

Advanced Uncertainty Quantification for Optimization under Uncertainty

Brian M. Adams

Optimization and Uncertainty Quantification Dept.
with Michael S. Eldred

November 7, 2010
INFORMS Annual Meeting
Austin, TX

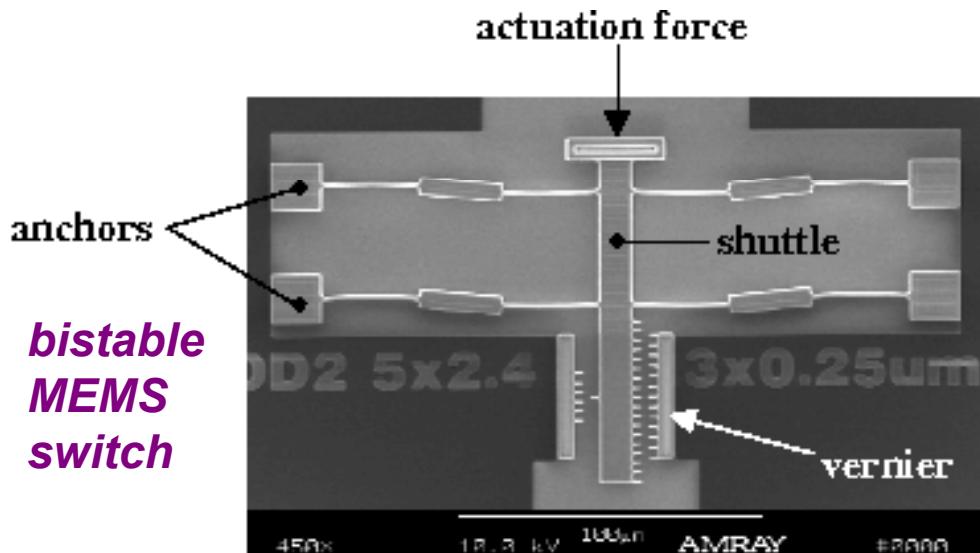
Outline

*Focus: simulation-based optimization with efficient
in-the-loop quantification of parametric uncertainty*

- Motivation: design optimization of MEMS bistable switch
- Survey of uncertainty quantification algorithms for assessing parametric uncertainty
- DAKOTA framework: integrating optimization and uncertainty quantification
- Design under uncertainty for MEMS

Shape Optimization of Compliant MEMS

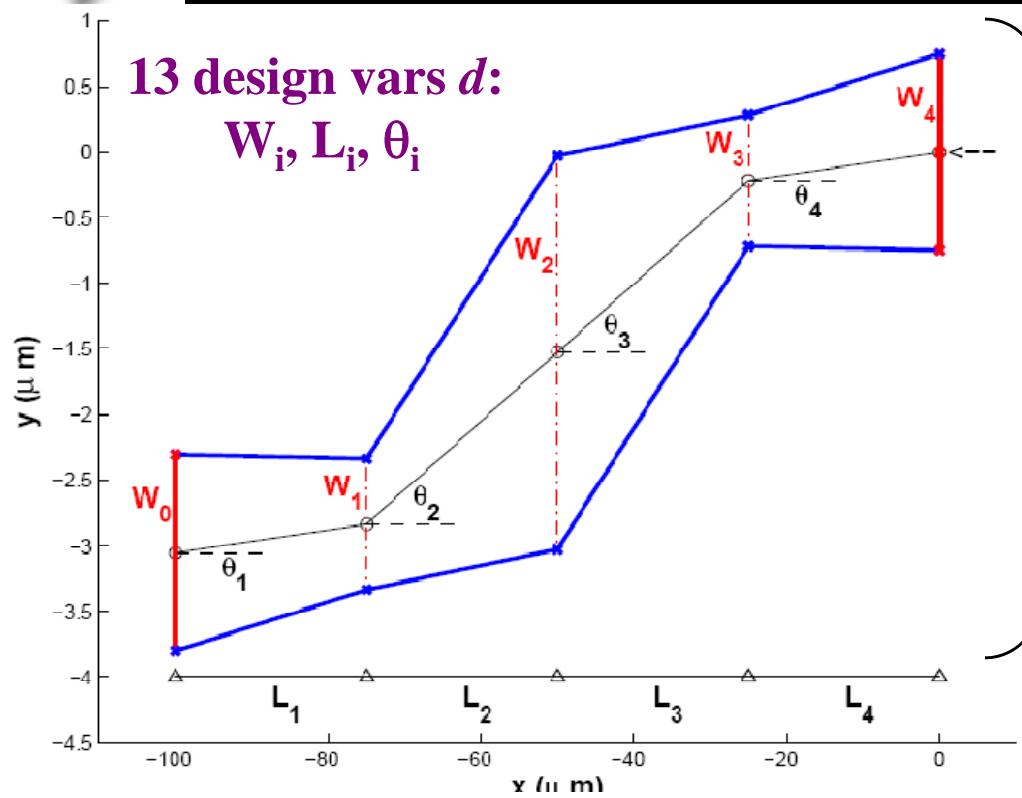
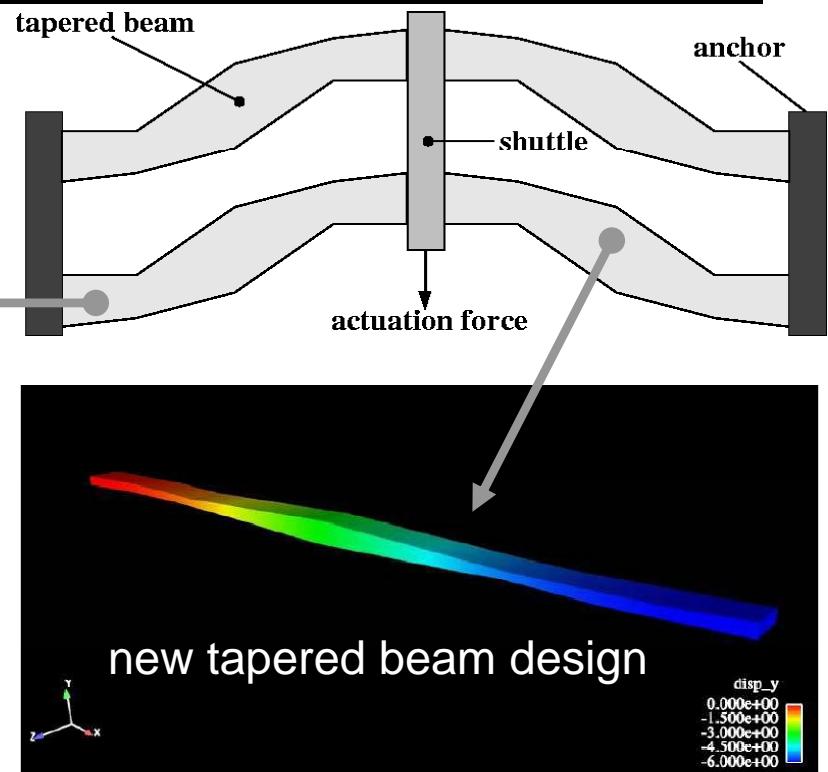
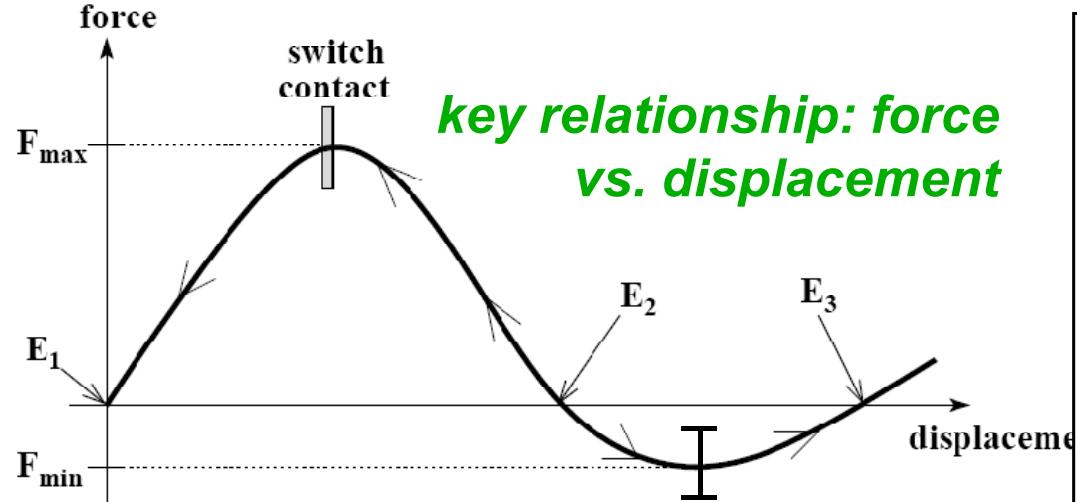
- **Micro-electromechanical system (MEMS):** typically made from silicon, polymers, or metals; used as micro-scale sensors, actuators, switches, and machines
- **MEMS designs are subject to substantial variability** and lack historical knowledge base. Materials and micromachining, photo lithography, etching processes all yield uncertainty.
- Resulting part yields can be low or have poor cycle durability
- **Goal:** shape optimize finite element model of bistable switch to...
 - Achieve prescribed reliability in actuation force
 - Minimize sensitivity to uncertainties (robustness)



*uncertainties to be considered
(edge bias and residual stress)*

variable	mean	std. dev.	distribution
Δw	-0.2 μm	0.08	normal
S_r	-11 Mpa	4.13	normal

Tapered Beam Bistable MEMS Switch: Performance Metrics



Typical design specifications:

- actuation force F_{\min} reliably $5 \mu\text{N}$
- bistable ($F_{\max} > 0, F_{\min} < 0$)
- maximum force: $50 < F_{\max} < 150$
- equilibrium $E_2 < 8 \mu\text{m}$
- maximum stress $< 1200 \text{ MPa}$

Uncertainties in Simulation and Validation

A single optimal design or nominal performance prediction is insufficient; a *few* uncertainties affecting computational models:

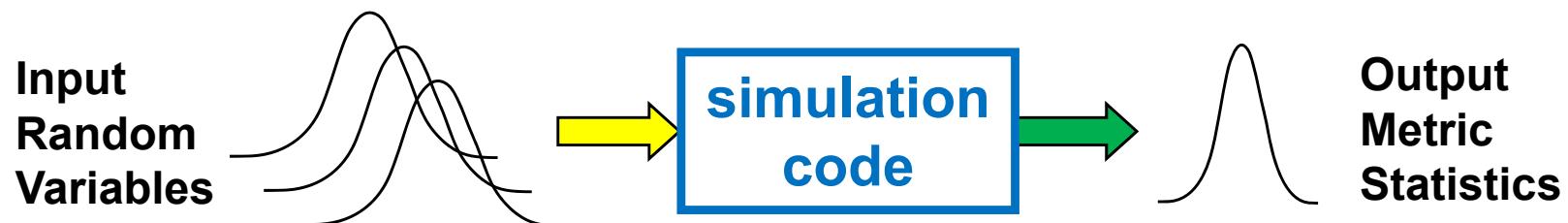
- physics/science parameters
- statistical variation, inherent randomness
- model form / accuracy
- operating environment, interference
- initial, boundary conditions; forcing
- geometry / structure / connectivity
- material properties
- manufacturing quality
- experimental error (measurement error, measurement bias)
- numerical accuracy (mesh, solvers); approximation error
- human reliability, subjective judgment, linguistic imprecision

The effect of these on model outputs should be integral to an analyst's deliverable: *best estimate PLUS uncertainty!*

Characterizations of Uncertainty

Often useful algorithmic distinctions, but not always a clear division

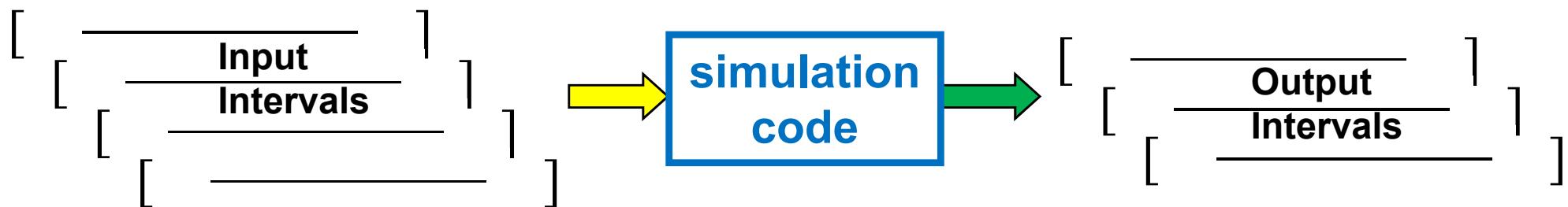
- Aleatory (*think probability density function; sufficient data*)
 - Inherent variability (e.g., in a population), type-A, stochastic
 - Irreducible uncertainty – can't reduce it by further knowledge



Characterizations of Uncertainty

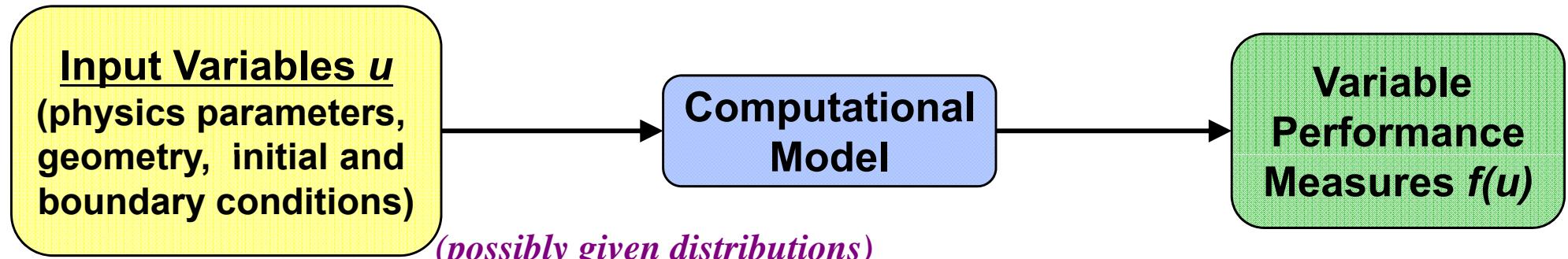
Often useful algorithmic distinctions, but not always a clear division

- Aleatory (*think probability density function; sufficient data*)
 - Inherent variability (e.g., in a population), type-A, stochastic
 - Irreducible uncertainty – can't reduce it by further knowledge
- Epistemic (*think bounded intervals*)
 - Subjective, type-B, state of knowledge uncertainty
 - Related to what we don't know
 - Reducible: If you had more data or more information, you could make your uncertainty estimation more precise



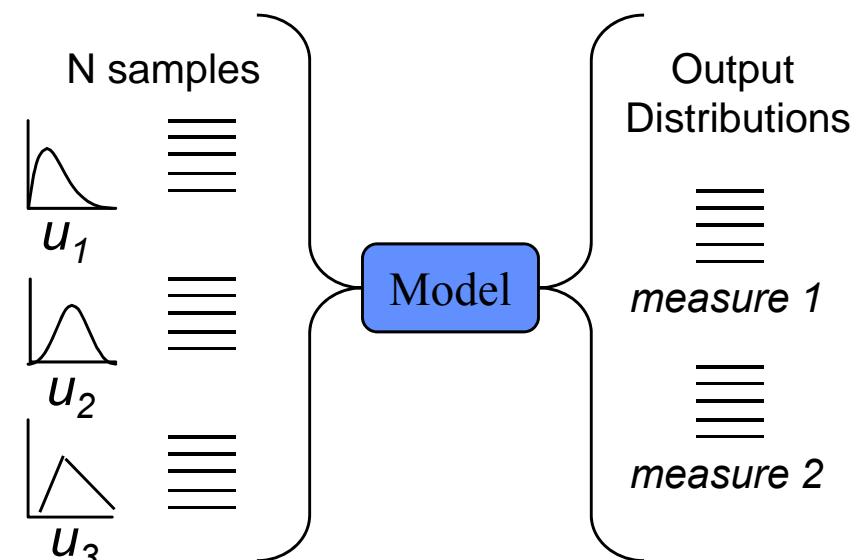
Uncertainty Quantification

Forward propagation: quantify the effect that uncertain (nondeterministic) input variables have on model output



Potential Goals:

- based on uncertain inputs, determine variance of outputs and probabilities of failure (reliability metrics)
- risk-informed/uncertainty-aware decision making / trade-off assessment
- quantification of margins and uncertainties (QMU)
- assess how close *uncertainty-aware code predictions* are to data, required performance, or crucial limits

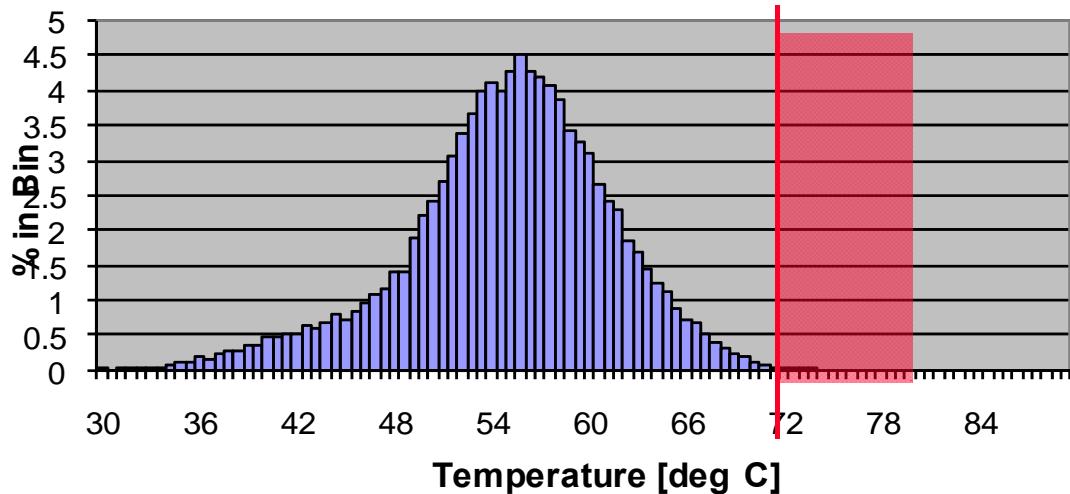
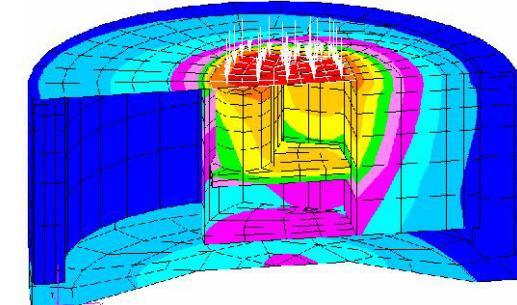
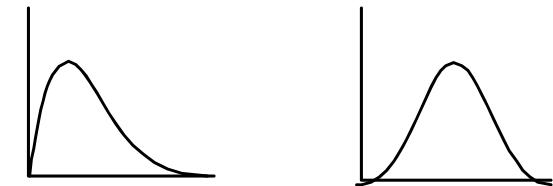


Typical method: Monte Carlo sampling

Example: Thermal Uncertainty Quantification

- Device subject to heating (experiment or computational simulation)
- Uncertainty in composition/ environment (thermal conductivity, density, boundary), parameterized by u_1, \dots, u_N
- Response temperature $f(u) = T(u_1, \dots, u_N)$ calculated by heat transfer code

Final Temperature Values

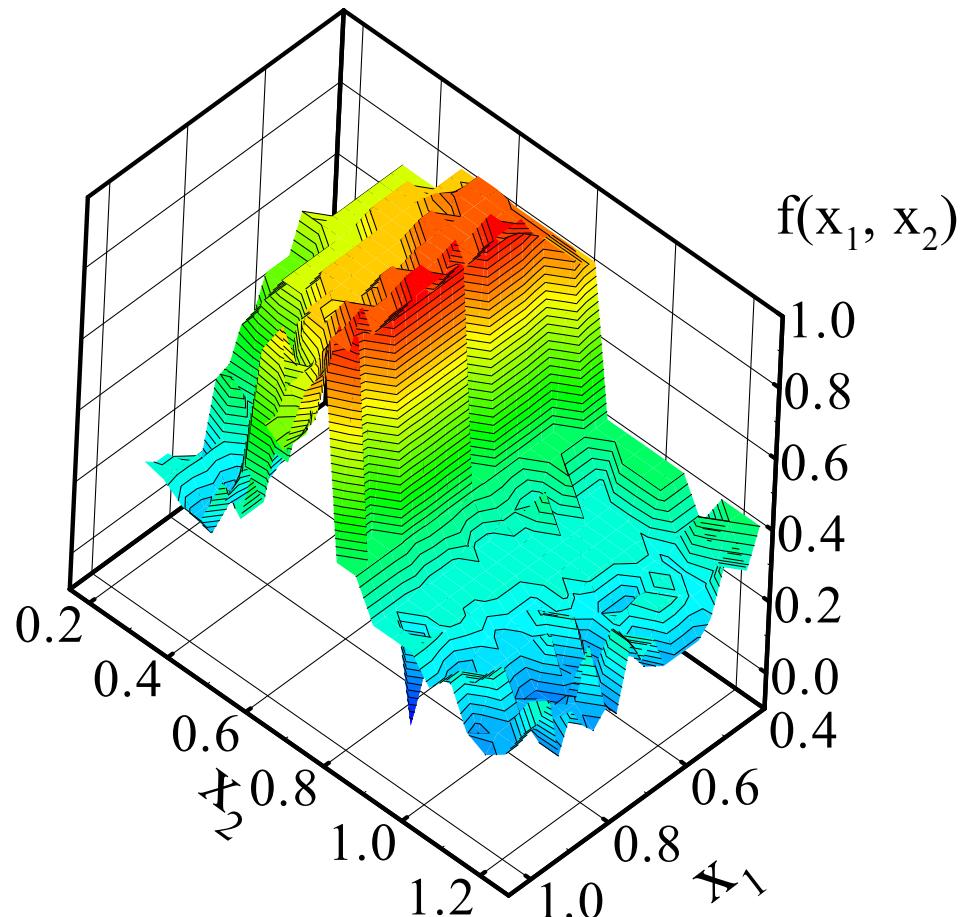


Given distributions of u_1, \dots, u_N , UQ methods calculate statistical info on outputs:

- Mean(T), StdDev(T), Probability($T \geq T_{\text{critical}}$)
- Probability distribution of temperatures
- Correlations (trends) and sensitivity of temperature

Challenges for Simulation-based UQ

- Similar to optimization for a simulation-based engineering application, but propagate uncertainty through computer model.
- Need statistics of response function f , e.g., μ_f , σ_f , $\text{Prob}[f > f_{\text{critical}}]$
- Typical characteristics:



- input parameters specified by probability density functions
- no explicit function for $f(x_1, x_2)$
- expensive to evaluate $f(x_1, x_2)$ and may fail to calculate
- limited number of samples
- noisy / non-smooth

DAKOTA toolkit attempts to mitigate these issues; *a mix of statistics, nonlinear optimization, numerical integration, and surrogate (meta-) modeling enables robust and efficient UQ methods.*

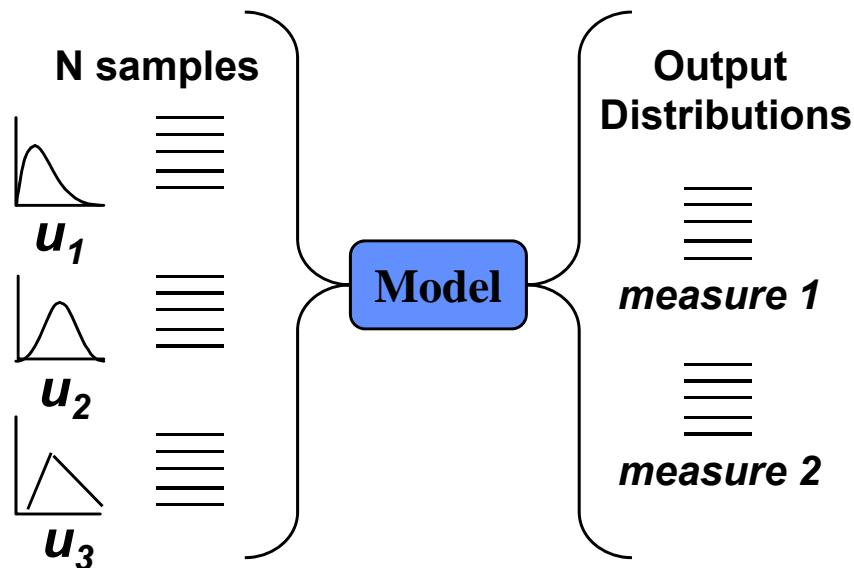
Outline

***Focus: simulation-based optimization with efficient
in-the-loop quantification of parametric uncertainty***

- Motivation: design optimization of MEMS bistable switch
- Survey of uncertainty quantification algorithms for assessing parametric uncertainty
- DAKOTA framework: integrating optimization and uncertainty quantification
- Design under uncertainty for MEMS

UQ: Sampling Methods

Given distributions of u_1, \dots, u_N , sampling-based methods calculate sample statistics, e.g., on temperature $T(u_1, \dots, u_N)$:



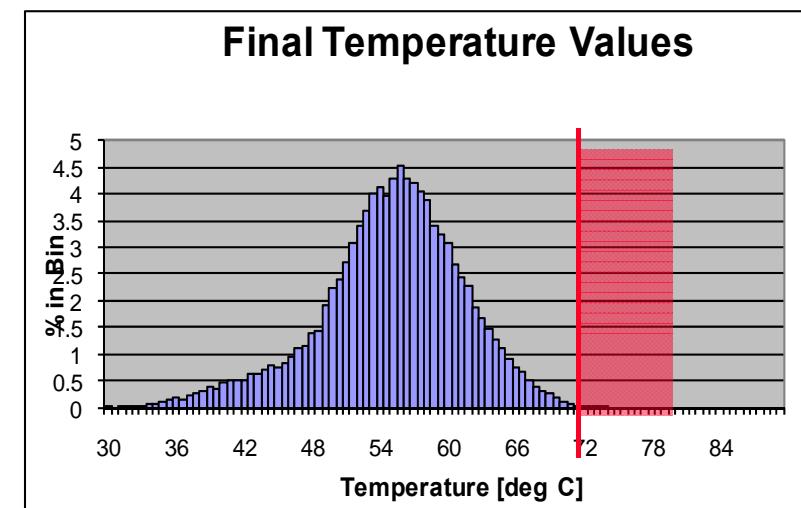
- sample mean

$$\bar{T} = \frac{1}{N} \sum_{i=1}^N T(u^i)$$

- sample variance

$$T_{\sigma^2} = \frac{1}{N} \sum_{i=1}^N [T(u^i) - \bar{T}]^2$$

- full PDF(probabilities)



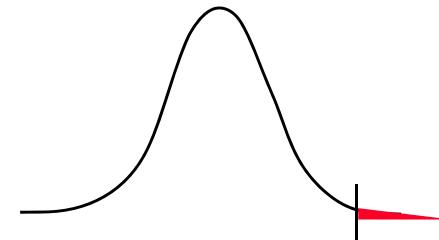
- Monte Carlo sampling
- Quasi-Monte Carlo
- Centroidal Voroni Tessellation (CVT)
- Latin Hypercube sampling

Robust, but slow convergence: $O(N^{-1/2})$

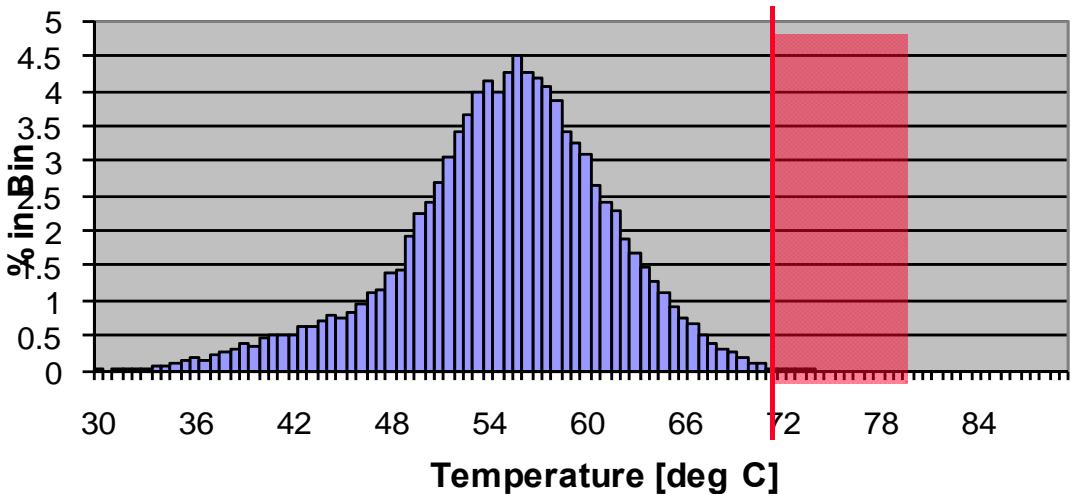
Calculating Probability of Failure

- Given uncertainty in materials, geometry, and environment, determine likelihood of failure

Probability($T \geq T_{critical}$)



Final Temperature Values



- Could perform 10,000 LHS samples and count how many exceed threshold...
- ...or MV: make a linearity (and possibly normality) assumption and project...
- or directly determine input variables which give rise to failure behaviors by solving an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogate (meta-) modeling in a single framework, DAKOTA enables more efficient UQ.

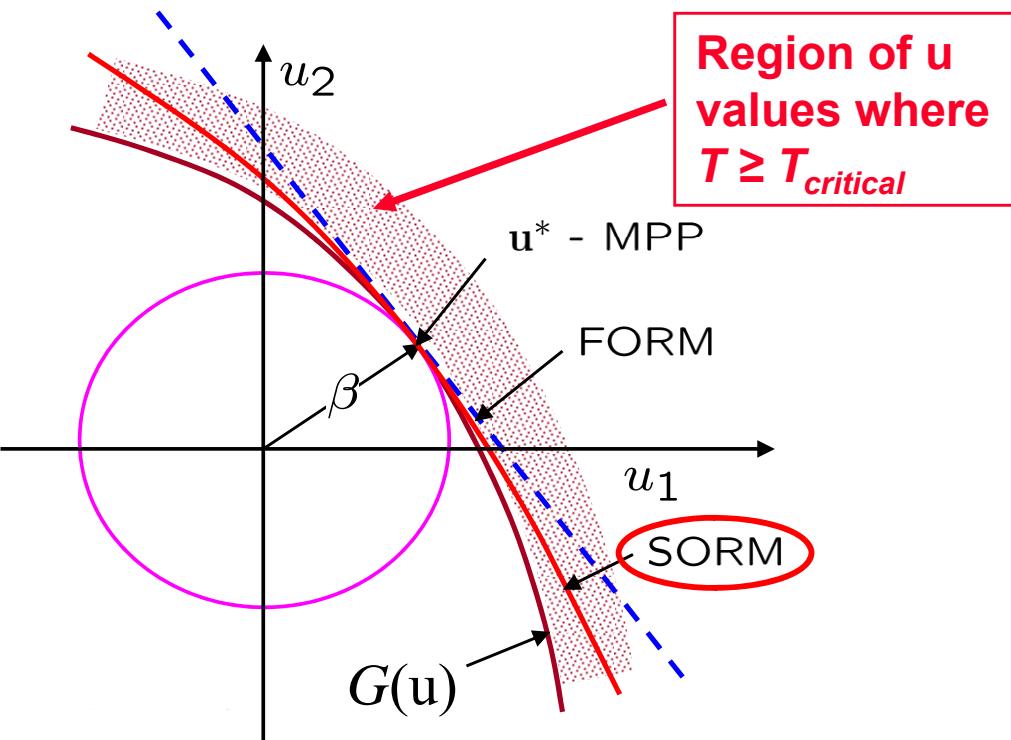
Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most Probable Point (of response or failure occurring) for $G(u) = T(u)$.

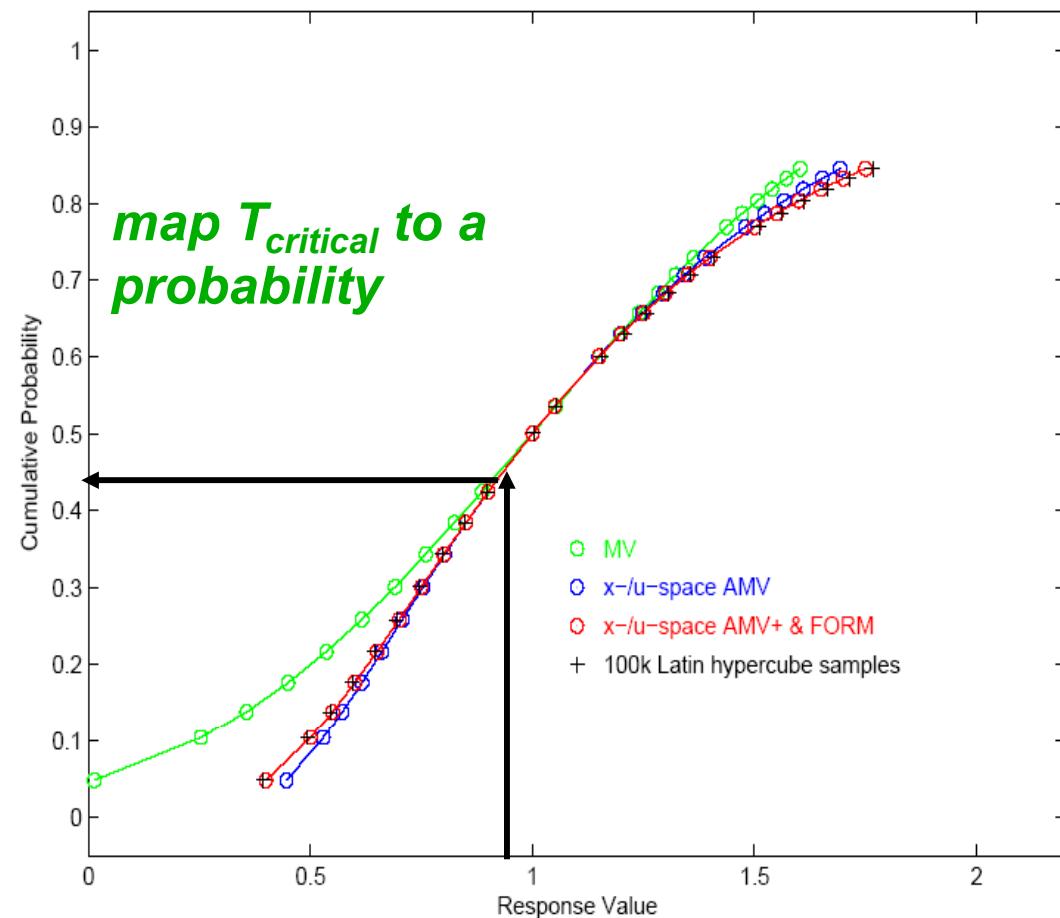
Reliability Index Approach (RIA)

$$\text{minimize} \quad \mathbf{u}^T \mathbf{u}$$

$$\text{subject to} \quad G(\mathbf{u}) = \bar{z}$$

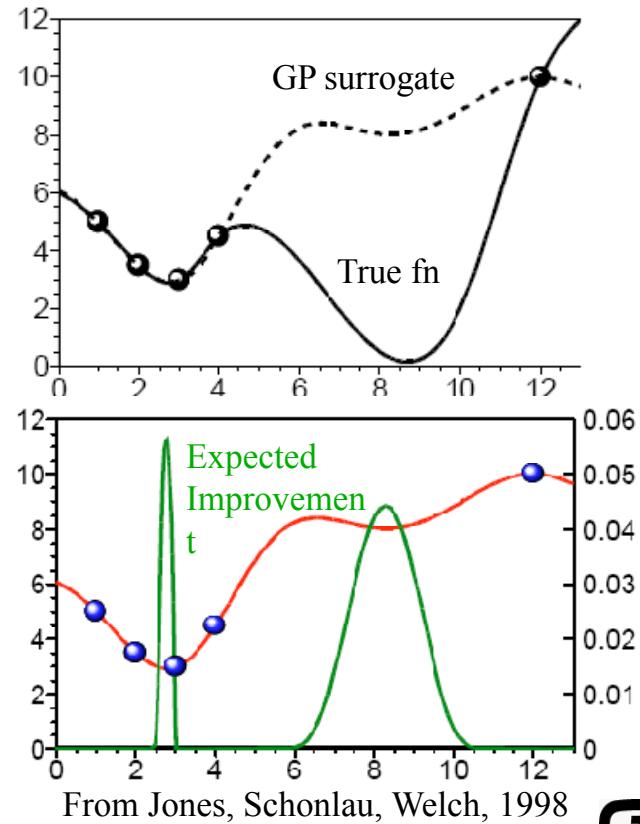


analytic derivatives of statistics w.r.t. design variables



Efficient Global Reliability Analysis

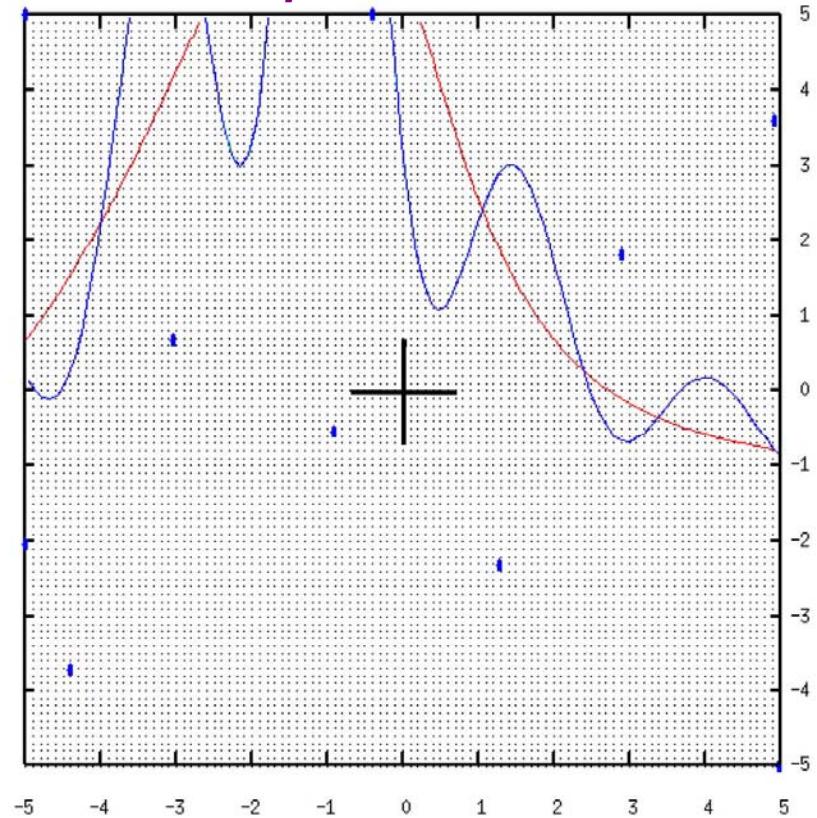
- **EGRA (B.J. Bichon)** performs reliability analysis with
 - EGO Gaussian Process surrogate with NCSU DIRECT optimizer
 - multimodal adaptive importance sampling for probability calculation
- Created to address nonlinear and/or multi-modal limit states in MPP searches.
- In efficient global optimization (EGO): expected improvement is large near promising minima, or in regions of high uncertainty



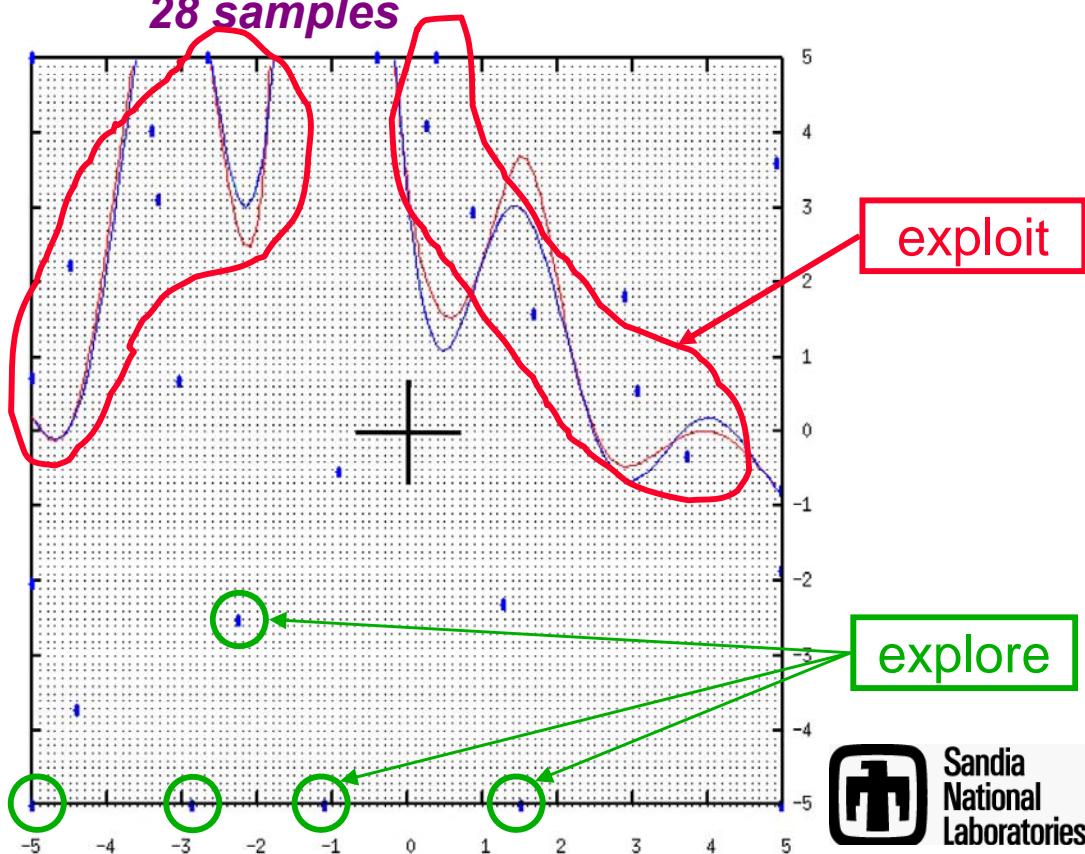
Efficient Global Reliability Analysis

- Apply an EGO-like method to the equality-constrained optimization problem
- In EGRA, an expected feasibility function balances exploration with local search near the failure boundary to refine the GP
- Cost competitive with best MPP search methods, yet better probability of failure estimates

Gaussian process model of reliability limit state with 10 samples



28 samples



Sandia
National
Laboratories

Stochastic Expansions

- Create global polynomial approximation to response function
- Polynomial chaos expansions (PCE): known basis, compute coefficients

$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$

$$\alpha_j = \frac{\langle R, \Psi_j \rangle}{\langle \Psi_j^2 \rangle} = \frac{1}{\langle \Psi_j^2 \rangle} \int_{\Omega} R \Psi_j \varrho(\xi) d\xi$$

- (Lagrange) Stochastic collocation (SC): known coefficients, form interpolant

$$R = \sum_{j=1}^{N_p} r_j L_j(\xi)$$

- Form basis, then sample, calculate moments, probabilities, etc.
- Tailoring → fine-grained algorithmic control:
 - Synchronize PCE form with numerical integration
 - Optimal basis & Gauss pts/wts for arbitrary input PDFs
 - Anisotropic approaches: emphasize key dimensions
- h/p-adaptive collocation (FY10-12)

Generalized Polynomial Chaos Expansions (PCE)

Approximate response stochasticity with Galerkin projection using multivariate orthogonal polynomial basis functions defined over standard random variables

e.g.
$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$
 using $R(\xi) \approx f(u)$

$\Psi_0(\xi)$	$= \psi_0(\xi_1) \psi_0(\xi_2)$	$= 1$
$\Psi_1(\xi)$	$= \psi_1(\xi_1) \psi_0(\xi_2)$	$= \xi_1$
$\Psi_2(\xi)$	$= \psi_0(\xi_1) \psi_1(\xi_2)$	$= \xi_2$
$\Psi_3(\xi)$	$= \psi_2(\xi_1) \psi_0(\xi_2)$	$= \xi_1^2 - 1$
$\Psi_4(\xi)$	$= \psi_1(\xi_1) \psi_1(\xi_2)$	$= \xi_1 \xi_2$
$\Psi_5(\xi)$	$= \psi_0(\xi_1) \psi_2(\xi_2)$	$= \xi_2^2 - 1$

- Intrusive
- Nonintrusive: estimate response coefficients using sampling (expectation), quadrature/cubature (num integration), point collocation (regression)

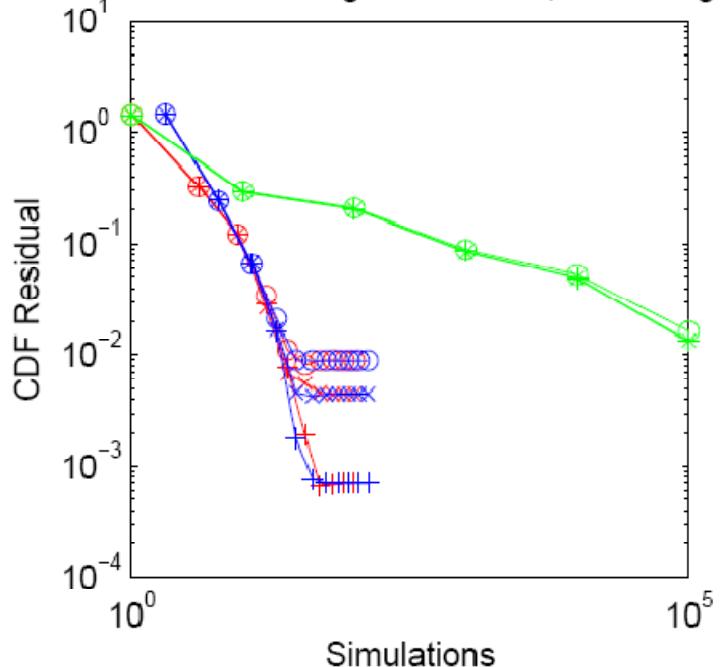
Wiener-Askey Generalized PCE with adaptivity

- Tailor basis: optimal basis selection leads to exponential convergence

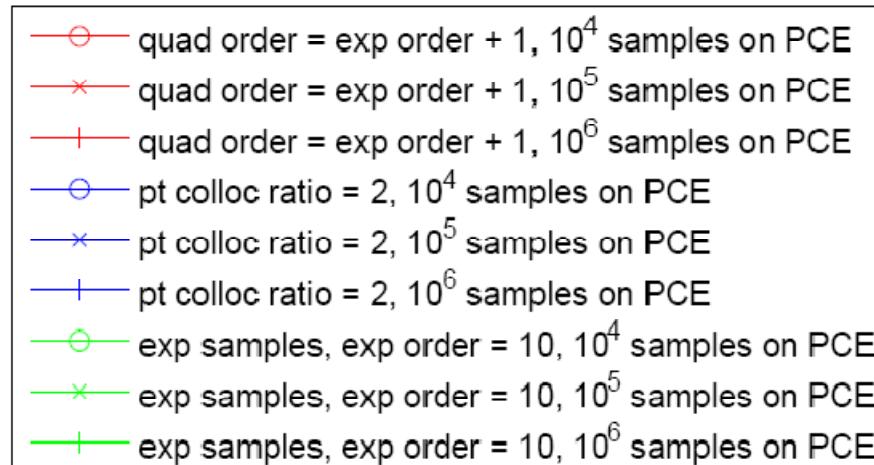
Distribution	Density function	Polynomial	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	Hermite $He_n(x)$	$e^{-\frac{x^2}{2}}$	$[-\infty, \infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	$[-1, 1]$
Beta	$\frac{(1-x)^\alpha (1+x)^\beta}{2^{\alpha+\beta+1} B(\alpha+1, \beta+1)}$	Jacobi $P_n^{(\alpha, \beta)}(x)$	$(1-x)^\alpha (1+x)^\beta$	$[-1, 1]$
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0, \infty]$
Gamma	$\frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^\alpha e^{-x}$	$[0, \infty]$

Optimal Basis + Effective Integration = Fast Convergence

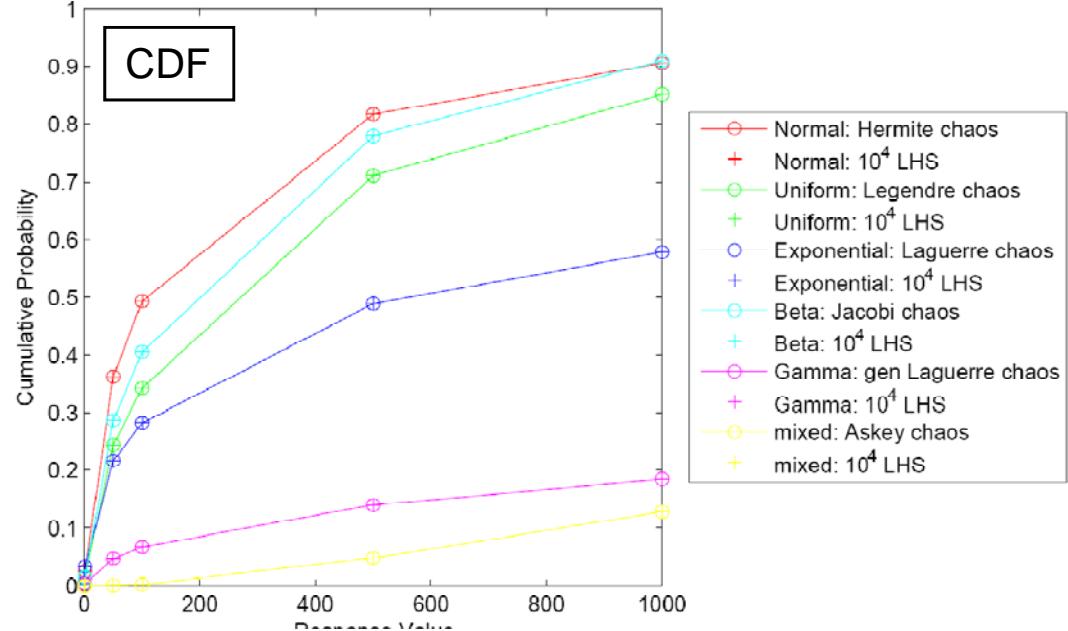
Residual in PCE CDF for Lognormal Ratio, increasing simulations



Hermite basis, lognormal distributions



CDF for Rosenbrock Problem, expansion order = 4, varying distribution/basis



also analytic derivatives of statistics w.r.t. design variables

Outline

Focus: simulation-based optimization with efficient in-the-loop quantification of parametric uncertainty

- Motivation: design optimization of MEMS bistable switch
- Survey of uncertainty quantification algorithms for assessing parametric uncertainty
- DAKOTA framework: integrating optimization and uncertainty quantification
- Design under uncertainty for MEMS

Uncertainty-Aware Design

Rather than designing and then post-processing to evaluate uncertainty...

Standard NLP

$$\begin{aligned} \text{minimize} \quad & f(d) \\ \text{subject to} \quad & g_l \leq g(d) \leq g_u \\ & h(d) = h_t \\ & d_l \leq d \leq d_u \end{aligned}$$

...actively design while accounting for uncertainty/reliability metrics

Augment with general response statistics s_u (e.g. μ , σ , or reliability $z/\beta/p$) with linear map

$$\begin{aligned} \text{minimize} \quad & f(d) + W s_u(d) \\ \text{subject to} \quad & g_l \leq g(d) \leq g_u \\ & h(d) = h_t \\ & d_l \leq d \leq d_u \\ & a_l \leq A_i s_u(d) \leq a_u \\ & A_e s_u(d) = a_t \end{aligned}$$

Focus on large-scale simulation-based engineering applications:

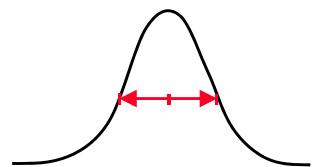
- mostly PDE-based, often transient, some agent-based/discrete event
- response mappings (fns. and constraints) are nonlinear and implicit
- **CRUCIAL:** efficient means to compute statistics $s_u(d)$!

Potential Optimization under Uncertainty Goals

Design for...

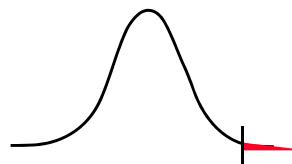
...robustness:

min/constrain $\mu, \sigma^2,$
moments or $G(\beta)$
range



...reliability:

max/constrain p/β
(minimize tail stats,
failure)

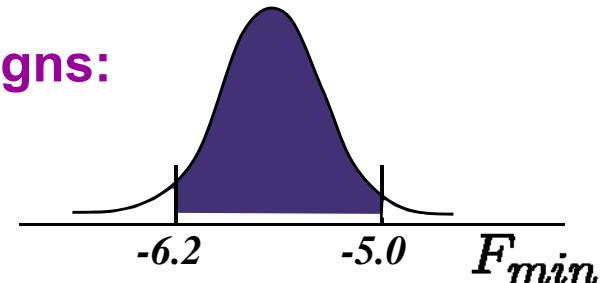


...combined/other:

pareto tradeoff, LSQ:
model calibration under
uncertainty

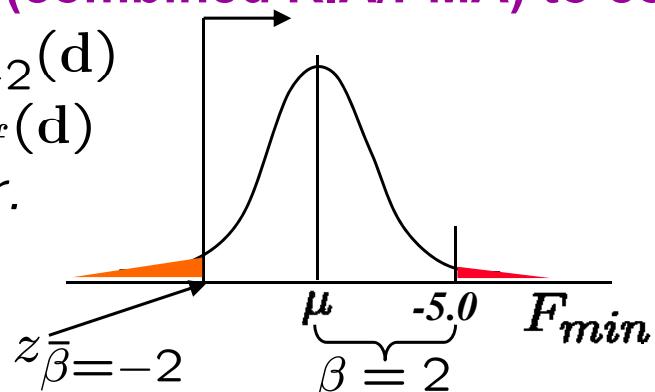
...probability s.t. limits; robust designs:

$$\begin{aligned} \max \quad & P(-6.2 \leq F_{min}(d) \leq -5.0) \\ \text{s.t.} \quad & \text{nonlinear constraints} \end{aligned}$$



...dual tail control (combined RIA/PMA) to control both tails (reliable/robust):

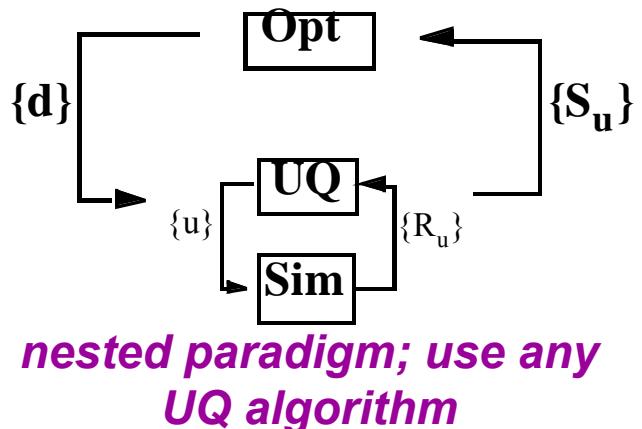
$$\begin{aligned} \max \quad & z_{\bar{\beta}=-2}(d) \\ \text{s.t.} \quad & 2 \leq \beta_{ccdf}(d) \\ & n \ln. \text{ constr.} \end{aligned}$$



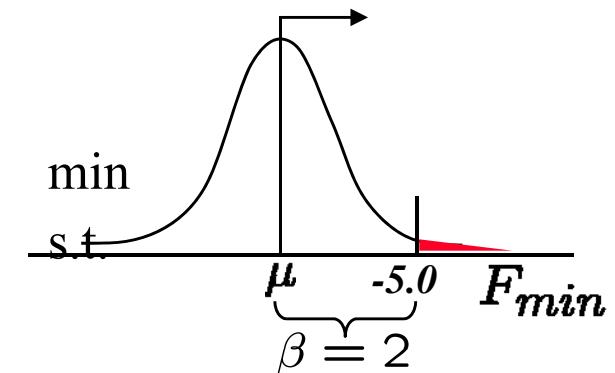
(DAKOTA flexibly allows
RIA/PMA combinations)

Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics $s_u(d)$, e.g., mean, variance, reliability, probability:



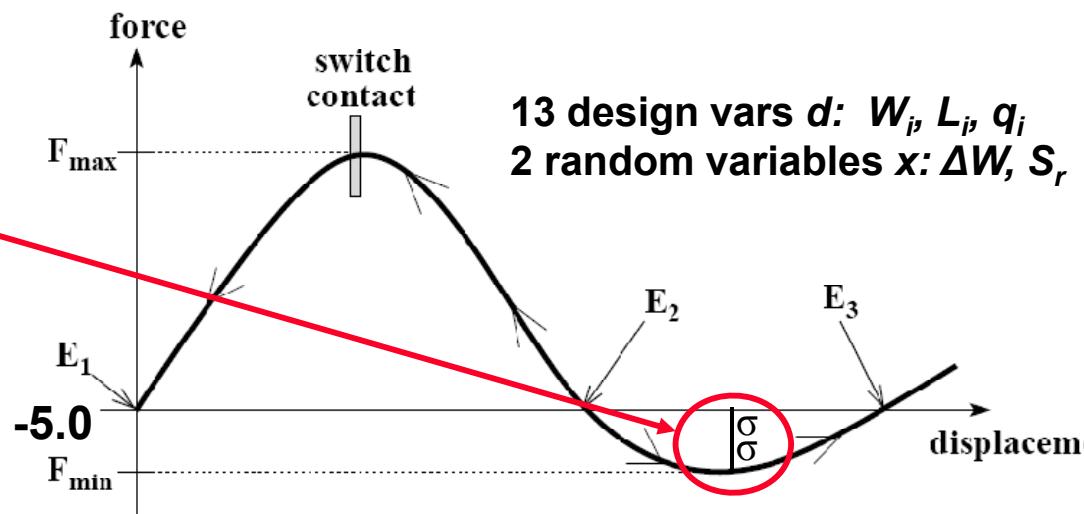
$$\begin{aligned}
 & \min f(d) + W s_u(d) \\
 \text{s.t.} \quad & g_l \leq g(d) \leq g_u \\
 & h(d) = h_t \\
 & d_l \leq d \leq d_u \\
 & a_l \leq A_i s_u(d) \leq a_u \\
 & A_e s_u(d) = a_t
 \end{aligned}$$



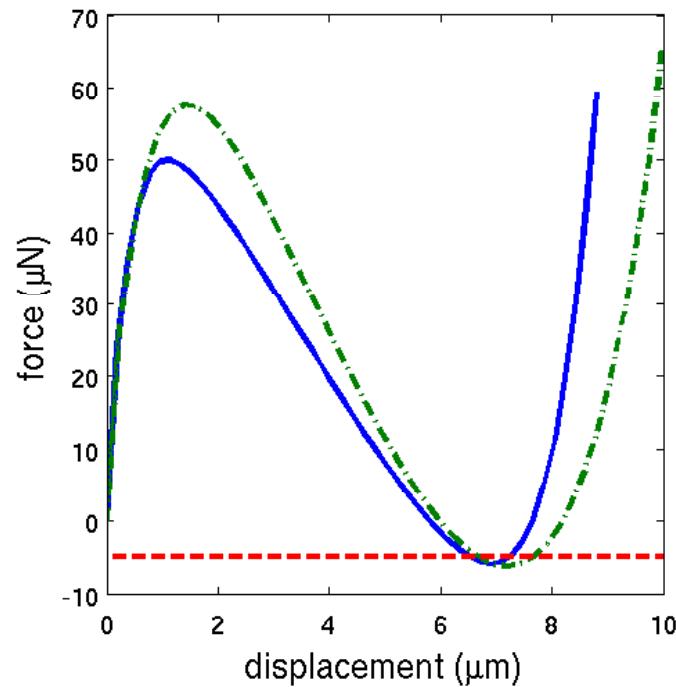
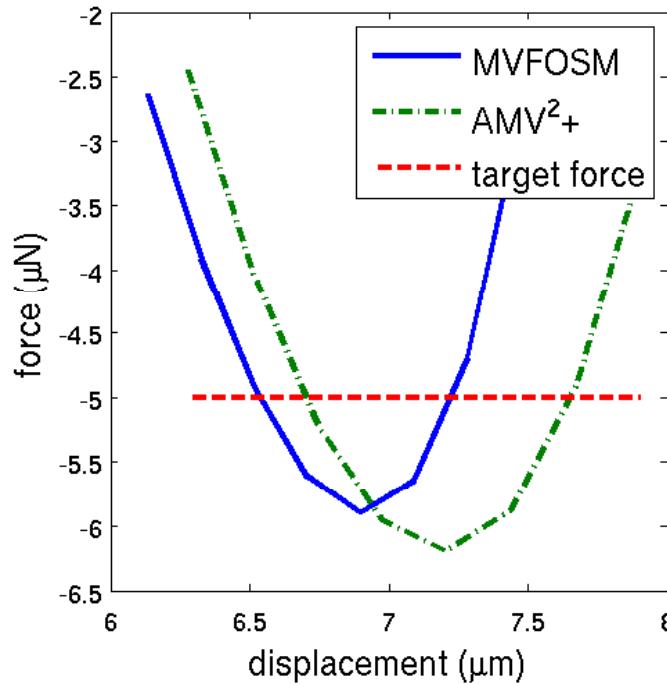
Bistable switch problem formulation (Reliability-Based Design Optimization):

simultaneously reliable and robust designs

$$\begin{aligned}
 & \max \quad \mathbb{E}[F_{min}(d, x)] \\
 \text{s.t.} \quad & 2 \leq \beta_{ccdf}(d) \\
 & 50 \leq \mathbb{E}[F_{max}(d, x)] \leq 150 \\
 & \mathbb{E}[E_2(d, x)] \leq 8 \\
 & \mathbb{E}[S_{max}(d, x)] \leq 3000
 \end{aligned}$$



RBDO Finds Optimal & Robust Design



Close-coupled results: DIRECT / CONMIN + reliability method yield optimal and reliable/robust design:

metric			initial \mathbf{d}^0	MVFOSM	AMV ² +	FORM
I.b.	name	u.b.	initial \mathbf{d}^0	optimal \mathbf{d}_M^*	optimal \mathbf{d}_A^*	optimal \mathbf{d}_F^*
	$E[F_{min}] (\mu N)$		-26.29	-5.896	-6.188	-6.292
2	β		5.376	2.000	1.998	1.999
50	$E[F_{max}] (\mu N)$	150	68.69	50.01	57.67	57.33
	$E[E_2] (\mu m)$	8	4.010	5.804	5.990	6.008
	$E[S_{max}] (MPa)$	1200	470	1563	1333	1329
	AMV ² + verified β		3.771	1.804	-	-
	FORM verified β		3.771	1.707	1.784	-

Uncertainty Quantification Algorithms @ SNL: New methods bridge robustness/efficiency gap

	Production	New	Under dev.	Planned	Collabs.
Sampling	Latin Hypercube, Monte Carlo	Importance, Incremental		Bootstrap, Jackknife	FSU
Reliability	<i>Local:</i> Mean Value, First-order & second-order reliability methods (FORM, SORM)	<i>Global:</i> Efficient global reliability analysis (EGRA) Research: Tailoring & Adaptivity			<i>Local:</i> Notre Dame, <i>Global:</i> Vanderbilt
Stochastic expansion	Adv. Deployment Fills Gaps	Tailored polynomial chaos & stochastic collocation with extended basis selection	Anisotropic sparse grid, cubature, p-adaptive, multiphysics	h-adaptive, hp-adaptive, gradient- enhanced, discrete	Stanford, Purdue, CU Boulder, USC, VPISU
Other probabilistic		Random fields/ stochastic proc.		Dimension reduction	Cornell, Maryland
Epistemic	Second-order probability (nested sampling)	Dempster-Shafer, Opt-based interval estimation	Bayesian	Imprecise probability	LANL, Applied Biometrics
Metrics & Global SA	Importance factors, Partial correlations	Main effects, Variance-based decomposition	Stepwise regression		UNM

Summary

- **Uncertainty-aware design optimization** is helpful in MEMS design where **robust and/or reliable designs** are essential.
- Advanced **UQ algorithms** may offer **more refined estimates of uncertainty** than sampling or mean value methods and are typically **more efficient in an optimization context** (and may offer analytic derivatives).
- The publicly available DAKOTA toolkit includes algorithms for **uncertainty quantification and optimization** with large-scale computational models.
- **DAKOTA strategies** enable combination of algorithms, use of surrogates and warm-starting, and leveraging massive parallelism.

briadam@sandia.gov

<http://dakota.sandia.gov>