Experiments to
date (e.g., related to the Bose-Hubbard model'*®) suffer from complica-
tions caused by the inhomogeneities and small system sizes. In view of the
rather complicated phase diagram of the Bose-Hubbard model, inhomo-
geneities make critical exponents relevant for the KZM scaling difficult to
infer. Moreover, computer simulation of the quantum Bose-Hubbard model
are difficult, as systems of sizes large enough to hope for a suitably well de-
fined quantum phase transition are also large enough to be essentially out
of reach of present day computers. One can study larger systems only in the
limit where they become effectively classical—when the number N of atoms
per site is large.!#6:147 When one compares results of such simulations with
the data obtained in experiments, there are no obvious discrepancies that
cannot be blamed on inhomogeneity or finite size, but this rather tentative
conclusion (based on the comparison of a classical simulation to a quantum
many-body system) is unsatisfying and it certainly leaves plenty of room
for improvement.

This cautious assessment of the present status of the experiments on the
dynamics of quantum phase transitions is likely to be revised in the near
future. Moreover, quantum phase transitions in the Ising model (which is
much better understood theoretically) may be eventually implemented (e.g.,
by emulating its dynamics!™17) in suitably large systems. This would
be interesting not just because of the implications for the KZM, but be-
cause one could then study non-local superpositions of topological defects—
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“topological Schrédinger cats” or “Schrodinger kinks™ 120
the possibility of a quantum superposition of distinct phases of matter.
Last, but not least, there are examples (e.g., quantum Ising model) where
the KZM predicts the range of entanglement in the post-transition state!24

and even the effectiveness of the system undergoing second order phase
126

—as well as probe
122

transition as an environment responsible for decoherence.

Kibble-Zurek mechanism employs equilibrium behavior of the system to
predict non-equilibrium consequences of the dynamics of symmetry break-
ing. When we compare the first experimental tests of the KZM with some
of the recent experiments, one important difference stands out: in the pi-
oneering tests of the KZM the equilibrium behavior of the systems in the
vicinity of the critical point was generally very well known as a result of
earlier measurements, so the scaling predicted by the universality class was
beyond doubt. This is often not the case in the recent KZM-inspired ex-
periments of, for example, quantum phase transitions in optical lattices. It
would seem prudent to test equilibrium of the actual system as a prereq-
uisite, and to verify that the scalings predicted by the universality class
indeed capture its equilibrium behavior, or, at the very least, to evaluate
the extent and nature of the departures before embarking on tests of the
KZM. Of course, there is usually a microscopic theory (e.g., Bose-Hubbard),
but its implication for the critical regions are typically well-established only
for an infinite homogeneous system, and the extent to which it is a good
approximation of an often modestly sized and inhomogeneous system avail-
able in the laboratory is frequently not known. Moreover, it is often far
from clear how to apply that theory to what is measured in the experiment
(e.g., critical exponents may differ depending on how the critical region is
traversed in the Mott insulator-superfluid transition!3?).

To sum up, we note that the already considerable progress in verify-
ing the KZM achieved in this millenium has accelerated in the past few
years. Given the broad applicability of the KZM, it seems likely that the
study of phase transition dynamics will remain an exciting research field
in the foreseeable future. Our focus on experiments involving the scaling of
topological defects is understandable, given the roots of the KZM. There
are however other excitations of the order parameter that may be left in
far-from-equilibrium state due to the KZM, and that can be used to test
it. We have discussed solitons and vortices in BEC as examples, but even
more transient excitations (e.g. those created in superconductors'?>176 or
left behind by the chiral symmetry breaking in *He'””) may be of interest
in this respect.
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Appendix A. Spontaneous Symmetry Breaking: the role of topol-
ogy

Spontaneous symmetry breaking arises in situations where a symmetry of
the system is not manifested in its ground state, and it is a phenomenon
tied to the degeneracy of the later."?> A well-known example is the break-
down of rotational invariance in a ferromagnet. This scenario is relevant
in cosmology,"? elementary particle physics, 78179
23,25 We next summarize the basics of homotopy theory and its use
in this context, at a somewhat technical level. Consider the case in which
the Hamiltonian (or free-energy functional) # of the system is invariant
under an operation g of the symmetry group G, which is represented by a
unitary transformation U(g),

and condensed matter
systems.

U~ (g)HU(g) = H, Vg € G. (A1)

Now, assume that there exists an order parameter, and operator ¢ whose
ground-state expectation value is not invariant under G, i.e.,

(01U (9)dU(9)I0) = D{Wh)o # (). (A-2)

where D is a rotation matrix. That is, the states U(g)|0) and |0) are
nonequivalent, but are degenerate according to (A.1). Typically, different
phases of the system will have a symmetry group, a subgroup of G called the
isotropy group H, which represents the leftover symmetry in the broken-
symmetry phase. An arbitrary element h € H leaves invariant the order
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parameter 1&, hi& = 1& The order parameter manifold M of degenerate vac-
uum states is homeomorphic (from the Greek for “similar shape”, a relation
denoted by the symbol ~) to the (left) coset space of H in G,'89

M~ G/H. (A.3)

The simplest example is that of the linear to zigzag transition that for
homogeneous ion chains is characterized by G = Zs, H = e (e being the
identity {1}), and M ~ Z, discussed in detail in section 10. Sections 7,
11, and 12 are devoted to the BEC transition associated with a scalar or-
der parameter, where G = U(1), H = {1}, and G/H = U(1). Symmetry
breaking in spinor Bose-Einstein condensates is more complex, and its char-
acterization has recently led to a large body of research.!®"183 following the
observation of spin textures in the laboratory.? For instance, a spin-1 BEC
is characterized by a G = U(1) x SO(3) resulting from the invariance under
U(1) gauge transformations and rotations in spin space, and that can lead
to a variety of symmetry breaking scenarios.'®!

Homotopy theory deals with continuous transformations between ob-
jects that belong to the same equivalence class and it can be used for the
systematic classification of topological excitations. Let I = [0, 1] and con-
sider two continuous maps f,g: X — Y between topological spaces X and
Y. A homotopy between f and ¢ is a continuous map F' : X x [ — Y
satisfying F(x,0) = f(x), F(z,1) = g(x), Vo € X. Provided F exists, f is
said to be homotopic to g, which is symbolically denoted by f ~ g. This
is an equivalence relation satisfying reflectivity (f ~ f), symmetry (f ~ g
implies g ~ f), and transitivity (if f ~ g and g ~ h then f ~ h). A path
with initial point zy and final point x; is a continuous map « : I — X such
that a(0) = z¢ and «(1) = x;. A path for which xy = z; is called a loop
with base point xg, this is, a loop in which the boundary I of I = [0, 1] is
mapped to xg. We shall refer to two specific types of loops below, a constant
loop ¢ : I — X which has a fixed image in X V¢ € I, and an inverse loop
a t(t) = a(l —t) Vt € I. Two loops «, 3 : I — X with base point xq are
homotopic (o ~ () given that an homotopy F : I x I — X exists, i.e., a
continuous map F : I x I — X can be found that satisfies F'(¢,0) = a(t),
F(t,1) = p(t) YVt € I and F[0,t'] = F[1,t'] = zo ¥’ € I. The set of all
loops with base point ¢ can be classified into homotopy classes.

A homotopy class [a] is the set of loops which are homotopic to a.
The fundamental group or first homotopy group is the set of all homotopy
classes of loops with base point xg. It is denoted by 71 (X, z) and satisfies
the group properties with respect to the product of homotopy classes. This
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product is defined by [a] - [] = [« - ], where « - /3 is the product of loops
« and 8 in which « is first traversed and then [ is traversed. Specifically,
the product of homotopy classes in 71 (X, xq) satisfies

(lod - [8)) - ) = o] - (18] - 1) (A4)
o] - [c] =[]  [o] = [a] (A5)
(o] -l =[] [a] = [4 (A.6)

where the identity element [¢] is given by the set of loops homotopic to a
constant loop.

There exists an isomorphism (a bijective homomorphism) between fun-
damental groups 71 (X, x¢) and 71 (X, x1) of loops within the same con-
nected topological spaces X with different base points zy and x; which
allows us to use the simplified notation 71 (X) for the fundamental group.
A mapping from a loop to the unit circle S' is described by the isomorphism
between 71(S1) and Z, where the integer winding number corresponds to
the number of times the loop wraps around the unit circle. Higher homo-
topy groups are defined in a similar way to m; by considering homotopy
classes of the n-sphere S™ = {x € R"*!||z|> = 1}. Let us consider the
n-cube I" = I x --- x I = {(s1,...,8,)]8: € [0,1]V0 < i < n} with
boundary 9I™ = {(s1,...,8,) € I"|s; =0 or 1}. A map a : I" — X that
maps the boundary OI™ to a point xq is a n-loop. When a homotopy exists
between n-loops « and [, they are said to be homotopic, and the set of
n-loops homotopic to a given n-loop « constitutes a homotopy class [a].
The n** homotopy group of n-loops with base point z is given by the set
of homotopy classes of n-loops .

The classification of topological excitations is achieved by the homotopy
groups m, (M) of the order parameter manifold M with the dimension of
homotopy being given by n = D —d — 1 in terms of the spatial dimension
D and the dimension of the (singular) topological excitation d (for nonsin-
gular topological excitations such as skyrmions, n = D — d). The homotopy
groups m, (M) characterize mappings from the n-sphere S™ enclosing the
topological excitation in real space into the vacuum manifold M. Elements
of a given group m,(M) belong to the same class of stable topological ex-
citations, equivalent by continuous deformations. The number of domains
or disconnected regions in M is given by mo(M) (formally 7o lacks a group
structure). If mo(M) = k, there are k + 1 disconnected regions. When M is
disconnected, topological excitations associated with the different choices of
(1/3)0 in space are known as domain walls, and are typically associated with
the breakdown of a discrete symmetry, as in the linear to zigzag transition.
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One can next consider the change of the order parameter along closed loops
in S! in real space within the same connected component of M. If <1&>0 is
a smooth function along the loop, then 71 (M) is trivial and equal to the
identity I. Otherwise, elements of the group m (M) # I characterize line
defects or strings, such as quantized vortices in superfluids and scalar BEC,
and flux tubes in type II superconductors, associated with U (1) symmetry
breaking. Topological excitations known as monopoles arise in the presence
of non-contractive surfaces in M such as S?, whenever ma(M) # I. They
are associated with the breakdown of nonabelian symmetries to a subgroup
containing U(1). In D = 3, d = 2 for domains walls, d = 1 for strings, and
d = 0 for monopoles. Three dimensional topological defects associated with
nontrivial mappings from S® into M are characterized by the homotopy
group m3(M) and are known as textures or non-singular solitons.

Table Al. Homotopy
groups of certain vac-
uum manifolds.

M T w2 T3

vy z 0 0
SU(n) 0 0 Z
SO3) Z» 0 Z

S2 0o 7 7
S3 0 0 Z

st 0 0 o0

The dynamics of symmetry breaking can in principle result in hybrid
configurations with a variety of topological defects with different dimen-
sions of homotopy and which can influence each other.'1:184 In that case,
the classification in terms of 7, is no longer satisfactory, but Abe homo-
topy groups composed of possibly noncommutative groups m; and 7, can
however account for topological excitations with n > 2. We refer the reader
to!® for a more detailed exposition and to!8' 183 for a thorough discussion
in the context of Bose-Einstein condensates. We close pointing out that the
use of conventional homotopy groups has limitations in the classification of
topological defects located on the boundary of an ordered system, for which
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the use of relative homotopy groups has proven to be advantageous. 86187
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