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# Outline

Focus: simulation-based optimization with efficient
in-the-loop quantification of parametric uncertainty

 Motivation: design optimization of MEMS bistable switch

« Survey of uncertainty quantification algorithms
for assessing parametric uncertainty

« DAKOTA framework: integrating optimization and
uncertainty quantification

* Design under uncertainty for MEMS
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‘ Shape Optimization of Compliant MEMS '

* Micro-electromechanical system (MEMS): typically made from silicon,
polymers, or metals; used as micro-scale sensors, actuators, switches,
and machines

« MEMS designs are subject to substantial variability and lack historical
knowledge base. Materials and micromachining, photo lithography,
etching processes all yield uncertainty.

* Resulting part yields can be low or have poor cycle durability

* Goal: shape optimize finite element model of bistable switch to...
— Achieve prescribed reliability in actuation force
— Minimize sensitivity to uncertainties (robustness)

actnatioen force

uncertainties to be considered
(edge bias and residual stress)

anchers " variable mean std, dev. | distribution
. ' AN TE 0.2 pm 0.08 normal
bistable
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apered Beam Bistable MEMS Switch:
Performance Metrics
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Typical design specifications:
» actuation force F_;, reliably 5 uN
* bistable (F,,..> 0, F;, < 0)

 maximum force: 50 < F

max

<150

max
e equilibrium E2 < 8 ym
* maximum stress < 1200 MPa
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' Uncertainties in
}‘ Simulation and Validation

A single optimal design or nominal performance prediction is
insufficient; a few uncertainties affecting computational models:

physics/science parameters

statistical variation, inherent randomness

model form / accuracy

operating environment, interference

initial, boundary conditions; forcing

geometry / structure / connectivity

material properties

manufacturing quality

experimental error (measurement error, measurement bias)
numerical accuracy (mesh, solvers); approximation error
human reliability, subjective judgment, linguistic imprecision

The effect of these on model outputs should be integral to an

analyst’s deliverable: best estimate PLUS uncertainty! @ Sandia
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} Characterizations of Uncertainty

Often useful algorithmic distinctions, but not always a clear division

» Aleatory (think probability density function; sufficient data)
— Inherent variability (e.g., in a population), type-A, stochastic
— Irreducible uncertainty — can’t reduce it by further knowledge

Input simulation Output
Random Metric
Variables code Statistics
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'
}.‘ Characterizations of Uncertainty

Often useful algorithmic distinctions, but not always a clear division

» Aleatory (think probability density function; sufficient data)
— Inherent variability (e.g., in a population), type-A, stochastic
— Irreducible uncertainty — can’t reduce it by further knowledge

» Epistemic (think bounded intervals)
— Subjective, type-B, state of knowledge uncertainty
— Related to what we don’t know

— Reducible: If you had more data or more information, you
could make your uncertainty estimation more precise

[ input | imulati [ |
e 1]]:>|s";‘:,39°"|-> [ a1
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i Uncertainty Quantification

Forward propagation: quantify the effect that uncertain
(nondeterministic) input variables have on model output

il N
Input Variables u
(physics parameters, omputationéﬂ
geometry, initial and Model ﬁ
boundary conditions)

(possibly given distributions)
Potential Goals:

* based on uncertain inputs, determine N samples\ /_Ot_Jtpul_t
variance of outputs and probabilities — Distributions
of failure (reliability metrics) ﬁ — —

* risk-informed/uncertainty-aware Ur —
decision making / trade-off N = >-< measure 1
assessment U, —

« quantification of margins and AN — measure 2
uncertainties (QMU) Uy Y, \_

« assess how close uncertainty-aware
code predictions are to data, required

. . . Sandia
performance, or crucial limits @ National
Laboratories

Typical method: Monte Carlo sampling



Example:

Thermal Uncertainty Quantification

* Device subject to heating (experiment or
computational simulation)

* Uncertainty in composition/ environment
(thermal conductivity, density, boundary),
parameterized by
Ugy ...y Uy

 Response temperature f(u)=T(u,, ..., uy)
calculated by heat transfer code

Final Temperature Values

Temperature [deg C]

Given distributions of u,,...,uy,
UQ methods calculate

statistical info on outputs:
'vulv.

» Mean(T), StdDev(T),
Probability(T 2 T_,ica)

* Probability distribution of
temperatures

» Correlations (trends) and
sensitivity of temperature

Sandia
National
Laboratories



'
}.‘ Challenges for Simulation-based UQ

« Similar to optimization for a simulation-based engineering
application, but propagate uncertainty through computer model.

* Need statistics of response function f, e.g., Y, o5, Prob[ f> f_...]
 Typical characteristics:

0.8
0.6
£90.4
MNo.2
0.0

* input parameters specified by
probability density functions

* no explicit function for f(x,,x,)

» expensive to evaluate f(x,,x,) and
may fail to calculate
* limited number of samples

* noisy / non-smooth

DAKOTA toolkit attempts to mitigate
these issues; a mix of statistics,
nonlinear optimization, numerical
integration, and surrogate (meta-)
modeling enables robust and efficient
UQ methods. @ Sandia
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}' Outline

Focus: simulation-based optimization with efficient
in-the-loop quantification of parametric uncertainty

« Survey of uncertainty quantification algorithms
for assessing parametric uncertainty

« DAKOTA framework: integrating optimization and
uncertainty quantification

* Design under uncertainty for MEMS
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_ ""
} UQ: Sampling Methods

Given distributions of u,,...,u,, sampling-based methods calculate
sample statistics, e.g., on temperature T(u,,...,u,):

~  sample mean \
N samples\ Output -IT _ i ZT (Ui )
N 5

‘ Distributions
u,
A HModel}< messure 1

 sample variance
“a,

T. =ﬁi[T(ui)—T_]2
/_\ measure 2

u, _J \_ * full PDF(probabilities)

Q

Final Temperature Values

* Monte Carlo sampling ;

* Quasi-Monte Carlo }Z i

* Centroidal Voroni Tessalation (CVT) s AT

« Latin Hypercube sampling jg il ]

Robust, but slow convergence: O(N-12) A

Temperature [deg C]




‘ Calculating Probability of Failure

* Given uncertainty in materials, geometry, and
environment, determine likelihood of failure
Probability(T 2 T_,i..)

Final Temperature Values

B

% innNBinw

CUIRLUINCITWUI A~ OO

o

TR I A i e e et

w
S 3

36 42

48

54
Temperature [deg C]

e Could perform 10,000 LHS
samples and count how
many exceed threshold...

o ...or MV: make a linearity
(and possibly normality)
assumption and project...

 or directly determine input
variables which give rise to
failure behaviors by solving
an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogate
(meta-) modeling in a single framework, DAKOTA enables more efficient UQ.

Sandia
National
Laboratories



V.

nalytic Reliability: MPP Search

Reliability Index Approach (RIA)
minimize
subject to G(n) =

Region of u
values where

Cumulative Probability

=]
[=3]
T

=
tn

=
s

=]
(%]
T

02fF

01

Perform optimization in uncertain variable space to determine Most
Probable Point (of response or failure occurring) for G(u) = T(u).

analytic derivatives of statistics
w.r.t. design variables

I map Tcritical to a
- probability

T ‘ T

O MV

O x-fu-space AMY

@ x-fu-space AMY+ & FORM

+ 100k Latin hypercube samples

1
Respaonse Value

15




—
Mcient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with
— EGO Gaussian Process surrogate with NCSU DIRECT optimizer
— multimodal adaptive importance sampling for probability calculation

 Created to address nonlinear and/or multi-modal limit states in MPP

searches.

* In efficient global optimization (EGO):
expected improvement is large near
promising minima, or in regions of
high uncertainty

121

107

GP surrogate - -«
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fficient Global Reliability Analysis

« Apply an EGO-like method to the equality-constrained optimization problem

* In EGRA, an expected feasibility function balances exploration with local
search near the failure boundary to refine the GP

« Cost competitive with best MPP search methods, yet better probability of
failure estimates

Gaussian process model of reliability limit state with
10 samples 28/s{mples M\

/‘: '.::::I'.: )

explore
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5 -4 3 =2 4 ¢ 1 2 3 4 5 T N T T Laboratories




'
}‘ Stochastic Expansions

» Create global polynomial approximation to response function
* Polynomial chaos expansions (PCE): known basis, compute

coefficients

P
R=Ya;U;(¢)
7=0

k;, =

J

(R, )
.'J.‘
()

- @ /“M olE) dé

1

« (Lagrange) Stochastic collocation (SC): known coefficients,

form interpolant

N,
=Y riL;(¢)
=1

 Form basis, then sample, calculate moments, probabilities, etc.

» Tailoring - fine-grained algorithmic control:

— Synchronize PCE form with numerical integration
— Optimal basis & Gauss pts/wts for arbitrary input PDFs
— Anisotropic approaches: emphasize key dimensions

* h/p-adaptive collocation (FY10-12)
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Generalized Polynomial Chaos
Expansions (PCE)

Approximate response stochasticity with Galerkin projection using
multivariate orthogonal polynomial basis functions defined over standard

random variables

e.d.

* Intrusive

Wo(§) = vo(&r) vo(&) = 1
P Ui(§) = vi(&) vol&e) = &
R — v\ usin Ua(§) = vol&) i(l) = &
;] R (5) g Us(€) = val&y) voll) = & -1
J= Ui(8) = vi(&) vi(&) = &&
R(¢) = f(u) Us(8) = vo(&) vall) = & -1

* Nonintrusive: estimate response coefficients using sampling (expectation),
quadrature/cubature (num integration), point collocation (regression)

Wiener-Askey Generalized PCE with adaptivity

* Tailor basis:

optimal basis selection leads to exponential convergence

Distribution  Density function Polynomial Weight function  Support range
Normal \/}z_rf_Tr Hermite He,, () e~T [—o0, o]
Uniform < Legendre P, (2) 1 [—1,1]
1—z)Y (1+a)” . o, 3 o 6
Beta QQJEI,HH)B(EEE%H) Jacobi P,S ' )(:r) (1 —a)“(1l+ x)P [—1.1]
Exponential e—" Laguerre L, (2) e " 0, oo
Gamina % Generalized Laguerre LY (x) e " [0, o]
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'
. 4 ' Optimal Basis + Effective

Integration = Fast Convergence

Residual in PCE CDF for Lognormal Ratio, increasing simulations

1 . . . .
10 Hermite basis, lognormal distributions
0 @ ——— quad order = exp order + 1, 10* samples on PCE
10 — > quad order = exp order + 1, 10” samples on PCE
= | —+—— quad order = exp order + 1, 10° samples on PCE
é 10 R e —&— pt colloc ratio = 2, 10* samples on PCE
e | = ptcolloc ratio = 2, 1 0° samples on PCE
5 10 1 | — T ptcolloc ratio = 2, 10° samples on PCE
© —— exp samples, exp order = 10, 10° samples on PCE
10° exp samples, exp order = 10, 10° samples on PCE
— exp samples, exp order =10, 10° samples on PCE
107 i
10 10
: : CDF for Rosenbrock Problem, ion order = 4, varying distribution/basi
S|mUIat|0ns O;' osen I'OCI robiem efpansmn OI’I er vanflng Istripution/pasis
oot | CDF .
08f /_M — . ' T &— Normal: Hermite chaos
e : +  Normal: 10* LHS
= 0.7¢ /_,/ Uniform: Legendre chaos
: ; H 3 ’ Uniform: 10* LHS
also analytic derivatives of § oo / 4| o Exponential Laguerre chaos
= = = = o — Exponential 10% LHS
statistics w.r.t. design variables 205 g e Beta: Jacobi chaos
L o4l / - - Beta: 10* LHS
g ’ f _ - —+— Gamma: gen Laguerre chaos
© gal | - +  Gamma: 10* LHS
gt mixed: Askey chaos
0.2 f A mixed: 10* LHS

o
Y "“‘-h-.'.,_‘ —
f

<

0 200 800 1000




}' Outline

Focus: simulation-based optimization with efficient
in-the-loop quantification of parametric uncertainty

« DAKOTA framework: integrating optimization and
uncertainty quantification

* Design under uncertainty for MEMS
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'
}.‘ Uncertainty-Aware Design

Rather than designing and then post- ...actively design while accounting for
processing to evaluate uncertainty... uncertainty/reliability metrics
Standard NLP Augment with general response statistics s,
(e.q. u, o, or reliability z/f/p) with linear map
minimize f(d) minimize  f(d) 4+ Wsy(d)
subjectto g1 < g(d) < gu subjectto g7 < g(d) < gu
h(d) = hy h(d) = hy
d; < d < dy d; < d < dy
a; < A;su(d) < ay
Ae sy(d) = ay

Focus on large-scale simulation-based engineering applications:
 mostly PDE-based, often transient, some agent-based/discrete event

* response mappings (fns. and constraints) are nonlinear and implicit
- CRUCIAL: efficient means to compute statistics s,,(d)! @ S
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'
e 4 ' Potential Optimization
}‘ under Uncertainty Goals

Design for...
...robustness: ...reliability: ...combined/other:
min/constrain y, 02, max/constrain p/f3 pareto tradeoff, LSQ:
moments or G(B) (minimize tail stats, model calibration under

range A failure) A uncertainty

...probability s.t. limits; robust designs:
max P (—6.2 < F,,;,(d) < —-5.0)

S.t. nonlinear constraints
-6.2 50 F .
...dual tail control (combine_dﬁlA/PMA) to control both tails (reliable/robust):
max ZB=—2(d)
st. 2 < Begr(d)
nin. constr.
] (DAKOTA flexibly allows

z B: _9 3X2 National

— " Fmin  RIA/PMA combinations) @ Sandia
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\

Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
s,(d), e.g., mean, variance, reliability, probability:

Opt| =« min f(d) + Wsy(d)
{d} {S,} st g < g(d) < gu min
| g U0 _ h(d) = hy g
{u} {R,} dr < d<d K 50 FE .
[Sim] o S xS T
a; < A; su(d) < ay p=

nested paradigm; use any A (d) =

UQ algorithm efully = &

P aam ~F mn DAT | I T Y NAacism ) ks s * )

A switch

[m ax E[F,,n(d,x) contact 13 design vars d: W, L, g;
2 random variables x: AW, S,
s.t 2 < ﬁccdf(d) \
50 < E[Fmaz(d,x)] <
E [EQ(d: X)] S ~ E, E;
E :Sma,:c(dax): < \

Qa

displacem




displacement (um)

Close-coupled results: DIRECT / CONMIN + reliability method yield optimal
and reliable/robust design:

- MVFOSM
=SS AMVEE |
""" target force

displacement {(um)

metric MVFOSM | AMVZ+ FORM
.b. name u.b. || initial d° || optimal d%, | optimal d% | optimal d%
29 -5.896 ~6.188 -6.292
5 - :
[Frnaz] (12 57.67
E [E2] (um) 8 5.990
E [Smaz] (MPa) | 1200 470 1563 1333 1329
AMV?+ verified 3 3.771 1.804 - -
FORM verified 8 3.771 1.707 1.784 -

W
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_
'Uncertainty Quantification Algorithms @ SNL.:

New methods bridge robustness/efficiency gap

Latin Hypercube, Importance, Bootstrap, FSU
Monte Carlo Incremental Jackknife
Local: Mean Value,f| Global: Efficient Local:
First-order & global reliability Notre Dame,
second-order analysis (EGRA) Global:
(FORM, SORM)
Tailored polynomial | Anisotropic h-adaptive, | Stanford,
Adv. Deployment chaos &_ stocl_1astic sparse grid, hp-adaptive,| Purdue,
_< collocation with cubature, gradient- CU Boulder,
Fills G extended basis p-adaptive, enhanced, USC, VPISU
1S aps selection multiphysics | discrete
Random fields/ Dimension Cornell,
stochastic proc. reduction Maryland
Second-order Dempster-Shafer, Bayesian Imprecise LANL,
probability (nested| | Opt-based interval probability | Applied
sampling) estimation Biometrics
Importance factors,| Main effects, Stepwise UNM
Partial correlations | Variance-based regression
decomposition




# Summary

* Uncertainty-aware design optimization is helpful in MEMS design
where robust and/or reliable designs are essential.

 Advanced UQ algorithms may offer more refined estimates of
uncertainty than sampling or mean value methods and are typically
more efficient in an optimization context (and may offer analytic
derivatives).

* The publicly available DAKOTA toolkit includes algorithms for
uncertainty quantification and optimization with large-scale
computational models.

- DAKOTA strategies enable combination of algorithms, use of
surrogates and warm-starting, and leveraging massive parallelism.

briadam@sandia.gov
http://dakota.sandia.gov
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