

LA-UR- 11-06427

Approved for public release;
distribution is unlimited.

Title: Quantifying Fissile Content in Spent Nuclear Fuel Using 252Cf Interrogation with Prompt Neutron Detection

Author(s): Jianwei Hu, Stephen J. Tobin, Howard O. Menlove, Daniela Henzlova

Intended for: Presentation at the Global 2011 conference
Makuhari, Japan, Dec 11-15, 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Quantifying Fissile Content in Spent Nuclear Fuel Using ^{252}Cf Interrogation with Prompt Neutron Detection

Jianwei Hu*, Stephen J. Tobin, Howard O. Menlove, and Daniela Henzlova

N Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

The majority of the plutonium on earth is stored in spent nuclear fuel assemblies (FAs). Presently, there is no means for directly measuring the mass of the plutonium in these assemblies by nondestructive assay (NDA). Researchers at LANL have been coordinating a multi-laboratory effort to quantify the capability of 14 NDA techniques for the purpose of combining a subset of these techniques into a system that can directly measure the isotopic Pu mass. ^{252}Cf Interrogation with Prompt Neutron (CIPN) detection is one of the 14 proposed NDA techniques, and it shows promise of quantifying fissile content in spent FAs. CIPN is a relatively low-cost and portable instrument, and it looks like a modified fork detector combined with an active interrogation source. Fission chambers (FCs) were chosen as the neutron detectors because of their insensitivity to γ radiation. The CIPN assay comprises two measurements, a background count and an active count, without and with the ^{252}Cf source next to the fuel respectively. The net signal above background is primarily due to the multiplication of Cf source neutrons caused by the fissile content. It is almost uniformly sensitive to diversions at different locations across the assembly. A 100- μg ^{252}Cf source was proven strong enough to provide sufficiently high signal above background. The concept of $^{239}\text{Pu}_{\text{eff,CIPN}}$ was introduced to represent the three major fissile isotopes in a single term. Burnup (BU) and cooling time (CT) corrections were introduced to $^{239}\text{Pu}_{\text{eff,CIPN}}$ to account for the neutron absorption caused by different neutron absorbers. The results show that there exists a coherent universal relation between CIPN count rate and “corrected fissile content”. With the schemes presented in this paper, together with given BU and CT (or quantified using other techniques), the fissile content of the target spent FA (or $^{239}\text{Pu}_{\text{eff,CIPN}}$) can be determined within a few percent.

Keywords: fissile content, spent fuel, plutonium, nuclear safeguards, CIPN, NGSI, MCNP, NDA

*Email: hellojianwei@gmail.com

Quantifying Fissile Content in Spent Nuclear Fuel Assemblies Using ^{252}Cf Interrogation with Prompt Neutron (CIPN) Detection

Jianwei Hu, Stephen J. Tobin, Howard O. Menlove,
Daniela Henzlova

Nuclear Nonproliferation Division
Los Alamos National Laboratory

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 1

Why measure Pu in spent fuel?

- ❑ Independently verify the mass of Pu
- ❑ Re-verification following a loss of continuity of knowledge
- ❑ Determine the input accountability mass reprocessing facility
- ❑ Shipper/receiver difference
- ❑ Determine mass of non-self-protecting assemblies
- ❑ Tangent - enable "finger printing" to assure what leaves one facility arrives at another – no need to quantify mass

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 3

Outline

- ❖ Overview of NGSI Spent Fuel Project
- ❖ CIPN principle and design
- ❖ CIPN signature, statistical uncertainty
- ❖ Detection of diversion
- ❖ Determination of fissile mass
- ❖ Conceptual experiment setup
- ❖ Summary

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 2

Overview of NGSI Spent Fuel project

- ❑ Next Generation Safeguard Initiative (NGSI) Spent Fuel project is multi-million dollar, multi-institute (including international collaborators), 5+ year project sponsored by US DOE.
- ❑ Determine the Pu mass in Spent Fuel Assemblies ... and detect the absence of Pu mass (detect diversions)
- ❑ 14 Nondestructive Assay (NDA) techniques were studied. Complete list follows.
- ❑ Down-selections were performed in summer 2011, and four Integrated NDA systems (including CIPN) were chosen to move forward.

UNCLASSIFIED

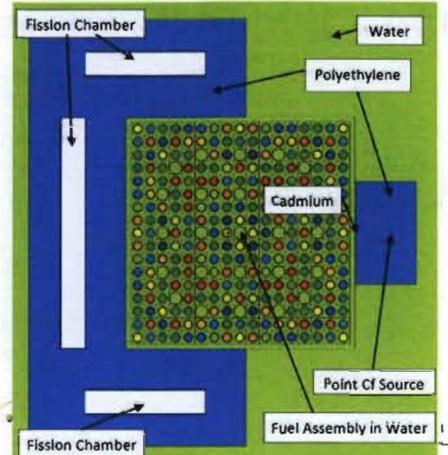
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 4

14 NDA Techniques were investigated:

^{252}Cf Interrogation with Prompt Neutron Detection	Neutron Resonance Transmission Analysis (time of flights)
Delayed Gamma	Nuclear Resonance Fluorescence
Delayed Neutrons	Passive Prompt Gamma
Differential Die-Away	Passive Neutron Albedo Reactivity
Differential Die-Away Self-Interrogation	Self-integration Neutron Resonance Densitometry
Lead Slowing Down Spectrometer	Total Neutron (Gross Neutron)
Neutron Multiplicity	Passive X-Ray Fluorescence

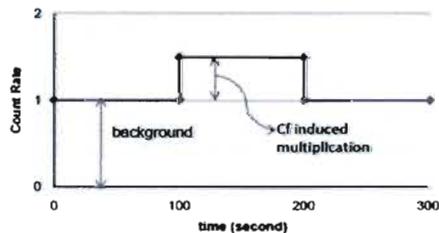
UNCLASSIFIED


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Side 5

CIPN design

- Quantify the fissile content in the sample by quantifying multiplication using a ^{252}Cf source


- Fission chambers (FC)
 - Thin layer of 93% enriched ^{235}U
 - 1" diameter
- Cadmium liner
 - Between ^{252}Cf and spent fuel assembly (SFA) for uniformity
 - Outside wall of U-shaped poly block (minimize background signal)

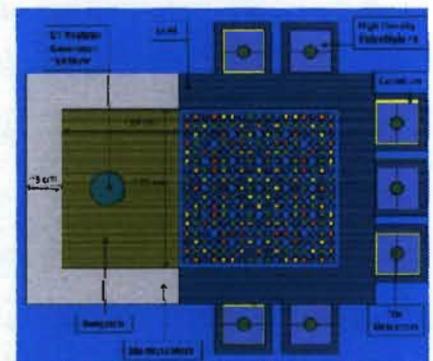
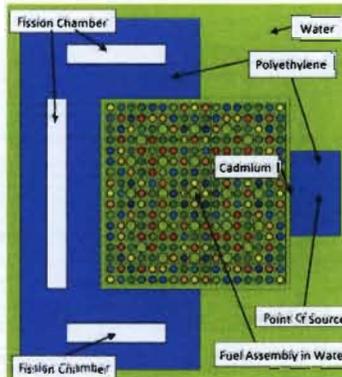
Side 6

CIPN principle

- BACKGROUND - passive neutron count rate from the SFA
- ACTIVE - neutron count rate measured in presence of ^{252}Cf source

- NET SIGNAL = ACTIVE – BACKGROUND \rightarrow multiplication in the SFA induced by Cf neutrons \rightarrow fissile content

UNCLASSIFIED



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

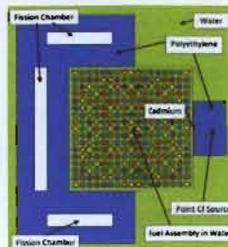
Side 7

CIPN with DT generator

Delayed Neutron Instrument

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

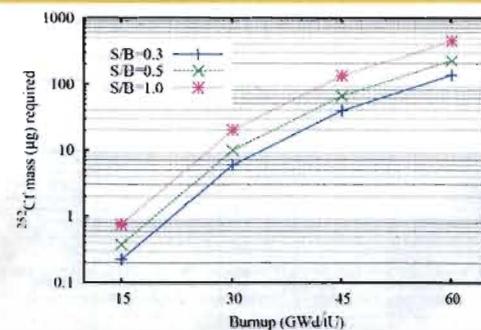


Side 8

CIPN design goals/optimization

OPTIMIZATION:

- Source strength, detector design and efficiency
 - Key design factors under control
 - Hundreds of MCNPX cases run to optimize detector design
- FC arrangement/length/position optimized for uniform sensitivity across SFA
- Thickness of polyethylene optimized to maximize count rate
- ^{252}Cf interrogating source
 - Optimized for broad range of SFAs
 - Optimized position for sufficient neutron moderation and large solid angle



UNCLASSIFIED

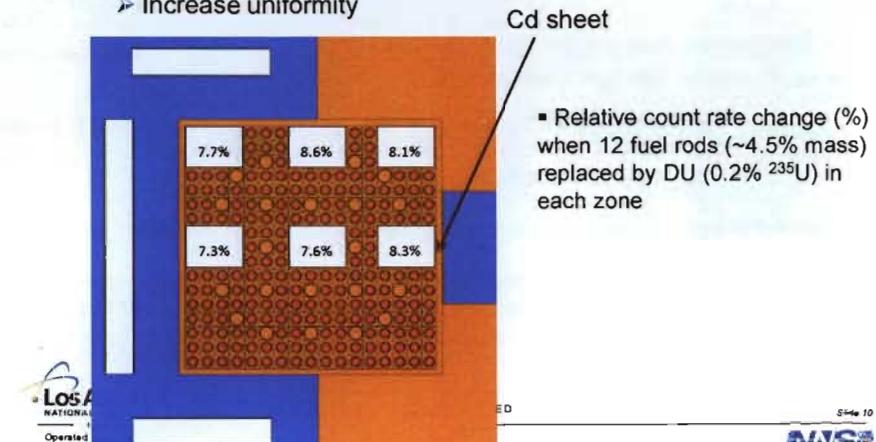
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 9
NASA

^{252}Cf source strength

- 60 μg ^{252}Cf source corresponds to S/B of 50% for a 45 Gwd/tU BU case
- ^{252}Cf half-life = 2.6 yr (100 μg corresponds to 2.34×10^8 n/s)
 - 200 μg needed at the start of operation for ~5 years of operation
 - Largest ^{252}Cf commercially available = 10,000 μg

UNCLASSIFIED


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 11
NASA

CIPN uniformity

- 1.0 mm thin cadmium sheet inserted between the SFA and the source polyethylene block

➢ Increase uniformity

Cd sheet

- Relative count rate change (%) when 12 fuel rods (~4.5% mass) replaced by DU (0.2% ^{235}U) in each zone

Los Alamos
NATIONAL LABORATORY
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 10

NASA

CIPN signature

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 12

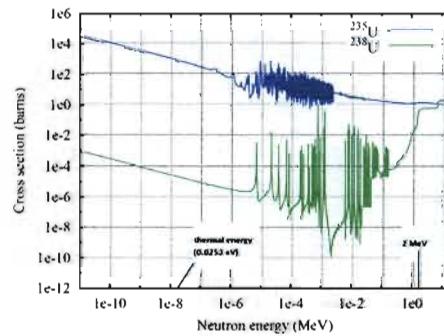
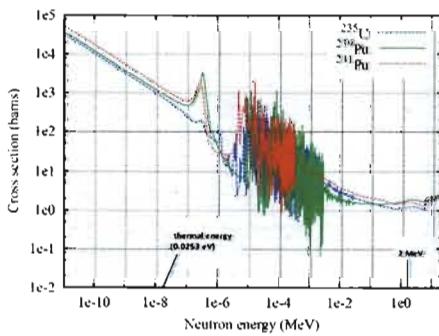
NASA

CIPN signature

- Multiplication in SFA in presence of ^{252}Cf source

Sources of neutrons:

- Background
 - Spontaneous fission of transuranic isotopes (^{244}Cm , ^{242}Cm , ^{240}Pu ...)
 - (α , n) reaction with light elements (^{18}O)
- Active ^{252}Cf interrogation
 - Induced fissions by ^{252}Cf neutrons
 - Direct detection of source neutrons... small in water and predictable
 - Net count rate - after subtracting of the background, the measured signal dominated by neutrons produced from the chain of multiplication caused by the fissile content



UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 13

CIPN signature – fission content

UNCLASSIFIED

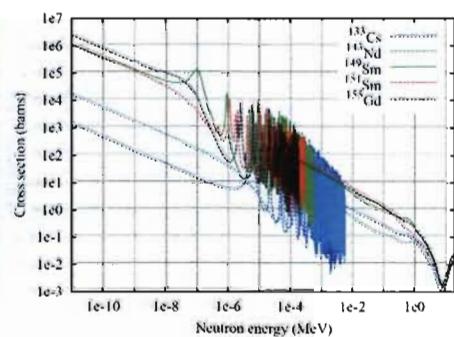
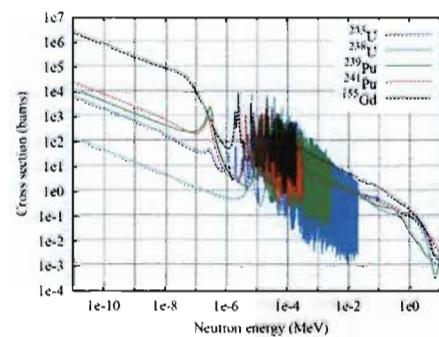
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 14

CIPN signature (cont'd)

Balance between induced fissions and capture

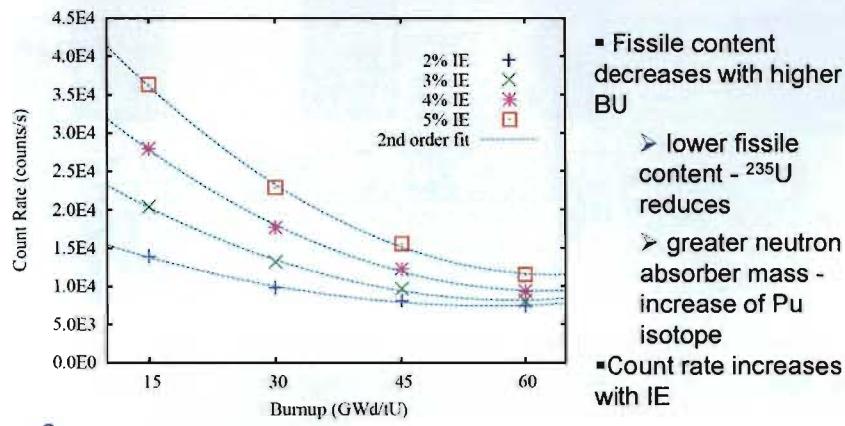
- Induced fission
 - Main contributing isotopes: ^{235}U , ^{238}U , ^{239}Pu and ^{241}Pu
 - NGSI spent fuel effort ... to quantify the elemental Pu mass
 - Necessary to minimize the contribution of ^{238}U or to quantify and separate it from the Pu contribution
- Capture
 - Neutron flux in SFA reduced by isotopes that absorb neutrons
 - Main contributors – fissile isotopes ^{235}U , ^{239}Pu and ^{241}Pu , actinides such as ^{240}Pu and ^{238}U ; fission fragments Gd, Nd, and Sm;



UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 14

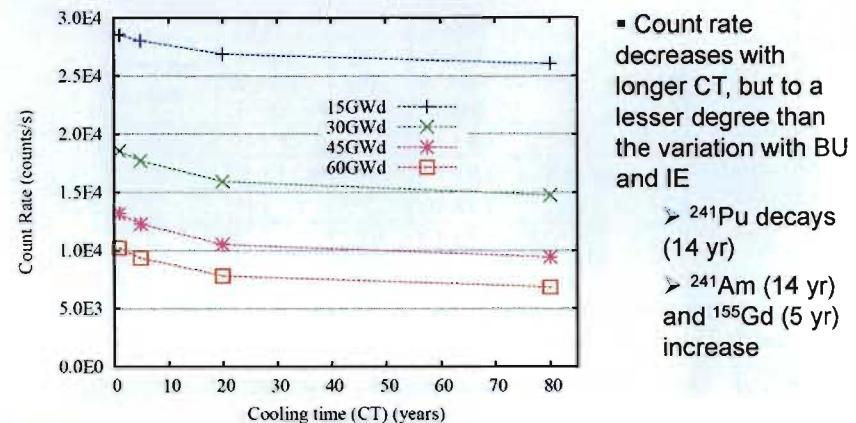
CIPN signature – absorbers


UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 16

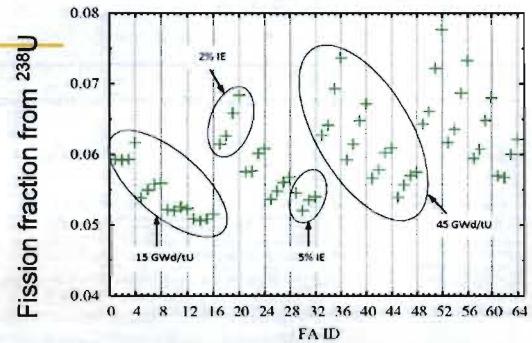
CIPN signature vs SFA parameters (BU)



Los Alamos
NATIONAL LABORATORY
EST. 1945
UNCLASSIFIED
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 17

CIPN signature vs SFA parameters (CT)



Los Alamos
NATIONAL LABORATORY
EST. 1945
UNCLASSIFIED
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 18

CIPN signature – contribution of ^{238}U

- Neutron contribution from ^{238}U ~ 5% to 8% among all investigated SFAs
 - only ~10% of ^{238}U fission directly caused by Cf source, so ~90% of them associated with multiplication of fissile isotopes
 - ^{238}U contribution treated as a background component

Los Alamos
NATIONAL LABORATORY
EST. 1945
UNCLASSIFIED
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 19

CIPN signature - uncertainties

statistical

- Measurement time – optimize to achieve desired precision

$$S = A - B \quad \sigma_S^2 = \sigma_A^2 + \sigma_B^2 + \sigma_{S, MCNPX}^2$$

- Electronics stability ~ 0.05%
- MCNPX ~ 0.3% in this work (can be reduced)

systematic

- Likely dominant contributor to final uncertainty
- Fuel assembly position
- uncertainty in the source rate
- uncertainty in ^{238}U and direct source neutron contribution

Los Alamos
NATIONAL LABORATORY
EST. 1945
UNCLASSIFIED
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

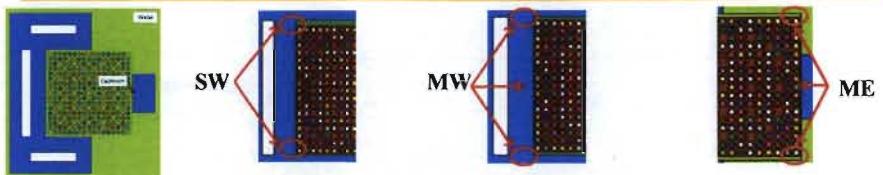
Slide 20

CIPN signature – statistical uncertainties

BU (GWd /tU)	Bgd Count Rate, B (cts/s)	σ_B (%)	Active Count Rate, A (cts/s)	σ_A (%)	Net Count Rate, S (cts/s)	σ_s w/o MCNP (%)
15	2.9×10^2	0.59	3.8×10^4	0.05	3.8×10^4	0.05
30	4.8×10^3	0.14	2.9×10^4	0.06	2.4×10^4	0.08
45	2.2×10^4	0.07	3.9×10^4	0.05	1.7×10^4	0.15
60	5.8×10^4	0.04	7.1×10^4	0.04	1.3×10^4	0.28

- The uncertainty in the signal (s_s) stays below 0.3 % for all assemblies for count time of 100 s
- Measurement precision limited by systematic uncertainty

UNCLASSIFIED


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

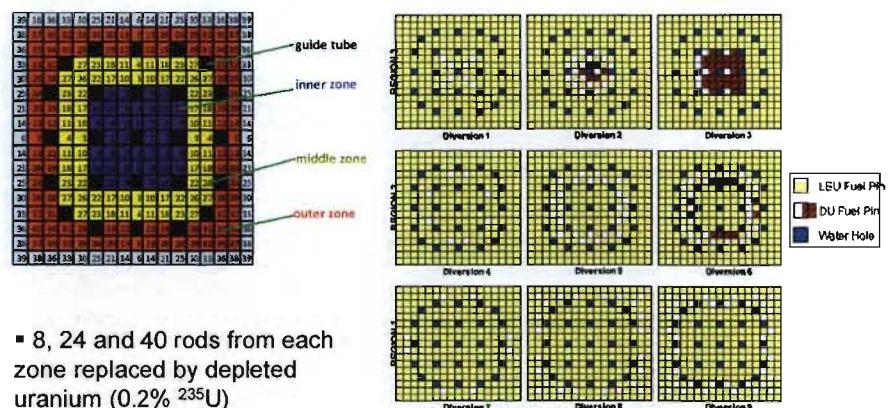
Slide 21

Detection of diversion

CIPN signature – systematic uncertainties

case	15GWd/tU		45GWd/tU	
	CR (cts/s)	change, %	CR (cts/s)	change, %
CENTER	3.77E4	--	1.70E4	--
SW	3.69E4	-1.9 ± 0.3	1.67E4	-1.5 ± 0.4
MW	3.70E4	-1.6 ± 0.3	1.66E4	-2.2 ± 0.4
ME	3.86E4	2.6 ± 0.3	1.71E4	0.5 ± 0.4

- Uncertainties of up to 2.6% between independent measurements of the same SFA
- Solutions:**
 - 1) Engineering constraints to fix SFA position
 - 2) Ratio to other integrated techniques


UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 22

CIPN – detection of diversion

- 8, 24 and 40 rods from each zone replaced by depleted uranium (0.2% ^{235}U)

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 23

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 24

CIPN – detection of diversion

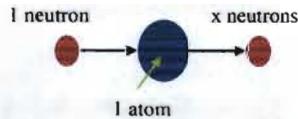
case ID	location of diverted rods	# rods diverted	% mass diverted	15GWd/tU, (%)	30GWd/tU, (%)	45GWd/tU, (%)
1	inner zone	8	3.0	-4.6 ± 0.30	-3.2 ± 0.27	-2.4 ± 0.32
2		24	9.1	-15.4 ± 0.28	-10.1 ± 0.29	-8.0 ± 0.32
3		40	15.2	-27.5 ± 0.28	-19.4 ± 0.28	-14.1 ± 0.31
4	middle zone	8	3.0	-3.8 ± 0.30	-2.8 ± 0.31	-2.0 ± 0.32
5		24	9.1	-11.6 ± 0.29	-7.8 ± 0.30	-6.1 ± 0.32
6		40	15.2	-20.0 ± 0.28	-14.1 ± 0.26	-11.0 ± 0.32
7	outer zone	8	3.0	-4.1 ± 0.30	-2.7 ± 0.31	-2.4 ± 0.33
8		24	9.1	-9.8 ± 0.29	-7.2 ± 0.30	-5.9 ± 0.32
9		40	15.2	-17.3 ± 0.28	-12.8 ± 0.26	-10.4 ± 0.32

- The diversion of at least 8 fuel rods can be detected if the count rate of the full case is known

Case of no reference measurement needs future research

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA


Slide 25

Determination of fissile content

CIPN – determination of fissile content

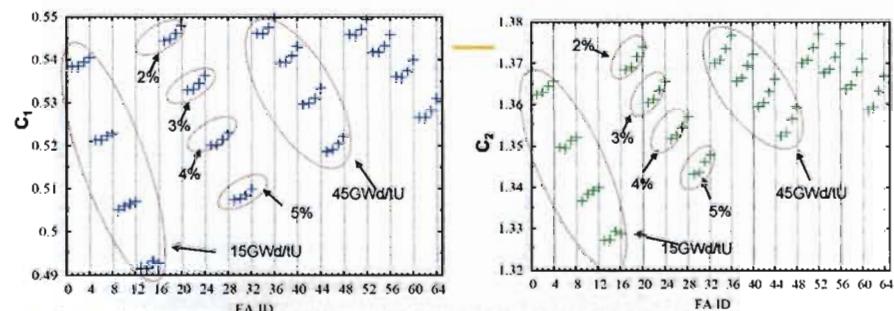
$$^{239}\text{Pu}_{eff, CIPN} \equiv C_1 \cdot ^{235}\text{U}_m + ^{239}\text{Pu}_m + C_2 \cdot ^{241}\text{Pu}_m.$$

$$x = C_0 * (\bar{v} * \bar{\sigma}_f - \bar{\sigma}_f - \bar{\sigma}_a)$$

C_1 and C_2 – net neutron contribution of ^{235}U and ^{241}Pu relative to ^{239}Pu

$$C_i = \frac{\int_V \int_E \sigma_f(E) \cdot (v_i(E) - 1) \Phi(E, V) dE dV - \int_V \int_E \sigma_a(E) \Phi(E, V) dE dV}{\int_V \int_E \sigma_f(E) \cdot ^{239}\text{Pu}_m(v_i(E) \cdot ^{239}\text{Pu}_m - 1) \Phi(E, V) dE dV - \int_V \int_E \sigma_a(E) \cdot ^{239}\text{Pu}_m \Phi(E, V) dE dV}$$

neutrons from fission of ^{235}U (^{241}Pu) neutrons absorbed by ^{235}U (^{241}Pu)
neutrons from fission of ^{239}Pu neutrons absorbed by ^{239}Pu


UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 27

CIPN – quantifying C_1 and C_2 coefficients

- C_1 and C_2 depend on BU and CT, but not as prominent as on IE

$$\langle C_1 \rangle = 0.529, \langle C_2 \rangle = 1.359$$

► C_1 (C_2) fluctuates over a range of -7% to 4% (-2% to 1%) around average

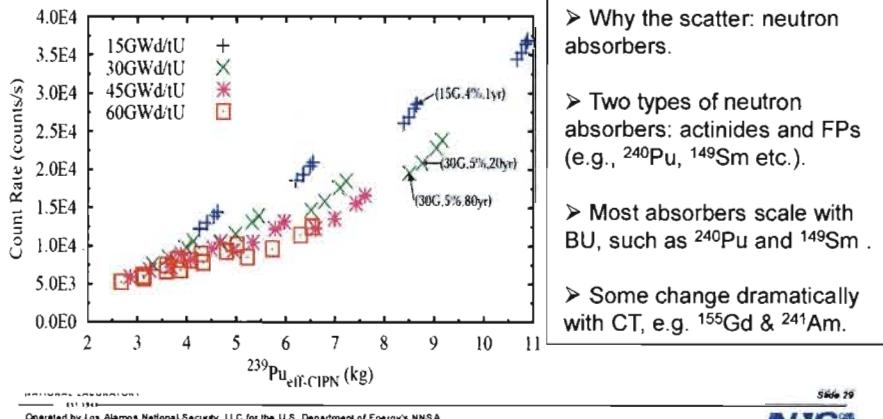
- Assuming realistic range of IE, BU, CT values

► C_1 and C_2 vary in the ~ 1% to 2% range around average

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 28

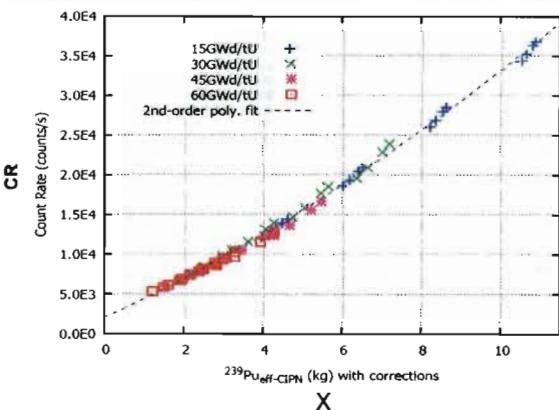

CIPN – determination of fissile content

- C_1 and C_2 averaged over all 64 assemblies

$$^{239}\text{Pu}_{\text{eff},\text{CIPN}} \equiv C_1^{235}\text{U}_m + ^{239}\text{Pu}_m + C_2^{241}\text{Pu}_m$$

$$\langle C_1 \rangle = 0.529$$

$$\langle C_2 \rangle = 1.359$$



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Side 29

CIPN – determination of fissile content

- BU and CT correction to account for parasitic absorption
- A smooth relation between count rate and adjusted Pu_{eff} are found

$$CR = 80.648X^2 + 2307.4X + 2029.68$$

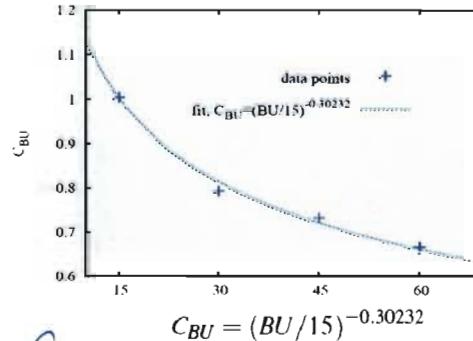
UNCLASSIFIED

Los Alamos
NATIONAL LABORATORY
EST. 1945

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Side 31

Correction for neutron capture: *half-empirical correction*


Burnup correction

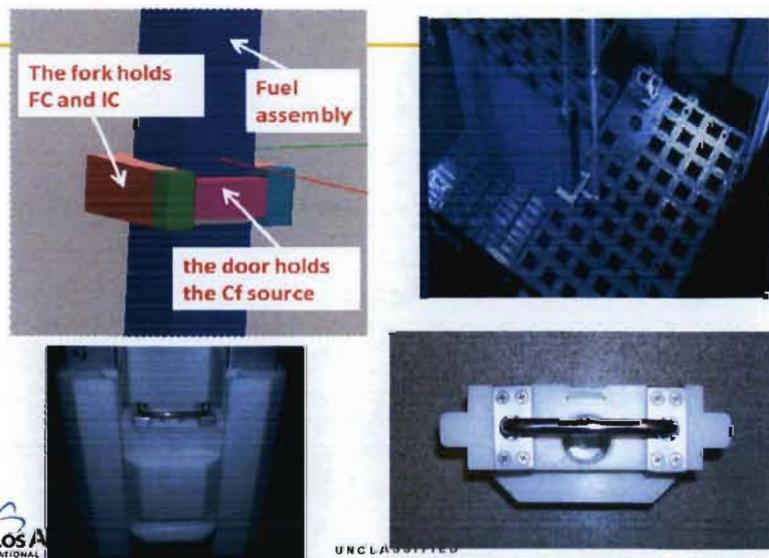
$$X = C_{BU} (^{239}\text{Pu}_{\text{eff},\text{CIPN}} + C_3^{155}\text{Gd}_m + C_5^{241}\text{Am}_m)$$

Cooling time correction

$$C_3 = -49$$

$$C_5 = -0.66$$

Los Alamos
NATIONAL LABORATORY
EST. 1945


UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Side 30

Conceptual experiment setup

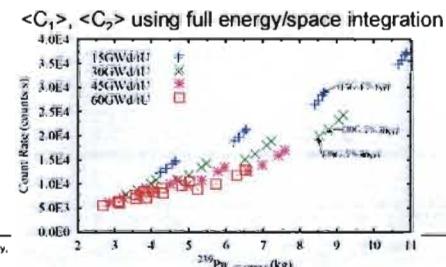
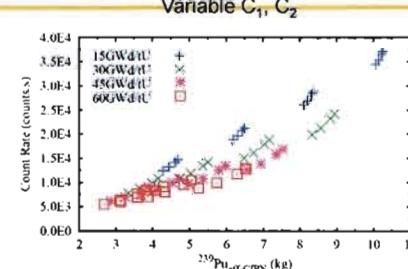
Los Alamos
NATIONAL LABORATORY
EST. 1945

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

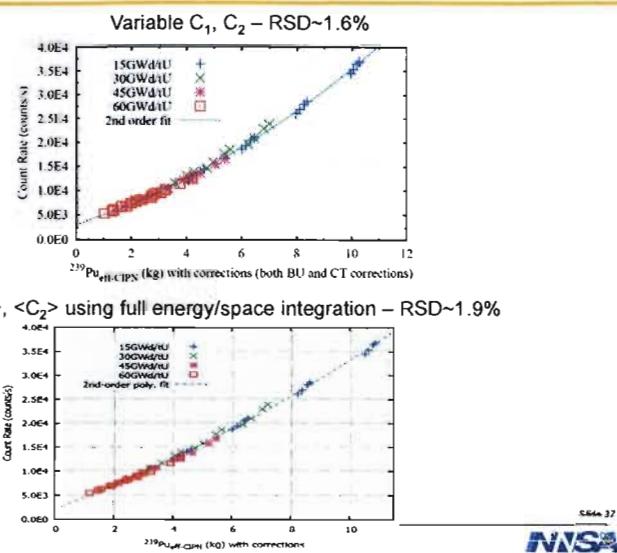
Side 32

CIPN – summary

- ~80% of CIPN signal produced by ^{235}U , ^{239}Pu and ^{241}Pu
 - Remaining ~20% primarily from fission in ^{238}U and direct detection of the ^{252}Cf neutron source
 - Both signals expected to be quantified and subtracted from the total signal as background
 - Capable to determine total fissile content with relatively ***uniform spatial sensitivity*** (~15% variation)
 - ***Diversion of 3% of the mass detectable*** assuming reference measurement with full SFA available



CIPN – summary

- For the full range of SFAs (15 to 60 GWd/tU), the **statistical precision of the CIPN signal is below 1% in 10 s**
 - Assay times of 100 s expected
 - ***Precision dominated by systematic error***
 - Systematic uncertainty due to motion (± 0.5 cm) of the SFA inside the detector resulted in a signal variation of ~2%
- Correlation between the CIPN signal and the fissile mass in terms of $^{239}\text{Pu}_{\text{eff-CIPN}}$ established
 - Dependence of signal on neutron capture
 - Two approaches developed to correct for neutron capture
 - ***Smooth relation between count rate and $^{239}\text{Pu}_{\text{eff-CIPN}}$ established***


Thank you

Questions?

C_1 , C_2 comparison

C₁, C₂ comparison – CT and BU correction

