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UNIVERSALITY OF PHASE TRANSITION DYNAMICS:

TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

ADOLFO DEL CAMPO1,2,∗ and WOJCIECH H. ZUREK1

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

2Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM

87545, USA

To Tom W. B. Kibble, on occasion of his 80th birthday.

In the course of a non-equilibrium continuous phase transition, the dynamics
ceases to be adiabatic in the vicinity of the critical point as a result of the crit-
ical slowing down (the divergence of the relaxation time in the neighborhood
of the critical point). This enforces a local choice of the broken symmetry and
can lead to the formation of topological defects. The Kibble-Zurek mechanism
(KZM) was developed to describe the associated nonequilibrium dynamics and
to estimate the density of defects as a function of the quench rate through

the transition. During recent years, several new experiments investigating for-
mation of defects in phase transitions induced by a quench both in classical
and quantum mechanical systems were carried out. At the same time, some
established results were called into question. We review and analyze the Kibble-
Zurek mechanism focusing in particular on this surge of activity, and suggest
possible directions for further progress.

Keywords: topological defects; phase transitions; Kibble-Zurek mechanism;
spontaneous symmetry breaking.

1. Introduction

The aim of this paper is to provide a limited review of the experiments that

test the Kibble-Zurek mechanism (KZM): we shall focus on the experiments

that test the scaling of the number of topological defects with the quench

rate predicted by the KZM. This self-imposed restriction limits the number

of the relevant experiments to a manageable total. It is also a sign that

the field – that has its roots in the seminal papers of Tom Kibble1,2 – has

matured, so that the question that was initially most pressing (i.e., whether

topological defects form at all via KZM) has been by now answered in the

http://arxiv.org/abs/1310.1600v3
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affirmative in a variety of systems,3–16 although 4He remains a confounding

exception.17,18

The scaling of the defect density with the quench rate – prediction of

the non-equilibrium effect using equilibrium critical exponents19,20 – is the

key testable consequence of the KZM. However, the resulting dependence

of the size of the domains where symmetry can be broken “in unison” is

usually given by a power law with a small fractional exponent. Therefore,

to detect a significant variation in the defect density one needs to vary

quench rates over a large range. This tends to be difficult in the traditional

thermodynamic phase transition experiments. For instance, cooling (that

can lead to a symmetry breaking transition) will typically result in tem-

perature gradients inside the bulk of the system that can suppress defect

formation,21,22 but it can also drive convection that can create defects, such

as vortex lines in superfluids, independently of the KZM.17,18

There are several reviews of the subject starting with23 and more re-

cent monographs24–28 that discuss the KZM, its consequences, and related

phenomena in phase transitions. As is also the case with this review, all of

these reviews cover only selected fragments of the field either because (as

a result of recent developments) they are out of date, or because they are

focused on specific subfields (e.g., quantum phase transitions). We focus on

the (mostly recent) experiments that test scalings predicted by the KZM

and the related theoretical developments.

2. The Kibble-Zurek mechanism

Consider the dynamics of spontaneous symmetry breaking in the course

of a phase transition induced by the change of a control parameter λ. A

continuous second-order phase transition is characterized by the divergence

(usually as a power-law) of both the equilibrium correlation length ξ

ξ(ε) =
ξ0
|ε|ν , (1)

and equilibrium relaxation time τ

τ(ε) =
τ0

|ε|zν , (2)

as a function of the distance to the critical point λc. It is convenient to

define the reduced distance parameter

ε =
λc − λ

λc
, (3)
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in terms of which the system initially prepared in the high-symmetry phase

(ε < 0) is forced to face a spontaneous symmetry breaking scenario as the

critical point is crossed towards the degenerate vacuum manifold (ε > 0).

In Eq. (1), ν is the correlation length critical exponent, while z in Eq.(2)

is the dynamic critical exponent. Different systems belonging to the same

universality class share the same critical exponents. Above, ξ0 and τ0 are

dimensionful constants that depend on the microphysics in contrast with

ν and z that depend only on the universality class of the transition. The

Kibble-Zurek mechanism (KZM) describes the dynamics of a continuous

phase transition under a time-dependent change of λ across the critical

value. The time-dependence λ(t) in the proximity of λc can usually be

linearized. Therefore, we assume a linear quench

λ(t) = λc[1− ε(t)] (4)

symmetric around the critical point so that the reduced parameter is char-

acterized by the quench time τQ and varies linearly in time according to

ε(t) =
t

τQ
, (5)

in t ∈ [−τQ, τQ], the critical point being reached at t = 0. Far away from

the critical point |λ| ≫ λc, the equilibrium relaxation time is very small

with respect to the time remaining until reaching the critical point fol-

lowing the quench (5), and the dynamics is essentially adiabatic. In the

opposite limit, in the close neighbourhood of ε(t) = 0, the dynamics is ap-

proximately frozen due to the divergence of the equilibrium relaxation time

(critical slowing down). The system is then unable to adjust to the exter-

nally imposed change of the reduced control parameter ε(t). Exploiting this

intuition,19 the KZM splits the dynamics into the sequence of three stages

where the dynamics is adiabatic, effectively frozen, and adiabatic again,

as ε(t) is varied from ε(t) < 0 to ε(t) > 0. See figure 1 for a schematic

representation.

This simplification, often referred to as the adiabatic-impulse approxi-

mation, captures the essence of the non-equilibrium dynamics involved in

the crossing of the phase transition at a finite rate. The inability of the col-

lective degree of freedom that defines the order parameter to keep up with

the change imposed from the outside is the essence of the freeze-out. This

does not mean that all of the evolution in the system stops, or even that

the evolution of the order parameter ceases completely: the microstate of

the system will of course evolve as dictated by its (time-dependent) Hamil-

tonian, and even the local thermodynamic equilibrium of the microscopic
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Fig. 1. Schematic representation of the freeze-out captured by the adiabatic-impulse
approximation. During a linear quench, the reduced control parameter ε = t/τQ forces
the system to cross the critical point from the high symmetry phase (t < 0) to the low
symmetry phase (t > 0). Due to divergence of the equilibrium relaxation time, associated
with the critical slowing down in the neighbourhood of ε = 0, the order parameter of the
system ceases to follow the equilibrium expectation value and enters an impulse stage
within the time interval [−t̂, t̂].

degrees of freedom may be maintained. However, the order parameter will

cease to follow its equilibrium value, and it will be able to catch up with

it locally, to the extent allowed by the presence of topological defects, only

after the critical point has been passed, usually with a delay of about t̂, as

illustrated, for example, by numerical simulations of BEC formation.29

The boundary between the adiabatic and frozen stages can be estimated

by comparing the equilibrium relaxation time with the time elapsed after

crossing the critical point

τ(t) ≈ |ε/ε̇| = t. (6)

This equation19 yields the time scale

t̂ ∼
(

τ0τ
zν
Q

)
1

1+zν , (7)

known as the freeze-out time. The degrees of freedom of the system relevant

for the selection of broken symmetry cannot keep up with the externally

imposed change of ε, and, consequently, the order parameter of the system

lags behind its equilibrium value corresponding to the instantaneous value
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of ε within the interval ε ∈ [−ε̂, ε̂], where

ε̂ ≡ |ε(t̂)| ∼
(

τ0
τQ

)
1

1+zν

. (8)

Spontaneous symmetry breaking entails degeneracy of the ground state.

In an extended system, causally disconnected regions will make independent

choices of the vacuum in the new phase. A summary of the topological

classification of the resulting defects using homotopy theory is presented in

the Appendix A. The KZM sets the average size of these domains by the

value of the equilibrium correlation length at ε̂,19

ξ̂ ≡ ξ[ε̂] = ξ0

(

τQ
τ0

)
ν

1+zν

. (9)

This is the main prediction of the KZM.

This simple form of a power law of t̂ (and, consequently, of ξ̂) arises

only when the relaxation time of the system scales as a power law of ε.

This need not always be the case. For example, in the Kosterlitz-Thouless

phase transition universality class, of relevance to 2D Bose gases, the critical

slowing down is described by a more complicated (exponential) dependence

on ε. A more complex dependence of t̂ and ξ̂ on τQ (rather than a simple

power law) would be then predicted as a result.30

The above estimate of the ξ̂ is often recast as an estimate for the result-

ing density of topological defects,

n ∼ ξ̂d

ξ̂D
=

1

ξ0
D−d

(

τ0
τQ

)(D−d) ν
1+zν

, (10)

where D and d are the dimensions of the space and of the defects (e.g.,

D = 3 and d = 1 for vortex lines in a 3D superfluid). This order-of-

magnitude prediction usually overestimates the real density of defects ob-

served in numerics. A better estimate is obtained by using a factor f , to

multiply ξ̂ in the above equations, where f ≈ 5−10 depends on the specific

model.29,31–35 Thus, while KZM provides an order-of-magnitude estimate

of the density of defects, it does not provide a precise prediction of their

number. However, if one were able to check the power law above, one could

claim that the KZM holds and show that the non-equilibrium dynamics

across the phase transition is also universal. This requires the ability to

measure the average number of excitations after driving the system at a

given quench rate, and repeating this measurement for different quench

rates.
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3. Landau-Zener crossing as a quantum example of the

KZM

Landau36 and Zener37 (see as well Stueckelberg38 and Majorana39) pro-

vided an analytical description of the diabatic excitation probability in a

two-level quantum mechanical system described by a Hamiltonian Ĥ0 in

which the energy gap between the two states varies linearly in time. Using

dimensionless units for all variables,

Ĥ0 =

(

t/τQ 1

1 −t/τQ(t)

)

=
t

τQ
σz + σx, (11)

where σx,y,z are the usual Pauli matrices, and for which the instantaneous

eigenbasis reads:

| ↑ (t)〉 = sin(θ/2)|1〉+ sin(θ/2)|2〉,
| ↓ (t)〉 = − sin(θ/2)|1〉+ cos(θ/2)|2〉.

The angle θ ∈ [0, π] obeys the relations

cos θ =
ε√

1 + ε2
, sin θ =

1√
1 + ε2

,

in terms of the reduced variable

ε =
t

τQ
. (12)

The exact energy gap is E↑(t)−E↓(t) =
√
1 + ε2. The Landau-Zener (LZ)

formula states that the excitation probability decays exponentially with the

quench time

P = e−
π
2 τQ . (13)

Above, time is measured in units given by the inverse of the gap in Eq. (11)

at its minimum. This results has been extended to multi-state problems40–43

as well as nonlinear modulations of ε(t).44,45

Damski has shown that the quantum dynamics across a Landau-Zener

(LZ) transition is accurately described by the adiabatic-impulse approxi-

mation, and ultimately, by the KZM.46 The freeze-out time scale can be

estimated by matching the inverse of the energy gap with the time scale

|ε/ε̇|
1

√

1 + (t̂/τQ)2
= αt̂ (14)
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where α is a constant. It follows that ε̂ = t̂/τQ = 1√
2

[

√

1 +
(

1
ατQ

)2

−1

]1/2

.

One can then consider the case where the system is initialized at a time

ti ≪ −t̂ and evolved until a final time tf ≫ t̂. The impulse stage occurs in

the interval [−t̂, t̂] and the excitation probability can then be approximated

by

P = |〈↑ (t̂)| ↓ (−t̂)〉|2 =
ε̂2

1 + ε̂2
. (15)

Using the estimate for ε̂, one finds that P = 1 − ατQ/2 + (ατQ)
2/2 + . . . .

The optimal value α = π/2 can be extracted from the comparison with the

exact solution of the LZ problem.47 This result agrees with the LZ formula

up to third order in τQ.

Exploiting the adiabatic impulse approximation, one can consider as

well asymmetric quenches, such as when ti = 0, for which

P = |〈↑ (t̂)| ↓ (0)〉|2 =
1

2
− 1

2
√
1 + ε̂2

. (16)

Its expansion, P = 1
2 − 1

2

√
ατQ + 1

8 (ατQ)
3/2 + . . . , matches well the exact

result for α ≃ π/4.47

Fig. 2. Experimental optical simulation of the quantum dynamics across a LZ crossing
supporting the adiabatic-impulse approximation. The measured density of excitations
(green dots) agrees with the exact solution (solid green line) and the estimate based on
the adiabatic-impulse approximation.46 From Xu et al.48

An experimental demonstration of the KZM-LZ connection,46 the pos-

sibility of describing a LZ crossing using the adiabatic-impulse approxi-

mation which is a core feature of the KZM, has recently been achieved
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using a linear optical quantum simulator at the Key Laboratory of Quan-

tum Information.48 A second experiment in the same center, this time in

a semiconductor electron charge qubit, has further confirmed the universal

validity of the adiabatic-impulse approximation.49

3.1. Controlling excitations in Landau-Zener crossing

Excitations formed during a LZ crossing at an arbitrary finite-rate can

be completely suppressed by counterdiabatic driving. This method was in-

troduced by Demirplak and Rice,50 and Berry,51 and is also referred to

as the transitionless quantum driving. Provided that one can diagonalize

the Hamiltonian of interest Ĥ0[λ(t)] (that is, find its instantaneous eigen-

states |n(λ)〉 and eigenvalues En(λ)) for every λ(t), it is possible to enforce

the dynamics exactly through the adiabatic manifold using counterdiabatic

fields (i.e., the fields that allow one to cross the adiabatic-impulse regime

fast, but without the usually inevitable excitations). Indeed, the adiabatic

approximation

ψn(t) = exp

(

− i

~

∫ t

0

En(t
′)dt′ − 1

~

∫ t

0

〈n|∂t′n〉dt′
)

|n(t)〉 (17)

to Ĥ0[λ(t)] becomes the exact solution of the time-dependent Schrödinger

equation with the Hamiltonian Ĥ = Ĥ0 + Ĥ1, where

Ĥ1 = iλ′(t)
∑

n

[|∂λn〉〈n| − 〈n|∂λn〉|n〉〈n|]. (18)

Counterdiabatic driving has been demonstrated experimentally in an

effective two-level system realized with a Bose-Einstein condensate in the

presence of an optical lattice potential.52 This type of assisted quantum

adiabatic passage has also been implemented in an electron spin of a single

nitrogen-vacancy center in diamond.53 For the LZ crossing with λ(t) =

t/τQ, one finds that the counterdiabatic field reduces to

Ĥ1 = − 1

2τQ

∆

1 + (t/τQ)2
σy . (19)

Counterdiabatic driving is currently finding an increasing number of

applications in quantum control,54 quantum information processing,53 BEC

and ultra cold atom physics,55 and other fields.56

4. Quantum phase transitions

We have seen that two-level systems constitute an ideal platform to test the

adiabatic-impulse approximation, a key ingredient of the quantum KZM.
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However, KZM also predicts the typical size of the domains in the bro-

ken symmetry phase resulting from a finite-rate crossing of a critical point,

i.e., it estimates the average distance between topological defects. To an-

alyze this aspect it is required to consider spatially extended systems. A

wide variety of condensed-matter systems and statistical mechanics models

exhibiting quantum phase transitions offer a test-bed for these predictions.

Quantum phase transitions are characterized by abrupt changes in the

ground-state properties of a many-body systems as a control parameter

is tuned.57 In experimental realizations this control parameter is typically

an external field such as a magnetic field acting on spins, a laser field

in trapped ion systems or and optical lattice potential in ultracold atom

quantum simulators.57,58

The extension of the KZM to quantum phase transitions was eluci-

dated by studying the dynamics in quasi-free fermion models,59–62 and is by

now well-documented.27,28 A paradigmatic example is the one-dimensional

quantum Ising chain described by the Hamiltonian

Ĥ = −
N
∑

k=1

[

g(t)σx
n + σz

nσ
z
n+1

]

, (20)

where g(t) plays the role of a magnetic field, which has a critical point

at |gc| = 1. Remarkably, this model describes certain magnetic condensed

matter systems63 and its quantum emulation, e.g., in ion traps, is the sub-

ject of ongoing efforts.64 A quantum phase transition occurs between a

paramagnetic phase (|g| > 1) and a doubly-degenerate ferromagnetic phase

(|g| < 1).

Consider the time-dependent quench g(t) = −t/τQ with t ∈ (−∞, 0).

One can quantify the breakdown of adiabaticity dictated by the KZM using

the average number of excitations for a given quench rate ending at g = 0,

n =
1

2N

N
∑

k=1

[1− 〈σz
nσ

z
n+1〉]. (21)

Using standard techniques (a combination of the Jordan-Wigner transfor-

mation and Fourier transform), Dziarmaga was able to rewrite the system

as a set of independent Landau-Zener crossings.60 In the thermodynamic

limit (N ≫ 1), the density of kinks can then be approximated by

n =
1

2π

∫ π

−π

pkdk, (22)

where pk is the probability of excitation in each mode. In view of the appli-

cability of the adiabatic-impulse approximation to each level, the dynamics
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across the critical point might be expected to be described by the KZM.

The resulting amount of excitations is found to scale as n ∝ τ
−1/2
Q . This

result is based on an exact solution of the dynamics for the Ising model.47,60

However, it can be extended to an arbitrary D dimensional Hamiltonian

Ĥ[λ(t)], with a quantum critical point characterized by critical exponents

ν and z, leading to the estimate n ∝ τ
− (D−d)ν

νz+1

Q , see61 and the reviews.27,28

5. Adiabatic crossing of quantum phase transition

Counterdiabatic driving50,51 has been extended to many-body systems and

to quasi-free fermion models exhibiting a quantum phase transitions.65 Con-

sider the family of D dimensional model Hamiltonians,which can be decom-

posed into the sum of uncoupled k-mode Hamiltonians,

Ĥ0 =
∑

k

ψ†
k
[~ak(λ(t)) · ~σk]ψk, (23)

where the Pauli matrices in the mode k are ~σk ≡ (σx
k
, σy

k
, σz

k
).

ψ†
k

= (c†
k,1, c

†
k,2) are fermionic operators. The function ~ak(λ) ≡

(ax
k
(λ), ay

k
(λ), az

k
(λ)) is specific for each model.27 Examples of quantum

critical models within this family are the Ising and XY models57 in D = 1,

and the Kitaev model in D = 1, 2.66,67 As quasi-free fermion models, they

can be written down as a sum of independent Landau-Zener crossings. The

dynamics across the the quantum critical point can be driven through the

adiabatic solution associated with Ĥ0 under the action of the modified

Hamiltonian Ĥ = Ĥ0 + Ĥ1, where the counterdiabatic term is given by65

Ĥ1 = λ′(t)
∑

k

1

2|~ak(λ)|2
ψ†
k
[(~ak(λ) × ∂λ~ak(λ)) · ~σk.]ψk (24)

The auxiliary Hamiltonian Ĥ1 involves highly non-local pairwise interac-

tions in the fermionic representation and many-body interactions in the

spin representation, accessible in quantum simulators.68–70 If the range of

the auxiliary Hamiltonian Ĥ1 is restricted to a value M (which is equiv-

alent to include up to M -body spin interactions), an efficient suppression

of excitations occurs in modes with k > 1/M , as explicitly verified in the

1D quantum Ising model.65 Simpler forms of the auxiliary Hamiltonian Ĥ1

are obtained whenever Ĥ0 contains exclusively homogeneous spin interac-

tions,71 as in the Lipkin-Meshkov-Glick model.72
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6. The KZM and transitions between steady states

As we have noted already in the introduction, experimental tests of the

power law scaling predicted by the KZM are difficult, since the exponent

that governs the dependence of ξ̂ on τQ is usually fractional, and often

much less than 1. It is therefore no surprise that the earliest experiments

that were devised to test the KZM scaling were carried out in transitions

between distinct non-equilibrium steady states (rather than between dif-

ferent equilibria) in driven systems,73–76 where implementing the quench

is often easier. In such systems – for example, in Rayleigh-Bénard convec-

tion – the broken symmetry can be associated with convective flows driven

by thermal gradients in presence of an external potential (e.g., gravity).

Topological defects are the imperfections in the arrangement of these far

from equilibrium convective patterns. For example, the lattice of normally

hexagonal Bénard cells may exhibit lattice defects.

The effective field theory (such as a suitable version of the Ginzburg-

Landau model) is often used to represent symmetry breaking associated

with the formation of such steady-state structures. One can therefore expect

(based on this Ginzburg-Landau connection) that some of the features of

the dynamics of symmetry breaking predicted by the KZM for equilibrium

phase transitions can be also detected in the transitions between distinct

non-equilibrium steady states that exhibit different symmetries. This was

indeed the case in the nonlinear optical system.73 However, more recent

experiments (see e. g.77) present a richer and more complicated picture.

Indeed, the very nature of such steady state phenomena (e.g., the fact that

defects appear in an order parameter defined by the lattice of relatively

large, Bénard cell sized structures) suggests caution in applying the KZM

to transitions between distinct non-equilibrium states that exhibit different

broken symmetries. The concepts such as “the relevant speed of sound” or

the “sonic horizon” and, especially, the ideas underlying renormalization

group (that are natural in the equilibrium second-order phase transitions,

where the KZM was developed) are not directly applicable to switching

between distinct non-equilibrium steady states.

This inapplicability of renormalization is not a concern in the thermo-

dynamic or quantum phase transitions where many orders of magnitude

usually separate, e.g., the healing length, from the microscopic scales that

determine the basic physics. This scale separation allows for the indepen-

dence of the physics that governs dynamics of the order parameter (and,

hence, e.g., the size of the sonic horizon) from the underlying microphysics.

However, when one cannot appeal to renormalization, scalings deduced from



November 14, 2013 1:19 WSPC - Proceedings Trim Size: 9in x 6in reviewKZMv2

12

the KZM need not hold, or could be only an approximation.

An interesting and instructive recent example of the extent to which the

KZM can be used as a guide in such more general class of symmetry break-

ing phenomena even when the underlying dynamics does not yield itself to

renormalization (or, indeed, to modeling of the order parameter in terms

of partial differential equations) is offered by experiments78 and computer

simulations.78,79 In this case what happens is in qualitative agreement with

KZM, but does not follow its predictions in detail. A quantum example of

an oversimplified model of the Bose-Einstein condensation that did seem

to approximately follow the KZM even though the usual BEC order pa-

rameter did not enter the discussion, and the dynamics was represented by

transitions between discrete – as in Ref.79 – states was also analyzed some

time ago.80

In spite of these caveats, the transitions between steady states have

provided suggestive early evidence of KZM “mean field” scalings.73 Recent

interesting work (see,78,79 and references therein) can be regarded as an

attempt to formulate an extension of KZM that might be, possibly in only

an approximate way, valid even where there is no scaling traceable to renor-

malization, and even where partial differential equations cannot be used to

represent bifurcation-like processes under study.

7. Winding Numbers in Loops

The earliest prediction19 of scaling of the topologically nontrivial configu-

rations induced by phase transition dynamics concerned winding numbers

(and the resulting flows) in annular superfluid containers, see Fig. 3. The

basic reasoning is straightforward: consider an annulus of circumference C
that contains a substance which, as a result of a change in the external

parameters, becomes a superfluid (or superconductor). When the charac-

teristic healing length set by the phase transition dynamics is ξ̂, and C ≫ ξ̂

while the width of the annulus is small so that it can be regarded as effec-

tively one-dimensional loop, there will be

N ≃ C
ξ̂

(25)

sections of the annulus that independently select the phase of the conden-

sate wavefunction. As a consequence of the resulting random walk of phase

the typical net phase mismatch accumulated over the length C of the loop
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Fig. 3. When a superfluid transition occurs in an annular container with the width
comparable to the frozen-out healing length ξ̂, distinct domains will choose the phase of
the superfluid wavefunction independently. There will be then N ≃ C/ξ̂ of such domains
with randomly chosen phase, or, in other words, along the circumference C = 2πR a

phase mismatch ∆Θ ≃
√

C/ξ̂ will appear as a consequence of such random walk. The
resulting phase gradient implies that a quantized, persistent flow can be induced by the
KZM in a superfluid transition.

will be given by19

∆Θ ≃
√
N ≃

√

C
ξ̂
. (26)

This net phase mismatch implies an average winding number:

W ≃ ∆Θ

2π
. (27)

After the phase ordering has smoothed out the domains, the resulting su-

perfluid will flow with the velocity given by the phase gradient:

v =

∣

∣

∣

∣

~

m
~∇Θ

∣

∣

∣

∣

≃ ~

m

√

1

Cξ̂
. (28)

In the case of superconductors similar reasoning23 leads to magnetic field

trapped inside C corresponding to the number of quanta given by W .

The basic idea of a random walk in phase resulting in the non-zero

winding number has been successfully tested in the experiment involving

a loop that was deliberately divided into N = 214 superconducting sec-

tions by “weak links”.7 When the loop was reconnected into a single super-

conducting ring, flux quanta were trapped inside. Over many runs of this
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experiment, the resulting quantized magnetic flux had an approximately

Gaussian distribution with the dispersion (related to the typical winding

number) well approximated by the KZM-like Eqs. (26) and (27).

By the very nature of the above reconnection experiment, the quench

rate of the transition was irrelevant, and, indeed, not well defined: the size

of the “domains” that can choose the same phase was set by the distance

between the weak links, so that the number of such domains was constant

(N = 214), and hence independent of the quench rate.

The dependence of the typical trapped winding numbers on the quench

rate is difficult to test in the laboratory. The expected power law is even

smaller (by a factor of 2) than the already small fractional power ν
1+zν that

governs the size of ξ̂. Moreover, the quench should be uniform – it must

happen nearly simultaneously in the whole annulus – for, otherwise, the

speed of the relevant sound may exceed the speed of the transition front, so

the regions that “go superfluid” first will communicate their choice of the

phase selection to the neighborhood, and the resulting winding numbers

can be suppressed.21,22

Numerical simulations of the stochastic Gross-Pitaevskii equation,29

such as those in figure 4, confirm this general paradigm and verify the

KZM-predicted scalings. They also show how sensitive the resulting wind-

ing number is to the imperfections in the implementation of the transition.

Such difficulties have so far hampered experimental verification of the KZM-

predicted winding number scaling with the transition rate in, e.g., gaseous

BEC’s.

7.1. Trapping flux in small loops

An interesting and successful set of increasingly sophisticated experiments

that yielded a power law was carried out in small superconducting systems

with the topology of an annulus: tunnel Josephson junctions and small

superconducting loops.81–84 In this regime C ≪ ξ̂, so that the winding

numbers other than W = 0,±1 are exceedingly unlikely, and the natural

observable in this case is the frequency of trapping a winding number |W| =
1.

As the random walk takes no more than one step, the square root of

Eq. (26) is no longer relevant, and it is reasonable to expect changes in

the power law scaling with the quench rate. This general conclusion was

reached using field-theoretic methods to predict doubling of the power law

compared with the C ≫ ξ̂ regime.85 Thus, when ξ̂ ∼ τ
1
4

Q (as is expected
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Fig. 4. Sequence of snapshots of isodensity surfaces during the growth of a BEC in a

toroidal trap resulting in the formation of a superfluid current, modeled by the stochastic
Gross-Pitaevskii equation.29 The color coding describes the phase of the condensate
along the ring. An early stage is characterized by large density and phase fluctuations.
As the condensate growth there is a coarsening of both phase and density fluctuations
that result in the appearance of solitons. The final estate exhibits a uniform density and
winding number W = 1.

in low-temperature superconductors), Ref.85 predicted exponent of 1
4 for

the scaling of typical winding numbers when C ≪ ξ̂ (as opposed to the

exponent 1
8 valid for C ≫ ξ̂, Eq. (26)).

Initial experiments81 yielded power law of the frequency of trapping a

fluxon consistent with this prediction. However, later (and more refined

and presumably more accurate) experiments83 resulted in a steeper slope

with the exponent close to 0.5 as shown in figure 5, i.e. twice the prediction

of Ref.85 This discrepancy was puzzling. Moreover, experiments on small

superconducting loops by Monaco et al.86 reported similar scaling of the

frequency of trapping with the exponent of 0.62 ± 0.15. This exponent is

consistent with 0.5, again four times the slope expected for the scaling of

typical W in the C ≫ ξ̂ regime. The discrepancy with the initially antic-

ipated scaling85 in the tunnel Josephson junctions was attributed to the

possible fabrication problems and the resulting “proximity effect”.83

The resolution of the mystery that does not call on fabrication problems

and resulting complications may be assisted by the recent observation87

that in the regime of small loops, C ≪ ξ̂, dispersion of the winding numbers
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Fig. 5. Scaling of the frequency f1 of trapping a single fluxon with winding number
|W| = 1 in annular Josephson tunnel junctions as a function of the quench rate τQ. Each
point is the result of averaging over many thermal cycles. A fit to a power law f1 = aτ−α

Q

leads to α = 0.51. From Monaco et al.83 Copyright 2006 American Physical Society.

√

〈W2〉 scales differently than 〈|W|〉. Indeed, 〈|W|〉 scales as probabilities

(and, hence, frequencies) of |W| = 1 while the dispersion scales as a square

root of that probability. Therefore, it appears to us that the prediction

of doubling of the scaling exponent of Ref.85 is relevant to the dispersion
√

〈W2〉, while in the experiments that measure frequency of detection of

|W| = 1 one should expect four times the slope of the dispersion in the large-

loop regime, C ≫ ξ̂. With this revision87 of the original expectations,85

the experiments on tunnel Josephson junctions as well as on the small

superconducting loops are in excellent agreement with the predictions of

the KZM and can be regarded as its verification (albeit in the mean field

case).

The reason for the quadrupling (rather than just a simple doubling) of

the power law for frequencies as well as for typical winding numbers char-

acterized by 〈|W|〉 is straightforward.87 We first note that the charges of

topological defects created by the quench are anticorrelated.88 This is re-

flected in the Eqs. (26) and (27) that recognize the phase of the condensate

as the fundamental random variable. By contrast, if charges were assigned

at random, typical W would be given by the square root of the number of

defects subtended by the circumference C. Thus, for C ≫ ξ̂, when the con-

tour contains many defects of both charges, random distribution of charges
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would be directly proportional to the circumference (rather than its square

root, Eq. (26)).

This scaling of typical W with C can be recovered in a simple model87

where pairs of the oppositely charged defects are randomly scattered on a

plane (see Fig. 6). The sizes of the pairs, as well as their separations, are

Fig. 6. The winding number for the circumference C (the circle above) due to vortex-
antivortex pairs scattered randomly on a plane. Contribution of the pairs that are com-
pletely outside or completely inside C vanishes: only pairs that straddle the contour
contribute to W . The number of such pairs is proportional to the circumference C. Note
that pairing illustrated above is in a sense imaginary (as is suggested by the right hand
side of the figure, where pair assignements are invisible), as there is generally no unique
“correct” way to combine vortices and antivortices into pairs. Nevertheless, the recogni-
tion of pairing leads to correct scaling of winding numbers with C. When loops are so
small that typically, at most only one end of a pair “fits inside”, scaling changes, see Fig.

7. From Zurek.87 c©IOP Publishing. Reproduced by permission of IOP Publishing. All
rights reserved.

presumably of the order of ξ̂. The typical winding number is then given by

the square root of the number of pairs disected by the C, which leads to the

scaling of Eq. (26).
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The heuristic picture of the generation of the winding number is then

straightforward. The quench results in a random configuration of the order

parameter deposited inside C. Instead, we can imagine an infinite plane

with all configurations of the order parameter left behind by the transition

pockmarked by defects and sampled at random by dropping the contour C
at random locations. When defects are paired up (as their anticorrelations

suggest) and C ≫ ξ̂, the scaling of Eq. (26) is easily recovered (see Fig. 7).

By contrast, when C ≪ ξ̂, most of the loops tossed on the plane will end
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Fig. 7. The tilt of the scaling of the dispersion,
√

〈W2〉, its square, and the average
〈|W|〉 of the winding numbers is expected to change with the number of defects trapped
inside C when 〈n〉 ≃ 1.87 For loops that trap many defects, 〈n〉 ≫ 1, the dispersion

and the average absolute value of W scale similarly,
√

〈W2〉 ∼ |W| ∼
√

C/ξ̂. However,
different tilts, corresponding to the exponents that control the slopes of the dispersion

and 〈|W|〉, set in as 〈n〉 ≪ 1. Compared to

√

C/ξ̂, the slope of the dispersion doubles,
√

〈W2〉 ∼
√
AC/ξ̂ while the slope of the average absolute value quadruples so that

〈|W|〉 ≃ p|W |=1 ∼ AC/ξ̂
2 ∼ 〈W2〉 when 〈n〉 ≪ 1, where AC is the area enclosed by the

contour C. (Note that 〈n〉 ≈ AC/ξ̂
2). From Zurek.87 c©IOP Publishing. Reproduced by

permission of IOP Publishing. All rights reserved.

up “empty”, hence, will have W = 0. Only on rare occasions when the loop

of area AC ∼ C2 ≪ ξ̂2 “traps” a defect inside, the winding number will

be +1 or −1, depending on the defect charge. Moreover, the probability of
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trapping the defects will scale as ∼ AC × ξ̂−2, as the density of the KZM

defects is ∼ 1/ξ̂2. Consequently, the probability (and, hence, the frequency)

of finding a loop with |W| = 1 in the case of 〈|W|〉 ≪ 1 scales as:

pW=±1 ∼ AC

ξ̂2
∼ C2

ξ̂2
. (29)

Note that the power with which ξ̂ appears above is four times the power

law relating typical W and ξ̂ when C ≫ ξ̂, Eq. (26). It follows that the

scaling of the frequency (or of 〈|W|〉) with τQ in this C ≪ ξ̂ regime is four

times steeper than for large (C ≫ ξ̂) loops. Scaling of 〈W2〉 in this regime

is equally steep, as 〈W2〉 ≈ 〈|W|〉 ≈ pW=±1 ≃ C2/ξ̂2. On the other hand,

scaling of
√

〈W2〉 will only double (which is what may have been predicted

by Ref.85). It is that discrepancy between the scaling of dispersion and

frequency of detection in case of small loops that may account for the

experimental results seen in Fig. 5.

This quadrupling is a combination of two doublings (or, rather, it re-

verses the consequences of two square roots that appear as the size of the

loop increases from C ≪ ξ̂ to C ≫ ξ̂). For small loops, the frequency of

trapping a single defect is proportional to the area inside C, and this yields

a proportionality to the area for 〈W2〉 ≈ 〈|W|〉 ≈ pW=±1 ≃ C2/ξ̂2. By con-

trast, for large loops the net winding number is given by the random walk in

the phase (which yields square root #1) of the number of pairs intercepted

by C ≫ ξ̂ rather than the area inside, AC (which implies square root #2).

This change of the power law that governs the scalings will be reflected in

the power law dependence of the winding number on the quench time τQ.

8. Defect formation in multiferroics

Multiferroics are materials that exhibit more than one primary ferroic order

parameter simultaneously (i.e. in a single phase). Recent measurements in

rare earth multiferroics have provided what may be a compelling evidence

of the KZM.89 The reason for excitement is illustrated in Fig. 8. It shows

snapshots of the surface of ErMnO3 cooled, at different rates, from about

1200◦C (i.e., from above the phase transition that occurs at 1120-1140◦C)
to room temperature. The mosaic pattern seen in this figure represents

domains that form as a result of symmetry breaking. These domains are

punctuated by vortex-like defects that appear where several domains meet.

The topological charge of the point defect is determined by the order in

which distinct phases are arranged. Clearly, the scale of the structures (that
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can be deduced from the density of the point defects) increases with the

cooling time, as is shown in Fig. 8.

Fig. 8. Vortices (present where three dark and three bright domains merge) punctuate
domain patterns formed in chemically-etched ErMnO3 crystals for different cooling rates.
The characteristic scale extracted from the experiments (e.g., from the density of vortices)
exhibits a scaling with the rate of quench that is consistent with the KZM predictions
for the 3D XY model,90 which has ν = 0.6717 and νz = 1.3132 calculated using Monte
Carlo simulations.91 From Chae et al.89 Copyright 2012 American Physical Society.

The power-law exponent governing the dependence of the distance be-

tween the point defects in the quench rate is close to 0.25, which suggests a

description in terms of the KZM with, e.g., the mean-field critical exponents

ν = 1
2 , z = 2 that would result in ξ̂ scaling with the power ν

1+νz = 1
4 . How-

ever, Griffin et al.90 note that the universality class of the phase transition is

the same as of the 3D XY model, which has ν = 0.6717 and νz = 1.3132 cal-

culated using Monte Carlo simulations91 (as a caveat, note that the choice

of z depends on the dynamics, which is not well characterized in this case).

Consequently, the predicted KZM exponent would be ν
1+νz ≃ 0.29. This
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is consistent with the experimentally measured value. Indeed, not just the

slope of the power law dependence but also the net defect density are in

approximate agreement with the ab initio calculations.90

While the above discussion can be interpreted as a resounding confirma-

tion of the KZM, there are reasons for caution. To begin with, apart from

the approximate critical temperature, very little is known about the actual

critical behavior of ErMnO3 (and similar rare earth manganites given by

the chemical formula RMnO3, where R stands for a rare earth element).

This problem is largely due to the very high critical temperature, which

makes, at least to date, the measurements that would allow one to extract

ν and z all but impossible. Indeed, at present it is not even completely

clear, experimentally, whether the transition is of first or second order.

The other reason for caution comes from the fast temperature quenches

carried out recently.90 They have yielded (albeit in YMnO3, and not in

ErMnO3 where the original study
89 was conducted) a surprise: the increase

in the rate of much faster quenches (with cooling rates of up to 102K/s)

actually suppressed defect production, resulting in increasing size of do-

main sizes structures. This has not been yet explained, although several

possibly relevant effects have been discussed.90 At present, it seems reason-

able to wait for experimental confirmation of this ‘anti-KZM’ effect before

attempting to advance a detailed theory.

One might hope that the experimental difficulties and the related uncer-

tainties may be eventually overcome. Precision measurements of the scaling

of ξ̂ with τQ could be then increased sufficiently so that one might confirm

that it is indeed close to 0.29 predicted by the 3DXY universality class (and

not “mean field”), and that would be a major coup.

9. The inhomogeneous Kibble-Zurek mechanism

Tests of the Kibble-Zurek mechanism in the laboratory often face the sit-

uation in which the phase transition is inhomogeneous as opposed to be-

ing crossed everywhere at once.92 What survives from the Kibble-Zurek

mechanism in inhomogeneous phase transitions is decided by causality.93

This realization has provided a foundation for an active area of research

in recent years, with theory works22,35,93–101 accompanied by a substantial

experimental progress13–16 following the pioneering suggestion by Kibble

and Volovik,21 who first focused on the problem of phase ordering behind

a propagating front of a continuous phase transition. This situation can

arise as a result of a inhomogeneous tuning of the control parameter driv-

ing the transition λ = λ(x, t). Alternatively, it might result from a spatial
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dependence of the critical value λc = λc(x) which often occurs in trapped

systems. Using the local density approximation, one could then replace the

critical value λc[ρ] for homogeneous density ρ by λc[ρ(x)]. We refer the

reader to the recent review for a detailed exposition of the subject.92

Fig. 9. Bose-Einstein condensation by evaporative cooling in a harmonic trap offers an
example of the inhomogeneous phase transition where causality enhances the dependence
of the defect density on the quench rate. (a) Isodensity surface of Bose gas in a trap. Its
density is highest in the center of the trap, and that is where the condensation will start
when the cloud cools e.g. by evaporative cooling. When the region that becomes BEC
first can communicate its choice of the condensate phase to the neighbouring domains,
defects will not form. (b) On the other hand, when the speed of relevant sound ŝ = ξ̂/t̂
is less that the speed vF with which the critical point propagates as a result of cooling,
different phases will be chosen by different domains (as indicated by the color coding) and
grey solitons can be created. From Zurek.93 Copyright 2009 American Physical Society.

Let us assume that the critical point exhibits a spatial dependence λc =

λc(x) and that the system undergoes a homogeneous quench of the control

parameter with constant rate 1/τQ,

λ(t) = λc

(

1− t

τQ

)

, (30)

during the time interval t ∈ [−τQ, τQ]. As in the homogeneous case, it is
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convenient to introduce the reduced control parameter

ε(x, t) =
λc(x) − λ(t)

λc(x)
, (31)

which takes values ε(x, t) < 0 in the high symmetry phase where the system

is initially prepared, it reaches ε(x, t) = 0 at the critical point, and the

broken-symmetry phase for ε(x, t) > 0.

To establish the relationship with the homogeneous case, it is further

convenient to introduce an effective local quench time,

τQ(x) =

∣

∣

∣

∣

∂ε(x, t)

∂t

∣

∣

∣

∣

−1

. (32)

The condition ε(xF , tF ) = 0 allows us to find the time tF at which the

propagating front crosses the transition at the location xF = x

tF (x) = τQ

[

1− λc(x)

λc(0)

]

, (33)

in terms of which the reduced control parameter reads ε(x, t) = t−tF (x)
τQ(x) .

Matching, in the spirit of Eq. (2),

τ [ε(x, t)] =

∣

∣

∣

∣

ε(x, t)

ε̇(x, t)

∣

∣

∣

∣

= |ε(x, t)|τQ(x), (34)

one obtains93,99that

ε̂(x) =

[

τ0
τQ(x)

]
1

1+νz

. (35)

See92 for alternative derivations. We note that ε̂(x) is associated with the

local freeze-out time t̂(x) = [τ0τQ(x)
νz ]

1
1+νz measured with respect to tF (x)

(that is, freeze-out will take place in the interval [tF (x)− t̂(x), tF (x)+ t̂(x)]).
It follows that the typical size of the domains in the broken symmetry phase

is given by

ξ̂(x) ≡ ξ[ε̂(x)] ≃ ξ0

[

τQ(x)

τ0

]
ν

1+νz

. (36)

In contrast to the homogeneous scenario, defect formation does not occur

all over the spatial extent L of the system but it is restricted by causality.93

Once a choice of a ground-state of the vacuum manifold is made locally in a

given part of the system, it can be communicated to neighbouring regions.

The characteristic local velocity of the perturbations, which determines the

speed at which this choice can be communicated, is given by the analogue of

the second-sound velocity in 4He that can be upper bounded by the ratio
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of the local frozen-out correlation length ξ̂(x) and relaxation time scale

τ̂ (x) = τ [ε̂] = t̂(x), this is, by21

ŝ =
ξ̂

τ̂
=
ξ0
τ0

[

τ0
τQ(x)

]

ν(z−1)
1+νz

. (37)

When ŝ is larger that the transition front velocity vF , defect formation is

suppressed. The speed of propagation of this front can be estimated to be93

vF =

∣

∣

∣

∣

dxF
dtF

∣

∣

∣

∣

=
λc(0)

τQ

∣

∣

∣

∣

dλc(x)

dxF

∣

∣

∣

∣

−1

=

∣

∣

∣

∣

dτQ(x)

dxF

∣

∣

∣

∣

−1

. (38)

This expression diverges for homogeneous system, or where the system is lo-

cally homogeneous (e.g., whenever λc(x) reaches an extremum). For defects

to be formed, ŝ < vF is required.

Numerical and analytical tests have confirmed this intuition, and thus,

the role of causality in defect formation both in classical22,35,98,100 and

quantum systems.96,97 This inequality is generally satisfied in a fraction

of the system X̂ = x̂/L, with x̂ = {x|vF > ŝ}. Within x̂, the number of

defects can be estimated using ξ̂(x). The resulting density of defects in the

whole system is then simply given by the total numbers of defects formed

with the homogeneous density in regions where vF > ŝ divided by the total

system size, which in the 1D case reduces to

n ≃ 1

L

∫

{x|vF>ŝ}

1

ξ0

[

τ0
τQ(x)

]
ν

1+νz

dx. (39)

This expression does not generally lead to a power-law in the quench rate.99

A power-law does however result in limiting cases.93,99 Whenever λc(x)

attains an extremum, say at x = 0, it can be linearized as

λc(x) = λc(0) +
λ′′c (0)

2
x2 +O(x3), (40)

and the front velocity simplifies to

vF ≃ λc(0)

τQ|xλ′′c (0)|
, (41)

which diverges at the origin x = 0. The effective region of the system where

defect formation is allowed by causality can be then estimated by comparing

(37) and (41). Assuming x̂ is simply connected and small enough, so that

τQ(x) ≈ τQ(0) within x̂, it is found that

|x̂| ≃ λc(0)

|λ′′c (0)|ξ0

[

τ0
τQ(0)

]
1+ν
1+νz

, (42)
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which increases with the quench rate, as expected. This results in the total

density of defects

n ≃ 1

L

λc(0)

|λ′′c (0)|ξ20

[

τ0
τQ(0)

]
1+2ν
1+νz

, (43)

with a new power-law exponent93 which is a multiple, by a factor 1+2ν
ν , of

what is predicted for the density (e.g., ξ̂−1) by the homogenous KZM in 1D,

Eq. (10). This constitutes a testable prediction of the inhomogeneous KZM

(IKZM). Numerical evidence supporting this scaling was first described

in,35,98 see as well.100 A flurry of experimental activity testing the IKZM

has been reported during 2012 and 2013 on the scaling of defect formation

in inhomogeneous system and we now turn our attention to it.

10. Kink formation in ion chains

Coulomb crystals made of ion chains stand out as a platform for quantum

technologies as a result of their potential for quantum information pro-

cessing102 and quantum simulation.103,104 Coulomb crystals with several

millions of ions have been observed both in Paul and Penning traps.105,106

When the inter-ion spacing a is homogeneous, different structural phases

can be accessed by tuning the transverse harmonic confinement. As the

trapping frequency νt is reduced from high to lower values, the Coulomb

crystal undergoes a series of structural phase transitions with phases charac-

terized by linear, zigzag, helicoidal, and more complex structures.107 These

transitions are generally of first order, with the following exception: the

transition between the linear ion chain and the doubly-degenerate zigzag

phase, shown in Fig. 10(a), is of second order108–110 and occurs at the crit-

ical frequency

ν2t,c =
7

2
ζ(3)

Q2

ma3
, (44)

where ζ(p) is the Riemann-zeta function and m and Q are the mass and

charge of the ions, respectively. A finite-time crossing of this transition is

expected to result in the formation of topological defects as described by

the KZM,35,98 see Fig. 10(b).

The axial confinement in an ion chain makes the inter-ion spacing spa-

tially dependent, a = a(x), as illustrated in Fig. 10(c) and (d). Using the

local density approximation, away from the chain edges the linear density

of ions given by the inverse of the distance between them, a(x)−1, is well
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Fig. 10. Linear to zigzag phase transition in ion chains. (a) Symmetry breaking in an
homogeneous ion chain following a decompression of the transverse confinement. The vac-
uum manifold consists of two doubly-degenerate disconnected regions, associated with a
Z2-symmetry breaking scenario. (b) Boundaries between disparate choices of the vacuum
lead to the formation of Z2-kinks or domain walls. (c) A sequence of ground state configu-
rations in a harmonically trapped ion chain. As a result of the axial harmonic confinement
the inter-ion spacing a(x) is lowest at the center of the chain and increases sideways.
Under a (homogeneous) decompression of the transverse confinement, the zigzag phase is
first formed in the center of the chain (where Coulomb repulsion is higher) and coexists
with region in the linear phase. (d) The transverse decompression (or axial compression)
of an inhomogeneous ion chain at finite rate can lead to the formation of structural de-
fects. These defects are not stationary and can propagate along the chain and annihilate
by collisions (between a kink and an anti-kink with opposite topological charge) or can
be lost at the edges of the chain.

approximated by the inverted parabola35,98

a(x)−1 =
3

4

N

L

(

1− x2

L2

)

, (45)

where N is the number of ions, L is half the length of the chain, and x the

distance from the center. This leads to a spatial modulation of the critical
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frequency along the chain,

νt,c(x)
2 =

7

2
ζ(3)

Q2

ma(x)3
, (46)

which ultimately makes the linear to zigzag transition inhomogeneous. In

the thermodynamic limit, the system obeys an effective time-dependent

Ginzburg-Landau equation where the difference ν2t − ν2t,c governs the tran-

sition from the high-symmetry phase to the broken symmetry phase.35,98

Consider a quench of the transverse trap frequency νt, such that

νt(t)
2 = νt,c(0)

2 − δ20
t

τQ
. (47)

Around the critical point the transverse frequency can be linearized, νt ≈
νt,c(0)− δ t

τQ
with δ = δ20/[2νt,c(0)]. Under such a quench, as a result of the

spatial dependence of νt,c(x), the zigzag phase is not formed everywhere

at once, and it arises first in the center of the chain. To account for the

formation of kinks it is required to extend the KZM to inhomogeneous

scenarios as in section 9, see35,98 in this context. The reduced squared-

frequency

ε(x, t) =
νt,c(x)

2 − νt(t)
2

νct (x)
2

(48)

governs the divergence of the correlation length and the relaxation time at

the critical point

ξ =
ξ0

√

ε(x, t)
, τ =

τ0
√

|ε(x, t)|
, (49)

where ξ0 and τ0 are set by the inter-ion spacing a(0) = a and the inverse

of the characteristic Coulomb frequency is given by ω−1
0 =

√

ma3/Q2. We

have assumed that the system is underdamped which is the case whenever

the dissipation strength η induced by laser cooling satisfies η3 ≪ δ20/τQ.

This leads to the critical exponents ν = 1/2, and z = 1. The front crossing

the transition satisfies ε(x, t) = 0 and reaches x at time

tF (x) = τQ

(

1− νt,c(x)
2

νt,c(0)2

)

. (50)

Relative to this time, it is possible to rewrite the reduced squared-frequency

ε(x, t) =
t− tF (x)

τQ(x)
, (51)
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in terms of the local quench rate

τQ(x) = τQ
νt,c(x)

2

νt,c(0)2
= τQ(1 −X2)−3, (52)

where νt,c(x)
2 = νt,c(0)

2[1−X2]3 and X = x/L. The front velocity reads

vF ∼ δ20
τQ

∣

∣

∣

∣

dνt,c(x)
2

dx

∣

∣

∣

∣

−1

xF

=
Lδ20

6νt,c(0)2τQ

1

|X |(1 −X2)−2. (53)

The essence of the Inhomogeneous Kibble-Zurek mechanism (IKZM) is the

interplay between the velocity of the front and the sound velocity.21,93 As

in section 9 (see Eq. (37)), the relevant velocity of perturbations can be

estimated to be

ŝ =
ξ̂

τ̂
=
ξ0
τ0

(

τ0
τQ(x)

)

ν(z−1)
1+νz

= aω0. (54)

The last equality holds whenever the dynamic critical exponent z = 1, as

in an underdamped ion chain.

In the IKZM, the condition for kink formation to be possible is given

by the inequality

vF(x) > ŝ, (55)

while the propagation of the pre-selected phase is expected otherwise. As

shown in,99 it is instructive to study the spatial dependence of the ratio

vF(x)/ŝ, which as a function of X = x/L turns out to be parametrized

by the dimensionless quantity A =
Lδ20

6νt,c(0)2aω0τQ
. Using the Thomas-Fermi

approximation for the axial density, Eq. (45), figure 11 shows that typically

vF(x) > ŝ is satisfied in two disconnected regions. However, the outer region

can be safely disregarded given that kinks possibly formed there are likely

to leak out to the linear, outer part of the chain. A kink experiences a

Peierls-Nabarro oscillatory potential whose amplitude diminishes with the

transverse amplitude of the zigzag (the order parameter), this is, towards

the edges of the chain.98,111 Langevin dynamics simulations show that kinks

experiencing a gradient of the zigzag amplitude travel towards the edges

of the chain where they disappear. As a result, it suffices to consider the

central region of the chain [−x̂, x̂] for defect formation. Generally x̂ has to

be found numerically. However, when the defect formation is restricted to

a region X̂ ≪ 1, then one can set98

x̂ = |X̂|L =
δ20L

2

6νt,c(0)2τQv̂
+O(X̂3). (56)
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Fig. 11. Ratio of the front velocity over the second speed of sound as a function of
the dimensionless coordinate X measured from the center of the chain (X = 0) towards
an edge (X = 1, in the Thomas-Fermi approximation). The ratio is symmetric around
X = 0 and only X > 0 is displayed for clarity. Within the approximation of the IKZM we
adopt, formation of defects with KZM densities is only possible there where vF /ŝ > 1.

The curves correspond to different values of A =
Lδ20

6νt,c(0)2aω0τQ
with which color coding

increases from light to dark blue taking the values A = 0.1, 0.289, 0.8. Above a critical
value Ac ≈ 0.289 the homogeneous KZM applies. For A < Ac domain formation is
expected in two disjoint regions and the inhomogeneous KZM governs the dynamics
of defect formation. Disregarding the outer region (where defect losses are dominant),
whenever the size of the central region is approximately linear in A, the density of defects
scales with a power-law in the quench rate.

Under the assumption X̂ ≪ 1, one finds the estimate predicted in35,98 for

the density of kinks

n ≈ 2x̂

ξ̂L
=

L

3νt,c(0)2a2ω2
0

(

δ20
τQ

)4/3

. (57)

Note that setting τQ(x) = τQ is consistent with X̂ ≪ 1. We note that

without restricting to X̂ ≪ 1, there is no reason to expect a power-law

scaling, see Ref.99

For sufficiently long quench times, the effective size of a domain set

by the KZM length becomes comparable to the (effective) system size,

2x̂ = 2X̂L ∼ ξ̂. In this situation, typically one obtains 0 or 1 defects

per realization. It was pointed out some time ago in the discussion of the

winding numbers trapped in loops (see Section 7), that the scaling with

τQ is likely to steepen85 when the circumference C of the loop becomes

less than ξ̂. This prediction has found support in numerical studies of the

dispersion of the winding numbers,
√

〈W2〉:86,112,113 the doubling of the
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exponent that governs the scaling of the dispersion of W when C ≫ ξ̂ was

seen in the C ≪ ξ̂ regime, i.e., when W = ±1 is much less likely than the

probability of W = 0, as
√

〈W2〉 is then dominated by the probability of

taking a single step in the random walk, while the contribution of W > 1

is negligible.87

We have already seen is Section 7 that relating this prediction to experi-

ments requires some care, as doubling of the dispersion ofW with τQ in this

C ≪ ξ̂ regime actually implies quadrupling of the frequency of detections

of |W| = 1,87 and the frequency is then the obvious observable. In the case

of winding number the situation is relatively well understood, at least at

the level of simple models. The quadrupling predicted there (and possibly

already observed, see Fig. 5) is in a sense a product of two doublings. One

of them comes about as a consequence of the square root that is related to

the random walk of the phase that becomes unnecessary in the case when

that random walk has only one step. It is likely relevant only in the case

of loops. The second doubling has to do with the change of the character

of the question: in small loops the focus is trapping a single defect (and

the answer is proportional to the area) while in large loops what matters

is the number of pairs intercepted by the circumference (and the answer

is proportional to the circumference, and, hence, to the square root of the

area). It is not clear whether at least one doubling survives the transition

from loops to open boundary conditions in the case when the size of the

system becomes smaller than ξ̂, and excitations becomes rare. Computer

experiments with the experimental parameters15 are consistent with three

regimes: KZM (density scaling with power ∼ 1
3 ), followed by IKZM (den-

sity scaling steepening to ∼ 4
3 ), and, finally – when the density becomes

synonymous with the probability of a single kink – an even steeper power

law that can be interpreted as ∼ 8
3 of “doubled” IKZM, see Fig. 12. Thus,

assuming a doubling of the IKZM this probability can be estimated to be

p1 ∼
(

2x̂

ξ̂

)2

∼ L4

νt,c(0)4a4ω4
0

(

δ20
τQ

)8/3

. (58)

Three different experimental groups reported tests of the IKZM in the

context of kink formation in trapped ion chains. Experiments13,15 fol-

lowed closely the proposal in,35,98 where critical dynamics was driven by

a finite-rate decompression of the transverse confinement. The experiment

at Mainz14 used instead a compression along the axial direction. The sys-

tem sizes and the accessible quench rates in these experiments correspond

precisely to the onset of adiabatic dynamics, where {0, 1} defects are ob-
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Fig. 12. Scaling of the density of spontaneously formed kinks as a function of the
quench rate at which the linear to zigzag structural phase transition is crossed in a
trapped Coulomb crystal. The simulations are based on coupled Langevin equations
using the experimental parameters in.15 The system is underdamped in the presence
of laser cooling. The plotted lines are guidelines to the eye with slopes predicted by
the homogenous KZM (1/3), the IKZM (4/3), and twice the slope predicted by IKZM.
Adapted from.15

served per realization.14,15 The experiment at Simon Fraser University13

reported broader kink number distributions but the presence of substantial

kink losses prevented testing any signature of universality in the dynamics

of kink formation. See Table 1 for a summary of these experiments. The

results of14,15 suggest an agreement with (58).

Table 1. Experimental results on the topological defect formation in ion Coulomb
crystals.13–15 Data was fitted to a power-law in the quench rate τQ of the form
n ∝ τ−α

Q
.

Group Number of ions Kink number Fitted exponent α

Mainz University14 16 {0, 1} 2.68± 0.06

PTB15 29± 2 {0, 1} 2.7± 0.3

Simon Fraser University13 42± 1 {0, 2} 3.3± 0.2
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There are obvious concerns about the extent to which the limited data

behind Table 1 can be regarded as a verification of the KZM (e.g., the

restricted range of quench rates in each regime, the losses of defects, etc.).

However, over and above such experimental issues there are two concerns

related to the applicability of IKZM theory to the ion chains of the size

X̂ ≪ ξ̂ accessible so far in the experiments.13–15

Our discussion in Section 9 was based on the idea (put forward in the

analysis of soliton formation93) that a system in an anisotropic harmonic

trap can be cleanly divided into regions where the phase transition front

velocity is faster (or slower) than the relevant speed of sound. As a conse-

quence, one can distinguish regions where the homogeneous KZM holds (or

does not) and defects are created with the local density set by ξ̂ (or not at

all).

This sharp division is the key assumption underlying the IKZM. How-

ever, in computer simulations and analytic studies the transition between

the “homogeneous KZM” and “no defects at all” is not completely sharp,

and it seems unlikely (e.g., in view of the behavior of the order parameter

in the presence of the gradients94) that it could be less than ξ̂. Thus, the

applicability of the IKZM scalings to the ion chains where X̂ ≪ ξ̂ can be

questioned at least in the experiments with rather small systems,13–15 as

the limits on the integral in Eq. (58) are not well defined.

The above concern may apply to the IKZM in all small systems. It

appears in addition to the difficulties involved in testing the KZM in many-

body systems of modest size, where the scaling in the near-critical regime

may not have converged to the values of critical exponents that determine

the universality class. This concern can be of course addressed by carrying

out suitable equilibrium measurements to verify ν and z, and determining

that they extend over the range relevant for the KZM.

The KZM is a way to employ equilibrium scalings in predictions of the

consequences of non-equilibrium quenches. Checking if the system in ques-

tion follows the behavior predicted for its equilibrium universality class

seems like a prudent first step when the systems is of modest size and espe-

cially if it is in a trap or any other setting that can potentially complicate

its behavior.

The other way to address such concerns is to work with large homo-

geneous systems. In case of ion traps this is not out of the question: large

“racetrack” traps are in principle possible105 and could be used to study

phase transitions and symmetry breaking in ion Coulomb crystals in a set-

ting where the homogeneous KZM could be tested.114
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10.1. Prospects of ground-state cooling of ion chains

In the theory and experiments just discussed, the ion chain is hot enough

so that thermal fluctuations dominate over quantum fluctuations, and a

classical description applies.

The prospects of achieving ground-state cooling, while experimentally

challenging, might pave the way to study the dynamics of quantum phase

transitions in ion traps and similar settings. The equilibrium and dynamic

properties of the quantum linear to zigzag structural transition have been

investigated.115–119

Accessing the quantum regime would also pave the way to the experi-

mental realization of topological Schrödinger cats, nonlocal quantum super-

positions of conflicting choices of the broken symmetry or quantum phases

of matter.120 Superposition of macroscopic states have been also explored in

the context of ion Coulomb crystals121 and magnetic fields coupled to quan-

tum many-body systems.122 Quantum solitons are expected to exhibit long

coherence times in the presence of cooling in the Doppler limit, and can be

manipulated thanks to the spectral properties of the internal modes, which

have been proposed as carriers of quantum information.123 As a test-bed

for entanglement generation124 and the subsequent decoherence,125 the cre-

ation of quantum structural defects might shed new light on fundamental

issues concerning the relation between decoherence and critical phenom-

ena.126

11. Soliton formation in Bose-Einstein condensation

One of us has suggested the finite-rate Bose-Einstein condensation of a

thermal cloud in an elongated trap as an inhomogeneous test-bed for the

KZM.93 The inhomogeneity of the trap plays the key role in re-setting the

dependence between the quench rate and the number of defects—solitons

in a BEC “cigar” (see Fig 9). The study of Bose-Einstein condensation in

a harmonic trap motivated the development of the IKZM theory we have

presented in Section 9.

This proposal has recently been realized in the laboratory at the BEC

center in Trento.16 The basic idea is that as a thermal cloud of atomic

vapor undergoes evaporative cooling through the critical temperature for

Bose-Einstein condensation, different regions of the newborn condensate

pick up a different condensate phase. When two neighboring regions merge,

the mismatch in the phase of the condensate wavefunction acts as a seed

for the formation of a phase jump and the corresponding density dip: a
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gray soliton is spontaneously formed. Numerical simulations based on the

stochastic Gross-Pitaevskii equation indicate that this scenario in a homo-

geneous cloud is well-described by the Kibble-Zurek mechanism.100,127 As

an instance of a single realization, figure 13 shows the time evolution of the

density profile of a newborn condensate following an evaporative cooling

ramp. From the trajectory of the density dips, it is apparent that these

excitations constitute spontaneously formed solitons. Note however that in

thermal equilibrium solitons are as well expected to be formed.128

Fig. 13. Time evolution of the density profile in a single realization of the cooling ramp
simulated with the classical field method.100 The initial state is chosen from a canon-
ical ensemble above the critical temperature for Bose-Einstein condensation. Evapora-
tive cooling is simulated by a linear ramp of the axial trapping potential using a one-
dimensional generalized Gross-Pitaeveskii equation. Courtesy of E. Witkowska and P.
Deuar.

In harmonic traps, the dynamics of Bose-Einstein condensation is more

complex due to the inhomogeneous nature of the system. The atomic cloud

is trapped in an anisotropic three dimensional harmonic confinement U(r, z)

with a cigar-shape, characterized by an axial frequency ω and a transverse

one ω⊥ (ω⊥ > ω). The density of the cloud is highest at the center of the

trap. Disregarding the transverse degrees of freedom, one can use the local

density approximation to estimate the value of the critical temperature
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based on the Einstein equation with an axial dependence,

Tc(z) =
2π~2

mkB

[

ρ(r = 0, z)

ζ(3/2)

]
2
3

, (59)

which is obtained by replacing the constant density ρ by ρ(r = 0, z) in the

expression for the critical temperature in a homogeneous system.

In the experiment,16 a radio-frequency knife is used to force the evap-

oration of the cloud, by flipping the atomic spin from a trapped state to

an untrapped state. Atoms with a potential energy URF = hνRF measured

with respect to the bottom of the trap are forced to evaporate. The resulting

axial temperature profile is given by

T (z) =
URF − U(r, 0, z)

ηkB
. (60)

Fig. 14. Spontaneous soliton formation under forced evaporative cooling of a cigar-
shaped atomic cloud.16 a) As the temperature (i-iii) is decreased below its critical value
for Bose-Einstein condensation, causally disconnected regions of the newborn conden-
sate cloud pick up different phases of the condensate wavefunction, and the subsequent
dynamics leads to the formation of solitons. Under time of flight (iv-v), an initial cigar-
shaped cloud expands mainly along the transverse direction. b)-g) Snapshots of the den-
sity profile after time of flight of clouds containing 0, 1, 2, 3, solitons and two instances
exhibiting bending of the soliton in the transverse direction. Fits to the self-similar ex-

pansion of the Thomas-Fermi density profile (red line) are compared with integrated
density profiles of the central region of the cloud (black line). Reprinted by permission
from Macmillan Publishers Ltd: Nature Physics Ref.,16 copyright (2013).

In-situ optical imaging of solitons is challenging due to the smallness of

the typical values of the healing length, which sets the width of the soliton.

As a result, experimental measurements often resort to time-of-flight (TOF)
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imaging which magnifies the size of the cloud, see Fig. 14. When interac-

tions can be disregarded during TOF, the dynamics is essentially ballistic,

and the evolution of local correlations such as the density profile is rather

trivial. This is the case when the anisotropy of the trap is not too large.

When the confined cloud acquires an effectively one-dimensional character,

no true BEC is possible,129 and the presence of phase fluctuations in the

trapped superfluid severely distorts the TOF dynamics. Counting of soli-

tons by imaging the density profile of the cloud after time of flight is then

hindered by the fact that phase fluctuations map to density fluctuations as

suggested in,130 and experimentally demonstrated in.131 This mapping pre-

cludes establishing a correspondence between the density of fringes in the

expanded cloud and the initial number of solitons, formed spontaneously

as a result of evaporative cooling, presumably described by the IKZM. As a

consequence, the anisotropy should be low enough to minimize phase fluc-

tuations associated with the low-dimensional character of the cloud. At the

same time, it should be high enough to reduce the role of the instability and

decay mechanisms of solitons in elongated three-dimensional clouds, such

as the snake instability. This is the regime of relevance to the experiment.16

Indeed, TOF snapshots f) and g) in figure 14 suggest bending of the soliton

along the transverse degree of freedom in the trapped cloud. The time of

flight achieved to image the system were particularly large since TOF was

assisted by levitation. We point out that as an alternative, shortcuts to

adiabatic expansions55,132,133 can be used with similar outcomes.134,135

Table 2. Power laws predicted by the Kibble-Zurek mechanism for the number of soli-
tons Ns as a function of the cooling rate 1/τQ induced by forced evaporation through
the critical temperature for Bose-Einstein condensation of a cigar-shaped atomic cloud.
The exponent α of the power-law Ns ∼ τ−α

Q
is shown for different critical exponents

(ν, z) and trapping potentials.

Critical exponents Homogeneous system Harmonic trap

Arbitrary (ν, z) ν
1+νz

1+2ν
1+νz

Mean-field theory (ν = 1
2
, z = 2) 1

4
1

Experiments/F model137 (ν = 2
3
, z = 3

2
) 1

3
7
6

The upshot of the counting statistics was a power-law dependence of

the mean number of solitons Ns in the cooling rate 1/τQ induced by forced
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evaporation, i.e., Ns ∼ τ−α
Q . The power-law exponent resulting from a fit

to the experimental data was found to be α = 1.38 ± 0.06, which clearly

deviates from the homogeneous KZM exponent and suggests a possible

agreement with the IKZM, as illustrated in Table 2. This exponent was

shown to be robust against variations of the mean atom number of the

newborn condensate (which was varied from 4 to 25 million atoms), an

indication of universal behavior.

The KZM as well as the IKZM can be used as a tool to determine criti-

cal exponents,127 an application of interest in Bose-Einstein condensation.

The experiment136 reported deviations from mean-field behavior, ν = 1/2.

The BEC transition is believed to belong to the static 3D XY universality

class, for which ν = 0.6717(1) according to the theoretical estimate in.91

Let us ignore for the moment possible systematic experimental errors, and

assume that the power-law exponent α measured in the Trento experiment

is actually given by the IKZM, α = 1+2ν
1+νz . In principle, one can extract the

value of the dynamical critical exponent z ≃ 1.04 ± 0.11, which has not

been directly measured so far in experiments. This would rule out both the

mean-field value z = 2 (by 8-σ) as well as the F model z = 3
2 value137 (by

4-σ), when the experimental data is taken “at the face value”, i.e., with-

out accounting for the possible systematic effects, such as decay of solitons

(that may steepen the dependence), as well as the fact that the number of

solitons created in the trap is of order 1 (which may result in steepening

of the dependence of their number on the quench rate we have discussed

in the previous section). There is also a concern signalled by the authors

of the experiment that the axial temperature in the BEC cloud is not uni-

form, which may further modify the scaling. Experiments in larger traps

that lead to more solitons would be helpful in addressing this concern.

Numerical simulations using the classical field method100 lead to similar

power-law exponents which would agree with the IKZM, but are based on

a model of evaporation along the axial direction which is not applicable to

the experiments.

12. Vortex formation in a newborn Bose-Einstein

condensate

The observation of spontaneous soliton formation during Bose-Einstein

condensation was actually preceded by analogous experiments in pancake-

shaped atomic clouds.10 The process is fairly similar. Consider a thermal

quench between an initial temperature Ti and a final value Tf which is

linear in time, i.e., T (t) = Ti − t
Ti−Tf

τ . During the cooling of the atomic
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cloud below the critical temperature for Bose-Einstein condensation, coher-

ent patches are created where the phase of the condensate wavefunction is

chosen independently and is approximately constant. When these different

regions merge, there is a chance for the phase to accumulate along a close

loop in (physical) space surrounding a given point. Indeed, it was shown

experimentally that the explicit merging of three independent BEC clouds

results in the formation of a vortex with a certain probability given by

the geodesic rule.138 Consider the expectation value of the order parameter

〈ψ̂〉0 = |ψ|eiθ(x). The phase accumulated around a loop should be an integer

modulo 2π and can be characterized by the winding number W = 1
2π

∮

∂θ.

The fundamental (or first) homotopy group is indeed given by the ring of

integers, π1(U(1)/{1}) = π1(S
1) = Z (see Appendix A). Whenever |W| ≥ 1

a line defect, string or vortex is formed. In a homogeneous system, or for

fast enough quenches in a trapped cloud, the density of vortices is expected

to be given by Eq. (10), i.e., the homogenous KZM scaling,

n =
1

f2ξ̂2
=

1

f2ξ20

(

τ02δ

τTc(0)

)
2ν

1+νz

, (61)

while when the influence of the harmonic confinement is taken into ac-

count93,99 (now in an approximately 2D BEC “pancake”, rather than

a“cigar”),

n ∝
(

τ02δ

τTc(0)

)

2(1+2ν)
1+νz

, (62)

as discussed in Section 9. The experiment10 reported as well the sponta-

neous vortex formation in a toroidal trap. This geometry offers the oppor-

tunity to explore a scenario where the condensation is inhomogeneous in

the transverse degree of freedom and homogeneous in the toroidal direction.

The density of vortices is predicted to scale then as99

n ∝
(

τ02δ

τTc(0)

)
1+3ν
1+νz

. (63)

The accurate experimental determination of the power-law exponents in

any pair of these three scenarios, which remain untested to-date, would

allow the independent determination of the critical exponents ν and z.

13. Mott Insulator to superfluid transition

A natural testing ground for the KZM in quantum phase transitions is

the transition between a Mott insulator (MI) and a superfluid (SF) phase,
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exhibited by the Bose-Hubbard model139,140 and accessible to quantum sim-

ulation based on ultracold gases in optical lattices.141,142 The Hamiltonian

of the system is

ĤBH = −
∑

〈i,j〉
Jij(b̂

†
i b̂j + h.c.) +

U

2

∑

i

n̂i(n̂i − 1)− µ
∑

i

n̂i (64)

where µ is the chemical potential, the tunneling matrix element for an

atom to hop from site i to j is given by Jij , b̂i and b̂
†
i are respectively the

annihilation and creation operators, and U is the on-site interaction. We

shall simplify the discussion by setting Jij = J . In actual experiments the

optical lattice implementing ĤBH is usually contained in a harmonic trap

that will result in, e.g., the couplings Jij that are spatially dependent.

In the limit J/U ≪ 1 the homogeneous system is in the Mott insulator

phase whenever the filling is commensurate with n atoms per site. The

many-body state takes the form |MI〉 ∝ ∏M
i=1(b̂

†
i )

n|0〉. The opposite limit

J/U ≫ 1 corresponds to the superfluid phase with a many-body state of

the form |SF 〉 ∝
(

∑M
i=1 b̂

†
i

)N

|0〉, characterized by phase coherence and

large fluctuations in the number of particles per site. The transition from

Fig. 15. Phase diagram of the Bose-Hubbard model illustrate the boundary between
the Mott insulator and superfluid phases. The vertical lines range over the densities and
effective chemical potential µ̃ sampled in a single experimental realization. The quench
is driven by a fast modulation of J = t in the direction of the black arrow. From Chen

et al.148 Copyright 2011 American Physical Society.
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the MI to the SF can be driven by increasing the relative coupling (J/U)(t)

in a finite time τQ.

The buildup of correlations induced by such a quench has been an-

alyzed in a series of works.27,143–147 In a 3D experimental realization of

the Bose-Hubbard model, an interesting systematic study of the amount

of excitations and energy produced during a quench as a function of the

quench rate was undertaken, and found a power-law dependence suggest-

ing a KZM-like behavior.148 The amount of excitations was estimated by

comparing the density profile after time of flight (TOF) for an initial cloud

in the ground state (n0(x, y; t)) and an out-of-equilibrium cloud prepared

by a quench (n(x, y; t)). The following quantity was used

χ̃2 = c N
∫

dxdy
[n(x, y; t)− n0(x, y; t)]

2

n0(x, y; t)
(65)

where N =
∫

dxdyn(x, y; t) and c is a constant chosen in agreement with

numerical simulations. The dependence of χ̃2 was fitted to a power-law

χ̃2 ∝ τ−α
Q with α = 0.31 ± 0.03. The kinetic energy K = m〈r2〉/(2tTOF ),

where tTOF is the time of flight and 〈r2〉 = N
∫

dxdy(x2 + y2)n(x, y; t),

was as well analyzed and fitted to a power law with a comparable exponent

α = 0.32± 0.02.

According to Chen et al., these exponents deviate from theoretical pre-

dictions for a 3D homogeneous transition. They studied the dependence

on the quench rate of the density fluctuations characterized by χ̃2 and the

kinetic energy, and compared it with a power-law with exponent α = 3ν
νz+1 ,

i.e., which would result when the fluctuations and excess of kinetic energy

are the same in each domain of size ξ̂. For ν = 1/2 and z = 2 this would

lead to α = 3/4.148

We shall not attempt to justify these assertions here, nor shall dispute

them. Clearly, if one were to accept validity of the homogeneous KZM for

this relatively modestly sized inhomogeneous system of about 1.6 × 105

atoms (a BEC-filled optical lattice confined to an inhomogeneous sphere of

radius of only ∼10 sites, each occupied by ∼ 3 atoms), more detailed anal-

ysis would be useful to explore the conjecture that the applied measures of

the degree of excitation imparted by the quench result in the behavior de-

scribed simply by the same kinetic energy and same departure from homo-

geneity in each ∼ ξ̂−3 volume, which is what the ansatz148 described above

suggests. Moreover, the experimental conditions hindered a direct connec-

tion with this KZM estimate. In particular, the inhomogeneous character

of the system induced by the presence of an external harmonic trap results

in an initial state with Mott insulating layers of different filling factors be-



November 14, 2013 1:19 WSPC - Proceedings Trim Size: 9in x 6in reviewKZMv2

41

 40  50  60  70  80

 40

 50

 60

 70

 80

-π

-π/2

0

π/2

π

 40  50  60  70  80

 40

 50

 60

 70

 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 40  50  60  70  80

 40

 50

 60

 70

 80

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Fig. 16. Simulation of a linear quench from the Mott insulator to superfluid phase in
a three dimensional trapped atomic cloud using a discrete Gross- Pitaevskii equation.

The top and medium panel correspond to phase and density in a x − y cross section
across the center of the trap. The integrated density along the perpendicular direction
is shown in the lower panel. The position of a vortex is indicated by an arrow. As noted
in the discussion, the scaling of, e.g., the kinetic energy with the quench rate is similar
to what was observed on the experiment of Chen et al. This coincidence between the
effectively classical simulation (attained in the large occupancy per site limit) and the
experiment (that had about 3 atoms per site) may be a accidental, or may be due to the
fact that BEC in the experiment was decohered149 by, e.g., the finite temperature effects
and the significant normal fraction. From Dziarmaga et al.146 Copyright 2012 American
Physical Society.
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ing separated by (presumably phase coherent) superfluid layers, see Fig.

15. In addition, the phase boundary is crossed at a range of densities, with

different MI layers (corresponding to different lobes in the phase diagram)

crossing the phase transition at different times. The analysis of this sce-

nario is substantially more complicated than the exposition of the IKZM

discussed in Section 9, where power-law behaviors are expected for a single

critical front. The finite-temperature of the initial cloud in148 has also not

been taken into account in KZM studies applied to this transition.

We note that the numerical simulations146 in the limit of large occu-

pancy per site yield power laws, e.g., for the kinetic energy, that are similar

to those observed in the experiment. Moreover, topological defects appear

in the superfluid left after the Mott insulator – superfluid phase transition,

see figure 16. It is again far from clear whether this coincidence of scalings

is significant. In the large occupancy regime the system is effectively clas-

sical (which is what makes the computer simulation possible in the first

place). On the other hand, in the actual experiment there was a substantial

(∼ 10%) normal fraction and non-negligible temperature. That combina-

tion may cause decoherence149 and, hence, force a quantum many-body

system to behave in an effectively classical manner.

14. Summary and Outlook

The Kibble-Zurek mechanism reviewed here is based on the combination of

two key ideas. The seminal observation of Tom Kibble1,2 made it clear that,

at least in the cosmological context, phase transitions expected to occur

as the Universe cools soon after the Big Bang will result in a mosaic of

domains of the size close to the Hubble radius at the time of the transition.

This is simply a consequence of relativistic causality—domains are forced to

break symmetry independently, and, hence, at random. Moreover, when the

resulting homotopy group is nontrivial, phase ordering cannot completely

smooth out the post-transition configurations of the order parameter, as

the random choices of broken symmetry lead to irreconcilable differences

that crystalize into topological defects.

In the second order phase transitions encountered in the laboratory

relativistic causality does not yield useful limits, but the speed of light can

be effectively replaced by the relevant speed of sound19,20,23 leading to an

estimate of the size ξ̂ of the domains that can consult on how to break the

symmetry, and, hence, that can choose to break symmetry more or less in

unison. The resulting density of topological defects and other excitations,

left behind by phase transitions induced at a finite speed, depends on the
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interplay of the quench rate (the rate at which the critical point is traversed)

and critical slowing down (the rate with which systems can adjust), and as

a result, on the universality class of the transition. The scaling of ξ̂ with the

quench rate (reflected in the density of defects left behind by the transition)

can be investigated in the laboratory.

Experiments testing KZM scaling were the focus of our review. The

Kibble-Zurek scaling was also tested in classical and quantum phase tran-

sitions in a variety of computer experiments22,31,86,100,112,113,127,150–166 and

analytical works,46,60,61,167–170 and found to hold essentially whenever it

was expected to apply. Laboratory experiments are, of course, more diffi-

cult. Above all, it is hard to vary the quench rate over several orders of

magnitude (needed to detect the fractional power laws predicted for ξ̂ as a

function of τQ) while avoiding effects that can either suppress generation of

topological defects (e.g., inhomogeneities) or result in formation of defects

in processes (e.g., convection in superfluids) independent of KZM that could

obscure KZM-predicted scaling. Moreover, defects formed in the course of

the transition can annihilate during the phase ordering that follows the

transition.

A brief summary of the present day “experimental KZM landscape” is

that there are now several experiments that have found, in various sys-

tems, results consistent with KZM scalings. However, all of them require at

present caveats and additional assumptions for interpretation.

Switching between non-equilibrium steady states provided early evi-

dence for KZM scaling.73 Nonetheless, subsequent experiments as well as

numerics indicated that in such situations where the renormalization the-

ory cannot be invoked KZM scalings may be only an approximation or not

apply.79 Still, such efforts have led to the earliest experimental indications

of the KZM scaling, and may offer intriguing opportunities for extension of

KZM to transitions that are not described by renormalization or even by

partial differential equations.

Trapping of flux quanta in tunnel Josephson junctions yielded scaling

that appears to be reliable, but the detected exponent of ∼ 0.5 was twice

what was initially expected. That expectation was based on the prediction

of the doubling of the power law for large winding numbers.85 Recent anal-

ysis87 of the winding numbers in the case of small loops (C ≪ ξ̂) indicates

that, while one would indeed expect the exponent that governs the disper-

sion ofW to double in the regime where |W| > 1 is vanishingly unlikely, the

frequency of trapping of |W| = 1 scales with four times the power predicted

for large |W|. This suggests that the KZM accounts for the experimental
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results. This quadrupling may be also relevant for small superconducting

loops, where the observed frequency of trapping a flux quantum scales with

the exponent ≃ 0.62± 0.15,86 consistent with 0.5 seen in tunnel Josephson

junctions84 (although possibly suggestive of 2
3 , which is—one might be even

tempted to speculate—four times 1
6 , the exponent expected for the scaling

of typical winding numbers trapped by large loops for ν = 1
2 and z = 1 or

a superfluid with ν = 2
3 and z = 3

2 , where ξ̂ ∼ τ
1
3

Q ).

We note that all these discussions of doubling and quadrupling ignore

the role of the magnetic field, which, as was pointed out in the case of

loops23 and demonstrated much more clearly in 2D systems with the help

of numerical simulations152–154 may play a significant role in flux trapping

and defect formation in systems with local gauge invariance.

Defect formation in multiferroics is a new frontier. Experiment in

ErMnO3 yields a compelling power law,89 but its interpretation in terms

of KZM depends on the nature of the critical region of the transition that

is inaccessible to, e.g., susceptibility measurements, as a result of the high

critical temperature. Still, theoretical analysis90 based on the 3D XY model

yields an impressive agreement of KZM with the experiments. Nevertheless,

a more precise determination of the exponent that governs the power law

scaling that would clearly establish the connection with the ν and z pre-

dicted for the 3D XY universality class would be welcome: it would amount

to the first experimental confirmation of KZM scaling in a setting that is

not mean field.

Generalization of the KZM to inhomogeneous systems is usually needed

to interpret experiments in harmonically trapped ions and BEC’s. Forma-

tion of kinks in ion Coulomb crystals13–15 and solitons in Bose-Einstein

condensation16 has been recently reported. It has been argued in both ion

crystals and BECs that the data are consistent with the KZM when one

recognizes both the consequences of inhomogeneity and (in the case of the

ion chains) small size of the system. Dependence of the conclusions about

scaling on these additional assumptions complicates the interpretation es-

pecially in the case of kinks in ion chains, but the results are consistent

with the suitably modified versions of the KZM.

In the case of BEC solitons the measured power laws are close to the

analytic predictions,93 and the remaining discrepancy may be due to the dif-

ference between the simpliefied effect of the harmonic trap analyzed theoret-

ically93 and the experimental reality.16 Indeed, corrections to a power-law

scaling can be expected in inhomogeneous systems.92,99 Additional exper-

imental results and theoretical as well as numerical efforts would certainly
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be useful.

The presence of vortices in a newborn BEC has also been detected.10,138

They have appeared presumably as the result of the KZM. However, ob-

taining reliable power laws in this case is even harder. The experiments are

carried out, e. g., in approximately 2D BEC pancakes, so inhomogeneities

and small systems sizes will play a role and complicate the analysis.

An experiment, that has not been completed as yet but is under

way in the group of Markus Oberthaler,171 probes a quantum miscibility-

immiscibility phase transition in a Bose-Einstein condensate.172 Numerical

simulations in an effectively 1D toroidal trap yield scalings of the size of do-

mains of the two hyperfine BEC states that are in good agreement with the

KZM prediction.159,160 In the harmonic trap (where the actual experiments

will likely take place) inhomogeneity modifies domain sizes in a way that

influences the observed power law, again complicating direct comparisons

with the KZM predictions, although numerical simulations may help.

Experimental investigations of the quantum KZM (exemplified by the

miscibility-immiscibility transition) are only beginning. Experiments to

date (e.g., related to the Bose-Hubbard model148) suffer from complica-

tions caused by the inhomogeneities and small system sizes. In view of the

rather complicated phase diagram of the Bose-Hubbard model, inhomo-

geneities make critical exponents relevant for the KZM scaling difficult to

infer. Moreover, computer simulation of the quantum Bose-Hubbard model

are difficult, as systems of sizes large enough to hope for a suitably well de-

fined quantum phase transition are also large enough to be essentially out

of reach of present day computers. One can study larger systems only in the

limit where they become effectively classical—when the number N of atoms

per site is large.146,147 When one compares results of such simulations with

the data obtained in experiments, there are no obvious discrepancies that

cannot be blamed on inhomogeneity or finite size, but this rather tentative

conclusion (based on the comparison of a classical simulation to a quantum

many-body system) is unsatisfying and it certainly leaves plenty of room

for improvement.

This cautious assessment of the present status of the experiments on the

dynamics of quantum phase transitions is likely to be revised in the near

future. Moreover, quantum phase transitions in the Ising model (which is

much better understood theoretically) may be eventually implemented (e.g.,

by emulating its dynamics173,174) in suitably large systems. This would

be interesting not just because of the implications for the KZM, but be-

cause one could then study non-local superpositions of topological defects—
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“topological Schrödinger cats” or “Schrödinger kinks”120—as well as probe

the possibility of a quantum superposition of distinct phases of matter.122

Last, but not least, there are examples (e.g., quantum Ising model) where

the KZM predicts the range of entanglement in the post-transition state124

and even the effectiveness of the system undergoing second order phase

transition as an environment responsible for decoherence.126

Kibble-Zurek mechanism employs equilibrium behavior of the system to

predict non-equilibrium consequences of the dynamics of symmetry break-

ing. When we compare the first experimental tests of the KZM with some

of the recent experiments, one important difference stands out: in the pi-

oneering tests of the KZM the equilibrium behavior of the systems in the

vicinity of the critical point was generally very well known as a result of

earlier measurements, so the scaling predicted by the universality class was

beyond doubt. This is often not the case in the recent KZM-inspired ex-

periments of, for example, quantum phase transitions in optical lattices. It

would seem prudent to test equilibrium of the actual system as a prereq-

uisite, and to verify that the scalings predicted by the universality class

indeed capture its equilibrium behavior, or, at the very least, to evaluate

the extent and nature of the departures before embarking on tests of the

KZM. Of course, there is usually a microscopic theory (e.g., Bose-Hubbard),

but its implication for the critical regions are typically well-established only

for an infinite homogeneous system, and the extent to which it is a good

approximation of an often modestly sized and inhomogeneous system avail-

able in the laboratory is frequently not known. Moreover, it is often far

from clear how to apply that theory to what is measured in the experiment

(e.g., critical exponents may differ depending on how the critical region is

traversed in the Mott insulator-superfluid transition139).

To sum up, we note that the already considerable progress in verify-

ing the KZM achieved in this millenium has accelerated in the past few

years. Given the broad applicability of the KZM, it seems likely that the

study of phase transition dynamics will remain an exciting research field

in the foreseeable future. Our focus on experiments involving the scaling of

topological defects is understandable, given the roots of the KZM. There

are however other excitations of the order parameter that may be left in

far-from-equilibrium state due to the KZM, and that can be used to test

it. We have discussed solitons and vortices in BEC as examples, but even

more transient excitations (e.g. those created in superconductors175,176 or

left behind by the chiral symmetry breaking in 3He177) may be of interest

in this respect.
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Appendix A. Spontaneous Symmetry Breaking: the role of topol-

ogy

Spontaneous symmetry breaking arises in situations where a symmetry of

the system is not manifested in its ground state, and it is a phenomenon

tied to the degeneracy of the later.1,25 A well-known example is the break-

down of rotational invariance in a ferromagnet. This scenario is relevant

in cosmology,1,2 elementary particle physics,178,179 and condensed matter

systems.23,25 We next summarize the basics of homotopy theory and its use

in this context, at a somewhat technical level. Consider the case in which

the Hamiltonian (or free-energy functional) Ĥ of the system is invariant

under an operation g of the symmetry group G, which is represented by a

unitary transformation U(g),

U−1(g)ĤU(g) = Ĥ, ∀g ∈ G. (A.1)

Now, assume that there exists an order parameter, and operator ψ̂ whose

ground-state expectation value is not invariant under G, i.e.,

〈0|U−1(g)ψ̂U(g)|0〉 = D〈ψ̂〉0 6= 〈ψ̂〉0, (A.2)

where D is a rotation matrix. That is, the states U(g)|0〉 and |0〉 are

nonequivalent, but are degenerate according to (A.1). Typically, different

phases of the system will have a symmetry group, a subgroup of G called the

isotropy group H , which represents the leftover symmetry in the broken-

symmetry phase. An arbitrary element h ∈ H leaves invariant the order
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parameter ψ̂, hψ̂ = ψ̂. The order parameter manifold M of degenerate vac-

uum states is homeomorphic (from the Greek for “similar shape”, a relation

denoted by the symbol ≃) to the (left) coset space of H in G,180

M ≃ G/H. (A.3)

The simplest example is that of the linear to zigzag transition that for

homogeneous ion chains is characterized by G = Z2, H = e (e being the

identity {1}), and M ≃ Z2, discussed in detail in section 10. Sections 7,

11, and 12 are devoted to the BEC transition associated with a scalar or-

der parameter, where G = U(1), H = {1}, and G/H = U(1). Symmetry

breaking in spinor Bose-Einstein condensates is more complex, and its char-

acterization has recently led to a large body of research.181–183 following the

observation of spin textures in the laboratory.9 For instance, a spin-1 BEC

is characterized by a G = U(1)×SO(3) resulting from the invariance under

U(1) gauge transformations and rotations in spin space, and that can lead

to a variety of symmetry breaking scenarios.181

Homotopy theory deals with continuous transformations between ob-

jects that belong to the same equivalence class and it can be used for the

systematic classification of topological excitations. Let I = [0, 1] and con-

sider two continuous maps f, g : X → Y between topological spaces X and

Y . A homotopy between f and g is a continuous map F : X × I → Y

satisfying F (x, 0) = f(x), F (x, 1) = g(x), ∀x ∈ X . Provided F exists, f is

said to be homotopic to g, which is symbolically denoted by f ∼ g. This

is an equivalence relation satisfying reflectivity (f ∼ f), symmetry (f ∼ g

implies g ∼ f), and transitivity (if f ∼ g and g ∼ h then f ∼ h). A path

with initial point x0 and final point x1 is a continuous map α : I → X such

that α(0) = x0 and α(1) = x1. A path for which x0 = x1 is called a loop

with base point x0, this is, a loop in which the boundary ∂I of I = [0, 1] is

mapped to x0. We shall refer to two specific types of loops below, a constant

loop c : I → X which has a fixed image in X ∀t ∈ I, and an inverse loop

α−1(t) ≡ α(1 − t) ∀t ∈ I. Two loops α, β : I → X with base point x0 are

homotopic (α ∼ β) given that an homotopy F : I × I → X exists, i.e., a

continuous map F : I × I → X can be found that satisfies F (t, 0) = α(t),

F (t, 1) = β(t) ∀t ∈ I and F [0, t′] = F [1, t′] = x0 ∀t′ ∈ I. The set of all

loops with base point x0 can be classified into homotopy classes.

A homotopy class [α] is the set of loops which are homotopic to α.

The fundamental group or first homotopy group is the set of all homotopy

classes of loops with base point x0. It is denoted by π1(X, x0) and satisfies

the group properties with respect to the product of homotopy classes. This
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product is defined by [α] · [β] = [α · β], where α · β is the product of loops

α and β in which α is first traversed and then β is traversed. Specifically,

the product of homotopy classes in π1(X, x0) satisfies

([α] · [β]) · [γ] = [α] · ([β] · [γ] (A.4)

[α] · [c] = [c] · [α] = [α] (A.5)

[α] · [α−1] = [α−1] · [α] = [c] (A.6)

where the identity element [c] is given by the set of loops homotopic to a

constant loop.

There exists an isomorphism (a bijective homomorphism) between fun-

damental groups π1(X, x0) and π1(X, x1) of loops within the same con-

nected topological spaces X with different base points x0 and x1 which

allows us to use the simplified notation π1(X) for the fundamental group.

A mapping from a loop to the unit circle S1 is described by the isomorphism

between π1(S
1) and Z, where the integer winding number corresponds to

the number of times the loop wraps around the unit circle. Higher homo-

topy groups are defined in a similar way to π1 by considering homotopy

classes of the n-sphere Sn = {x ∈ R
n+1||x|2 = 1}. Let us consider the

n-cube In = I × · · · × I = {(s1, . . . , sn)|si ∈ [0, 1] ∀ 0 ≤ i ≤ n} with

boundary ∂In = {(s1, . . . , sn) ∈ In|si = 0 or 1}. A map α : In → X that

maps the boundary ∂In to a point x0 is a n-loop. When a homotopy exists

between n-loops α and β, they are said to be homotopic, and the set of

n-loops homotopic to a given n-loop α constitutes a homotopy class [α].

The nth homotopy group of n-loops with base point x0 is given by the set

of homotopy classes of n-loops .

The classification of topological excitations is achieved by the homotopy

groups πn(M) of the order parameter manifold M with the dimension of

homotopy being given by n = D − d− 1 in terms of the spatial dimension

D and the dimension of the (singular) topological excitation d (for nonsin-

gular topological excitations such as skyrmions, n = D−d). The homotopy

groups πn(M) characterize mappings from the n-sphere Sn enclosing the

topological excitation in real space into the vacuum manifold M. Elements

of a given group πn(M) belong to the same class of stable topological ex-

citations, equivalent by continuous deformations. The number of domains

or disconnected regions in M is given by π0(M) (formally π0 lacks a group

structure). If π0(M) = k, there are k+1 disconnected regions. When M is

disconnected, topological excitations associated with the different choices of

〈ψ̂〉0 in space are known as domain walls, and are typically associated with

the breakdown of a discrete symmetry, as in the linear to zigzag transition.
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One can next consider the change of the order parameter along closed loops

in S1 in real space within the same connected component of M. If 〈ψ̂〉0 is

a smooth function along the loop, then π1(M) is trivial and equal to the

identity I. Otherwise, elements of the group π1(M) 6= I characterize line

defects or strings, such as quantized vortices in superfluids and scalar BEC,

and flux tubes in type II superconductors, associated with U(1) symmetry

breaking. Topological excitations known as monopoles arise in the presence

of non-contractive surfaces in M such as S2, whenever π2(M) 6= I. They

are associated with the breakdown of nonabelian symmetries to a subgroup

containing U(1). In D = 3, d = 2 for domains walls, d = 1 for strings, and

d = 0 for monopoles. Three dimensional topological defects associated with

nontrivial mappings from S3 into M are characterized by the homotopy

group π3(M) and are known as textures or non-singular solitons.

Table A1. Homotopy
groups of certain vac-
uum manifolds.

M π1 π2 π3

U(1) Z 0 0

SU(n) 0 0 Z

SO(3) Z2 0 Z

S2 0 Z Z

S3 0 0 Z

S4 0 0 0

The dynamics of symmetry breaking can in principle result in hybrid

configurations with a variety of topological defects with different dimen-

sions of homotopy and which can influence each other.181,184 In that case,

the classification in terms of πn is no longer satisfactory, but Abe homo-

topy groups composed of possibly noncommutative groups π1 and πn can

however account for topological excitations with n ≥ 2. We refer the reader

to185 for a more detailed exposition and to181–183 for a thorough discussion

in the context of Bose-Einstein condensates. We close pointing out that the

use of conventional homotopy groups has limitations in the classification of

topological defects located on the boundary of an ordered system, for which
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the use of relative homotopy groups has proven to be advantageous.186,187
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