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ABSTRACT   

The clutter locus is an important concept in space-time adaptive processing (STAP) for ground moving target 
indicator (GMTI) radar systems.  The clutter locus defines the expected ground clutter location in the angle-Doppler 
domain.  Typically in literature, the clutter locus is presented as a line, or even a set of ellipsoids, under certain 
assumptions about the geometry of the array.  Most often, the array is assumed to be in the horizontal plane 
containing the velocity vector.  This paper will give a more general 3-dimensional interpretation of the clutter locus 
for a general linear array orientation. 
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1. INTRODUCTION  
The clutter locus in space-time adaptive processing (STAP) represents the stationary ground clutter location in the 
angle-Doppler domain.  STAP seeks to filter the interference from stationary clutter along this clutter locus while 
maximizing the return from the desired moving object.  The geometry of the clutter locus is set by the array 
orientation relative to the platform velocity vector.  This paper brings together in a single 3-dimensional equation 
various clutter locus models presented in literature for the general orientation of a uniform linear array. 

2. CLUTTER LOCUS 
The clutter locus equation for general orientation of a linear array is presented in this section.  This discussion will 
expand on the equations and plots given in section 3.1 of [1].  As in this portion of the reference, we will assume that 
the array and Doppler are adequately sampled.  We will also ignore other clutter effect such as internal motion, 
jammers, etc.  This section will emphasize the 3-dimensional nature of the clutter locus equation and show how this 
equation brings together other concepts on the clutter locus presented in literature. 

2.1 Clutter locus 

The standard presentation of the clutter locus is given in [1].  Figure 1 illustrates the standard clutter locus curves as 
shown in [1].  Figures 1a-1d show the clutter locus curves for four different rotations of the array with respect to the 
velocity vector.  Both the array and the velocity vector are in the horizontal plane.  The different colors within each 
of the subplots represent the clutter loci for different ground grazing angles. 

2.2 3-D Clutter locus 

A general equation for the clutter locus is derived in Appendix A: 

 
2 2 2

1 0 0 1 1 1 2 1 1 0 2 0 1 2 0A B C D D E E F F Gζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζΨ Ψ Ψ Ψ+ + + + + + + + + =    (1) 

Equation (1) can be recognized as a quadric equation in 3-dimensions.  In particular, for the bounds that naturally 
fall out of the coefficients in this equation, it can be shown to geometrically represent a triaxial, or scalene, ellipsoid.  
Typically the clutter locus presented in literature just show 2-dimensional samplings of the 3-dimesional equation 
and often do not point out the 3-dimensional nature of the clutter locus.  The author in [2] and a few others do point 
out the 3-dimensional nature of the clutter locus curves, but do not present the general case, or give a general 
equation. 

Figure 2 shows a 3-dimensional example of the ellipsoid from equation (1).  Figure 3 repeats Figure 2, with the 
exception that grazing angles above the horizon are ignored for ground imaging applications.   
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(a) 0° array rotation in horizontal plane                  (b) 30° array rotation in horizontal plane 

 
(c) 60° array rotation in horizontal plane          (d) 90° array rotation in horizontal plane 

Figure 1:  Clutter locus curves for grazing angles and various horizontal array orientations (a la [1]) 

 

2.3 Limiting cases of the clutter locus equation 

Figure 1b can be readily observed to be equivalent to specific slices through the ellipsoid from Figure 3 (or Figure 2) 
evaluated for different values of the ζΨ .  In general, all of the subplots in Figure 1 can be shown to be limiting 
cases of equation (1) where the array and the velocity vector are in the horizontal plane.  From the notation in the 
Appendix A, this case corresponds to 1γ =  and 0η =   with variations in κ .  For this case, equation (1) becomes: 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 0 0 1
2 2 2 2 2 2

2 1
1 1 1 1 1 1

ζ ζ κζ ζ
κ ζ κ ζ κ ζΨ Ψ Ψ

+ − =
− − − − − −  

(2) 

 

Equation (2) is the equation for an ellipse where the semiaxes are rotated by 45° in the 0 1ζ ζ−  plane, and the 

semiaxes after rotation are ( ) ( )21 1κ ζΨ+ −  and ( ) ( )21 1κ ζΨ− −  respectively.  Figure 1a is the clutter locus 

that occurs when the array and the velocity vector are aligned ( 1κ = ).  Equation (2) becomes the equation of a 
straight line also rotated by 45° in the 0 1ζ ζ−  plane, given by: 

 0 1ζ ζ=  (3) 
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Figure 2: Clutter locus ellipsoid for level flight and level array rotated in the horizontal plane (30º 

“squint”) 
 
 
 

 
Figure 3: Equivalent to a Figure 2 with grazing angles above the horizon removed 

 

 



 
 

 
 

2.4 Degenerate cases and 3-D perspective 

Discussion of the rotations and semiaxes for the general case are presented in Appendix B.  This section focuses on 
the 3-D perspective of the degenerate cases.  The best example is equation (3) in the previous section.  The equation 
appears to be that of a straight line; however, in 3-D it is really the result of the intersection of constant ζΨ -planes 

with a degenerate ellipsoid case.   In this case when 1κ = , one of the semiaxes (orthogonal to the 0 1ζ ζ=  plane) 

degenerates to zero, and the other (along the 0 1ζ ζ=  plane) becomes ( )22 1 ζΨ− .  Figure 4 shows the 

degenerate 3D ellipsoid below the horizon that leads to Figure 1a. 

 
Figure 4: Degenerate 3D ellipsoid for array aligned with velocity vector 

 

Another degenerate case of interest is the inclined array  [3].  This case occurs, for example, when we are attempting 
to align the array with the velocity vector in the presence of aircraft pitch.  The result is that the array is inclined 
vertically.  For this case equation (1) becomes: 

 
2

1 01ζ η ζ ηζΨ= − +  (4) 
 

For the traditional 2D viewpoint in the 0 1ζ ζ−  plane, equation (4) is a sequence of lines whose offsets are a 
function of the grazing angle and whose slopes are no longer 45°.  They are a function of the array inclination angle 
for 0η ≠ .  This result is rather intuitive.  It says that the inclination of the array has two effects, corresponding to 
the two terms on the right-hand-side (rhs) of equation (4).  The first term of the rhs is the result of foreshortening the 
array component in the direction of the velocity vector due to the array inclination.  The second term of the rhs is the 
new sensitivity of the array to elevation angles due to the elevation component of the array.  The latter is familiar to 
those who work with interferometric synthetic aperture radar for height measurement (see Chapter 5 of [4], for 
example).  Figure 5 shows an example of the degenerate ellipsoid for 30° array inclination. 

Other degenerate cases can be derived from equation (1), such as the forward-looking case [2], but are not presented 
in this paper.  More details on the degenerate ellipsoids are presented in Appendix B. 



 
 

 
 

 
Figure 4: Degenerate 3D ellipsoid for array inclined by 30° 

 

3. CONCLUSIONS 
This paper presented a single equation for the clutter locus for general array orientation in space-time adaptive 
processing.  This equation brings together the various clutter locus concepts presented in literature into a 
3-dimensional perspective.  This equation was shown to explain the standard 2-dimensional clutter locus plots 
typically found in literature [1], as well as other clutter locus equations, such as inclined arrays [3], and forward-
looking arrays [2]. 

4. APPENDIX A:  EQUATION DERIVATIONS 
This appendix derives the general clutter locus equation for a uniform linear array. 
 

 
Variable definitions 

 Bu  - is the unit vector along the array 

 vu  - is the unit vector along the velocity 

 ru  - is the unit vector in the direction of the target 

 xu  - is the unit vector in the x-direction 

 yu  - is the unit vector in the y-direction 

 zu  - is the unit vector in the z-direction 

 0ζ  - is the normalized Doppler defined by equation (5)  

 1ζ  - is the normalized array response defined by equation (6) 

 κ  - direction cosine between Bu  and  vu  (related to “squint” for a gimbaled antenna)  

 γ  - direction cosine between vu  and xu  

 η  - direction cosine between Bu  into zu  

z ru uζΨ = ⋅ 

 - the direction cosine between the range to the target and the z-axis 
 
Additional geometry information 



 
 

 
 

xu  and yu  are parallel to a horizontal ground plane.  Choose xu  to be aligned with the projection of vu  into the 

horizontal plane, and yu  completes the right-hand-rule.   
 

 
Base equations for derivation 

 0 v ru uζ = ⋅ 

 (5)  

 1 B ru uζ = ⋅ 

 (6) 
 

where: 

 0 1,ζ ζ  - are normalized quantities measured by the radar that are dependent upon the target direction  
 

Given the definitions and equations above, equation (5) can be rewritten as:  
Derivation 

 

 ( ) 2
0 1r xu uζ γ γ ζΨ= ⋅ + − 

 (7)  
Rearranging, yields: 
 

 

2
0 1

r xu u ζ γ ζ
γ

Ψ− −
⋅ = 

 (8)  

By the definitions and with a little rearranging we get: 
 

 

21
B xu u κ η γ

γ
− −

⋅ = 

 (9) 

and: 
 

 ( )2 2 2 21 2 1B yu u γ κ η κη γ
γ

⋅ = − + + − 

 (10) 

In a similar manner, using equation (6) along with equations (8) to (10) and rearranging, we can arrive at: 
 

 ( )2 2 2 2
0 1 0 1

1 2 1r yu u γ ζ ζ ζ ζ γ
γ

⋅ = − + + − 

 (11) 

Now equation (6) becomes: 
 

 

( ) ( )

( ) ( )

2 2
0

1 2

2 2 2 22 2
0 1 0 1

2 2 2 2

1 1

2 1 2 11 1

κ η γ ζ γ ζ
ζ

γ

κ η ζ ζκη γ ζ ζ γ
ηζ

γ γ γ γ

Ψ

Ψ

− − − −
=

  + +− −  + − + − + +
  
  

 (12) 

Finally, equation (12) can be re-organized to the form of equation (1)  
 

 
2 2 2

1 0 0 1 1 1 2 1 1 0 2 0 1 2 0A B C D D E E F F Gζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζΨ Ψ Ψ Ψ+ + + + + + + + + =   (1)  
 

where the coefficients are: 
2A γ=   

21B η= −  



 
 

 
 

( )22 1C η γ κ= − −  

1 0D =  

( )2
2 2 1D κ γ η= − −  

1 0E =  

( )2
2 2 1E ηκ γ= − −  

2 2 2 2
1 2 1F γ η κ ηκ γ= − + + + −  

( )2
2 1F κ= −

 
0G =  

5. APPENDIX B:  ELLIPSOID PERSPECTIVE 
This section discusses general properties that can be derived from the quadric form of the ellipsoid used in 
equation (1).  
 

The quadric form of the 3-D ellipsoid equation can be written in matrix form.  In the 3-D case we have: 
Properties of ellipsoid from quadric form 

 

 
0T Tx Qx x q+ =

 
(13) 

 
 where: 
 
 [ ]0 1 1Tx ζ ζ ζΨ=

 

 

2

2

2 2 2

1

2 2 0
2 2 0
2 2 0

0 0 0

B C E
C A D

Q
E D F

F

 
 
 =
 
 
 

 

 [ ]1 1 0Tq E D G=
  

For simplicity in the discussion, in this section we will assume that the velocity vector is in the horizontal plane (i.e., 
1γ = ).  If the velocity vector is not in the horizontal plane, there is an additional rotation that has to be accounted 

for in the discussion. 
 
For 1γ =  the ellipsoid from equation (1)  becomes: 
 

 

2
2 2

1 0 0 1 12 2 2 2 2 2 2 2

2
2

02 2 2 2

1 1 2 2
1 1 1 1

2 1 1
1 1

η κ ηζ ζ ζ ζ ζ ζ
κ η κ η κ η κ η

ηκ κζ ζ ζ
κ η κ η

Ψ

Ψ Ψ

      −
+ − −      − − − − − − − −      

   −
+ + =  − − − −   

   (14) 

 
The first property of this ellipsoid is that the origin is at ( ) ( )0 1, , 0,0,0ζ ζ ζΨ = .  This is a handy property, but 

note that this does not mean that the 2-D slices for a given ζΨ  value will necessarily be centered around 

( ) ( )0 1, 0,0ζ ζ =  for the general case. 
 



 
 

 
 

The second property is that the rotation matrix to align the ellipsoid to the semiaxes is given by: 

 

2 2 2 2 2 2

2 2 2 2 2 2

0
2 2

1 1 0 0
2 2

0
2 2

0 0 0 1

R

κ κ η
κ η κ η κ η

η η κ
κ η κ η κ η

 − − + + + 
 
 =  
 

− − 
+ + + 

 − 

 (15) 

When the array and the velocity vector are contained in the horizontal plane, 0η = equation (15) becomes: 
 

 0

1 1 0 0
2 2

1 1 0 0
2 2

0 0 1 0
0 0 0 1

R
η=

 − 
 
 =  
 
 
  

 (16) 

It is easy to recognize that the rotation for the horizontal plane case is 45° about the ζΨ axis.  This rotation of 45° is 
the value presented in literature.  It is also readily observed in Figure 1. 
 
Note that we can get equation (15) as the concantenation of rotation matrices using equation (16): 
 

 0TR R R
η=

=  (17) 

 where: 

 

2 2 2 2

2 2 2 2

0 0

0 1 0 0

0 0

0 0 0 1

TR

κ η
κ η κ η

η κ
κ η κ η

 − + + 
 

=  
 −
 + +
 

−  

 (18) 

 

After rotation of coordinates, the semiaxes  for the ellipsoid are given by 
2 2 2 2

2 2 2 2

1 1, ,1
1 1

κ η κ η
κ η κ η

 − + + + 
− − − − 

 
.  

Note the fact that any two of these values are not necessarily equal (for the general array orientation case) means that 
the ellipsoid is a triaxial ellipsoid. 
 

In the case where 
A brief note on degenerate ellipsoids 

Q   is singular, we can have a so-called degenerate ellipsoid.  One example, of several, is the ideal 
case where the array and the velocity vector are aligned in the horizontal plane (i.e., Figure 1a).    For this specific 
case the matrix is obviously singular: 
 



 
 

 
 

 

1 1 0 0
1 1 0 0

0 0 0 0
0 0 0 0

Q

− 
 − =
 
 
 

 
(19) 

 
The important point about degenerate ellipsoids is that they still are a 3-dimensional surface even in the limit when 
one of the semiaxes goes to zero.  One can think of this like a rugby ball that has the air removed to flatten it in one 
dimension.  For our purpose this means that an intersection with a plane and a degenerate ellipsoid from equation (1) 
yields a line.  Equation (19) results in a circle in 3-dimensions whose face is filled in.  This provides more detail than 
the equation of the line as found in equation (3) for the 2-dimensional case. 
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