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Outline

Focus: simulation-based optimization with efficient 
in-the-loop quantification of parametric uncertainty

Motivation: design optimization of MEMS bistable switch• Motivation: design optimization of MEMS bistable switch

• Survey of uncertainty quantification algorithms 
for assessing parametric uncertainty

DAKOTA framework: integrating optimization and• DAKOTA framework: integrating optimization and 
uncertainty quantification

• Design under uncertainty for MEMS



Shape Optimization of Compliant MEMS

• Micro-electromechanical system (MEMS): typically made from silicon, 
polymers, or metals; used as micro-scale sensors, actuators, switches, 

d hiand machines
• MEMS designs are subject to substantial variability and lack historical 

knowledge base.  Materials and micromachining, photo lithography, 
t hi ll i ld t i tetching processes all yield uncertainty.

• Resulting part yields can be low or have poor cycle durability
• Goal: shape optimize finite element model of bistable switch to…p p

– Achieve prescribed reliability in actuation force
– Minimize sensitivity to uncertainties (robustness)

uncertainties to be considered 
(edge bias and residual stress)

bistable
MEMS

(edge bias and residual stress)

MEMS 
switch



Tapered Beam Bistable MEMS Switch: 
Performance Metrics

13 design vars d:
Wi, Li, iWi, Li, i

new tapered beam design

key relationship: force
Typical design specifications:
• actuation force F reliably 5 μNvs. displacement • actuation force Fmin reliably 5 μN
• bistable (Fmax > 0, Fmin < 0)
• maximum force: 50 < Fmax < 150a

• equilibrium E2 < 8 μm
• maximum stress < 1200 MPa



Uncertainties in 
Simulation and ValidationSimulation and Validation

A single optimal design or nominal performance prediction is 
insufficient; a few uncertainties affecting computational models:

• physics/science parameters
• statistical variation, inherent randomness

insufficient; a few uncertainties affecting computational models:

• model form / accuracy
• operating environment, interference
• initial boundary conditions; forcing• initial, boundary conditions; forcing
• geometry / structure / connectivity
• material properties
• manufacturing quality
• experimental error (measurement error, measurement bias)

numerical accuracy (mesh solvers); approximation error• numerical accuracy (mesh, solvers); approximation error
• human reliability, subjective judgment, linguistic imprecision

The effect of these on model outputs should be integral to anThe effect of these on model outputs should be integral to an 
analyst’s deliverable: best estimate PLUS uncertainty!



Characterizations of Uncertainty

Often useful algorithmic distinctions, but not always a clear division

• Aleatory (think probability density function; sufficient data)
– Inherent variability (e.g., in a population), type-A, stochastic

I d ibl t i t ’t d it b f th k l d– Irreducible uncertainty – can’t reduce it by further knowledge

Input
Random
Variables

Output
Metric
Statistics

simulation
code



Characterizations of Uncertainty

Often useful algorithmic distinctions, but not always a clear division

• Aleatory (think probability density function; sufficient data)
– Inherent variability (e.g., in a population), type-A, stochastic

I d ibl t i t ’t d it b f th k l d– Irreducible uncertainty – can’t reduce it by further knowledge

• Epistemic (think bounded intervals)p ( )
– Subjective, type-B, state of knowledge uncertainty
– Related to what we don’t know

Reducible: If you had more data or more information you– Reducible:  If you had more data or more information, you 
could make your uncertainty estimation more precise
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Uncertainty Quantification

Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Input Variables u
(physics parameters, 
geometry initial and

Computational
Model

Variable 
Performance

Potential Goals:

geometry,  initial and 
boundary conditions)

Model Measures f(u)
(possibly given distributions)

• based on uncertain inputs, determine 
variance of outputs and probabilities 
of failure (reliability metrics)

Potential Goals:
Output 

Distributions
N samples

( y )
• risk-informed/uncertainty-aware 

decision making / trade-off 
assessment

measure 1Model
u1

u2

• quantification of margins and 
uncertainties (QMU)

• assess how close uncertainty-aware

measure 2

T i l th d M t C l li

2

u3
assess how close uncertainty-aware 
code predictions are to data, required 
performance, or crucial limits

Typical method: Monte Carlo sampling



Example:
Thermal Uncertainty QuantificationThermal Uncertainty Quantification

• Device subject to heating (experiment or 
computational simulation)computational simulation)

• Uncertainty in composition/ environment 
(thermal conductivity, density, boundary), 
parameterized by p y
u1, …, uN

• Response temperature f(u)=T(u1, …, uN)
calculated by heat transfer code

Given distributions of u1,…,uN, 
UQ methods calculate 
statistical info on outputs:

Final Temperature Values

statistical info on outputs:
• Mean(T), StdDev(T), 
Probability(T ≥ Tcritical)
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• Probability distribution of 
temperatures
• Correlations (trends) and 
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Challenges for Simulation-based UQ

• Similar to optimization for a simulation-based engineering 
application but propagate uncertainty through computer modelapplication, but propagate uncertainty through computer model.

• Need statistics of response function f, e.g., µf, f, Prob[ f > fcritical]
• Typical characteristics: • input parameters specified by yp p p p y

probability density functions
• no explicit function for f(x1,x2)
• expensive to evaluate f(x x ) and

1.0

f(x1, x2)
• expensive to evaluate f(x1,x2) and 

may fail to calculate
• limited number of samples

i / th

0 4
0.6
0.8 • noisy / non-smooth

DAKOTA toolkit attempts to mitigate 
these issues; a mix of statistics
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these issues; a mix of statistics, 
nonlinear optimization, numerical 
integration, and surrogate (meta-) 
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modeling enables robust and efficient 
UQ methods.
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UQ: Sampling Methods

Given distributions of u1,…,uN, sampling-based methods calculate 
sample statistics e g on temperature T(u u ):

• sample mean
sample statistics, e.g., on temperature T(u1,…,uN):

Output N samples 
N

iuTT )(1

• sample variance

Distributions
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Monte Carlo sampling
• Quasi-Monte Carlo
• Centroidal Voroni Tessalation (CVT)
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• Latin Hypercube sampling
Robust, but slow convergence: O(N-1/2)



Calculating Probability of Failure

• Given uncertainty in materials, geometry, and 
environment determine likelihood of failureenvironment, determine likelihood of failure 
Probability(T ≥ Tcritical)

C ld f 10 000 LHS

4 5
5

Final Temperature Values • Could perform 10,000 LHS 
samples and count how 
many exceed threshold…
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• …or MV: make a linearity 
(and possibly normality) 
assumption and project… 
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• or directly determine input 
variables which give rise to 
failure behaviors by solving 

ti i ti blTemperature [deg C] an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogate 
( ) d li i i l f k DAKOTA bl ffi i UQ(meta-) modeling in a single framework, DAKOTA enables more efficient UQ.



Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most 
Probable Point (of response or failure occurring) for G(u) = T(u).Probable Point (of response or failure occurring) for G(u)  T(u).

Reliability Index Approach (RIA) analytic derivatives of statistics 
w.r.t. design variables

R i f

g

Region of u 
values where 
T ≥ Tcritical

map Tcritical to a 
probability

G(u)



Efficient Global Reliability Analysis

• EGRA (B.J. Bichon) performs reliability analysis with 
EGO Ga ssian Process s rrogate ith NCSU DIRECT optimi er– EGO Gaussian Process surrogate with NCSU DIRECT optimizer

– multimodal adaptive importance sampling for probability calculation
• Created to address nonlinear and/or multi-modal limit states in MPP 

searches. 

In efficient global optimization (EGO):
GP surrogate

• In efficient global optimization (EGO):
expected improvement is large near
promising minima, or in regions of True fn

high uncertainty
Expected
Improvemen
t

From Jones, Schonlau, Welch, 1998



Efficient Global Reliability Analysis

• Apply an EGO-like method to the equality-constrained optimization problem
• In EGRA, an expected feasibility function balances exploration with localIn EGRA, an expected feasibility function balances exploration with local 

search near the failure boundary to refine the GP
• Cost competitive with best MPP search methods, yet better probability of 

failure estimatesfailure estimates
Gaussian process model of reliability limit state with

10 samples 28 samples

exploit

exploreexplore



Stochastic Expansions

• Create global polynomial approximation to response function
P l i l h i (PCE) k b i t• Polynomial chaos expansions (PCE): known basis, compute 
coefficients

• (Lagrange) Stochastic collocation (SC): known coefficients, 
f i t l tform interpolant

• Form basis, then sample, calculate moments, probabilities, etc.
• Tailoring  fine-grained algorithmic control:

– Synchronize PCE form with numerical integration
– Optimal basis & Gauss pts/wts for arbitrary input PDFs

A i t i h h i k di i– Anisotropic approaches: emphasize key dimensions 
• h/p-adaptive collocation (FY10-12)



Generalized Polynomial Chaos 
Expansions (PCE)

Approximate response stochasticity with Galerkin projection using
multivariate orthogonal polynomial basis functions defined over standard

Expansions (PCE)

g p y
random variables

e.g. using

• Intrusive
• Nonintrusive: estimate response coefficients using sampling (expectation),

R(ξ) ≈ f(u)

Nonintrusive: estimate response coefficients using sampling (expectation), 
quadrature/cubature (num integration), point collocation (regression)
Wiener-Askey Generalized PCE with adaptivity

T il b i ti l b i l ti l d t ti l• Tailor basis: optimal basis selection leads to exponential convergence



Optimal Basis + Effective 
Integration = Fast ConvergenceIntegration  Fast Convergence

Hermite basis, lognormal distributions

CDF

also analytic derivatives ofalso analytic derivatives of 
statistics w.r.t. design variables
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Uncertainty-Aware Design

…actively design while accounting for 
uncertainty/reliability metrics

Rather than designing and then post-
processing to evaluate uncertainty… y y

Augment with general response statistics su
(e.g. , or reliability z//p) with linear map

p g y

Standard NLP

minimize
subject to

minimize
subject toj j

• mostly PDE-based, often transient, some agent-based/discrete event
Focus on large-scale simulation-based engineering applications:

• response mappings (fns. and constraints) are nonlinear and implicit
• CRUCIAL: efficient means to compute statistics su(d)!



Potential Optimization 
under Uncertainty Goalsunder Uncertainty Goals

Design for… 
…robustness:
min/constrain μ, σ2, 
moments or G(β)

…reliability:
max/constrain p/β
(minimize tail stats, 

…combined/other:
pareto tradeoff, LSQ: 
model calibration under 

range failure) uncertainty

…probability s.t. limits; robust designs:

-5.0-6.2

…dual tail control (combined RIA/PMA) to control both tails (reliable/robust):

-5.0
(DAKOTA flexibly allows 
RIA/PMA combinations)



Optimization Under Uncertainty
Rather than design and then post-process to evaluate uncertainty…
actively design optimize while accounting for uncertainty/reliability metrics 

Opt 
{d} {S } i

su(d), e.g., mean, variance, reliability, probability:

min
s t

UQ 

Sim

{d} {Su}

{u} {Ru}

min
s.t.

s.t.

-5.0
Sim 

nested paradigm; use any 
UQ algorithm

Bistable switch problem formulation (Reliability Based Design Optimization):

13 design vars d:  Wi, Li, qi

simultaneously reliable and robust designs

Bistable switch problem formulation (Reliability-Based Design Optimization):

g i i i
2 random variables x: ∆W, Sr

σσ-5.0



RBDO Finds Optimal & Robust Design

Close-coupled results: DIRECT / CONMIN + reliability method yield optimal
and reliable/robust design:



Uncertainty Quantification Algorithms @ SNL:
New methods bridge robustness/efficiency gapg y g p

Production New Under dev. Planned Collabs.

Sampling Latin Hypercube, 
Monte Carlo

Importance, 
Incremental

Bootstrap, 
Jackknife

FSU

Reliability Local: Mean Value, Global: Efficient Local:Reliability ,
First-order & 
second-order 
reliability methods 
(FORM, SORM)

global reliability 
analysis (EGRA)

Notre Dame, 
Global:
VanderbiltReseach: Tailoring & Adaptivity

( , )

Stochastic 
expansion

Tailored polynomial 
chaos & stochastic 
collocation with 
extended basis

Anisotropic 
sparse grid, 
cubature,

d ti

h-adaptive, 
hp-adaptive, 
gradient-

h d

Stanford, 
Purdue, 
CU Boulder, 
USC VPISU

Adv. Deployment 

extended basis 
selection

p-adaptive, 
multiphysics

enhanced, 
discrete

USC, VPISU

Other 
probabilistic

Random fields/ 
stochastic proc.

Dimension 
reduction

Cornell, 
Maryland

Fills Gaps

probabilistic p y

Epistemic Second-order 
probability (nested 
sampling)

Dempster-Shafer, 
Opt-based interval 
estimation

Bayesian Imprecise 
probability 

LANL, 
Applied 
Biometrics

Metrics & 
Global SA

Importance factors, 
Partial correlations

Main effects, 
Variance-based 
decomposition

Stepwise 
regression

UNM



Summary

• Uncertainty-aware design optimization is helpful in MEMS design 
where robust and/or reliable designs are essential.

• Advanced UQ algorithms may offer more refined estimates of 
uncertainty than sampling or mean value methods and are typicallyuncertainty than sampling or mean value methods and are typically 
more efficient in an optimization context (and may offer analytic 
derivatives).
Th bli l il bl DAKOTA t lkit i l d l ith f• The publicly available DAKOTA toolkit includes algorithms for 
uncertainty quantification and optimization with large-scale 
computational models. 

• DAKOTA strategies enable combination of algorithms, use of 
surrogates and warm-starting, and leveraging massive parallelism.

briadam@sandia.gov
http://dakota.sandia.gov


