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4" Motivation for a new library

Why a new MG package?

Using MG solver as a black-box is not enough for challenging problems:
— Systems of PDEs (filtering, complexity)
— Sharp/Thin material interfaces, Anisotropic phenomena
— Physics-based methods

™) We need an highly flexible framework to experiment with MG methods:
— Software flexibility:

* Implementation of problem-specific improvement directly on the
heart of the solver should be easy

» Code reutilisability, adaptivity to other problems

— Algorithm flexibility:
* A better control over all the solver parameters is needed
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4’ Motivation for a new library

Introducing algorithmic novelty:

» Central theme: constraint-based energy-minimization

— More flexibility on the choice of inter-grid operators by using energy-
minimization algorithms

— Explicit control over sparsity patterns of grid transfer operators (complexity)

» Support block matrices, block diagonal and block algorithms (both constant and
variable sizes) for multiphysics PDEs

Extensibility, flexibility for future research:

* Intentional design allows for variety of methods: geometric/classic/aggregation
based methods and hybrid methods that chain together two or more different
methods

* Exascale simulation: new R&D challenges
— Challenges for scalable algorithms, even MG methods
— Exploit multicore architectures, hybrid and heterogeneous machines...

=> Require dramatic changes on both software design and algorithms@ Sandia
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Software

Two MG libraries:
— MueMat: MATLAB version
— MuelLu: C++ (new Trilinos package)

Simple interfaces (facades) provided for new users.

Modularity for advanced users who want to reuse existing components
and to tune MG methods for specific problems.

Share the same oriented object design:

— Easy control over all the component of the algorithm (aggregation,
sparsity pattern, constraints, initial guess...) in the high level interface

— Modular design allow swapping of algorithmic parts

Other key features:

— Support block matrices, block diagonal and block algorithms (both
constant and variable sizes) for multiphysics PDEs

— Intentional design allows for variety of methods:
geometric/classic/aggregation based methods and hybrid methods that
chain together two or more different methods @ Sandia
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}"' MueMat

* A sequential MATLAB version

 Why?
— for rapid prototyping of the C++ version of the solver
— for algorithm research and result analysis
— for research collaboration, new staff, students...

* Turnkey capabilities: Smoothed Aggregation, Petrov-Galerkin SA
(unsymmetric), Energy Minimization algorithm...

* User and developer documentation

 Will be released soon.
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MueMat
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Z MuelLu

* Future package of the Trilinos project (to replace ML)
— C++ - Object-oriented design
— Massively parallel
— Multicore and GPU aware
— Templated types for mixed precision calculation (32-bit - 64-bit) and
type complex

* Objective is to solve problem with billions of DOF on 100Ks of cores...

* Leverage the Trilinos software stack:

) [, )
Belos Anasazi Tifpack MuelLu
7 % Krylov methods Eigen-solvers Algebraic precond. e MG solver
O x
i g \_ J
32 - .
= Tpetra— distributed linear algebra
g b Kokkos — single node kernels

e Currently in development...
Sandia
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3;" MuelLu

* Supported native data storage:
— Wrapper around Epetra or Tpetra matrices
— Point and block matrices (CRS / VBR)

* Algorithms in MuelLu written only once (for several matrix types)

 Data access:

— independent from native storage format
ie: block smothers can be applied to point matrices

— view mechanism: any matrix can be accessed as a block or point
matrix

— point/block diagonal extraction

Sandia
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4’ Overview of the framework

Basics:

» Object oriented design: Prolongator (P), Restrictor (R), grid matrices (A,
Ac) and smoothers are objects.

» Extensive use of the factory method pattern:
factories == classes whose main purpose is creation of objects.

* Algorithm of the setup phase:
For each | evel, do:
P = Prol ongatorFact.Build(...)
R = RestrictionFact.Build(...)
Ac = ProjectionFact.Build(...)
PreSnoot her = PreSnoot her Fact. Bui l d(...)
Post Snoot er = Post Snoot her Fact. Bui | d(...)

Basically, for each level of the MG hierarchy, user specifies how to build
the level information by defining a set of factories. These factories work

together to build P, R, Acgarse: --- during the setup phase.
@ Sandia
National
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Basic usage

User point of view:
— instantiate the factories that must be used (= define the MG method)
— levels are automatically built using the user provided factories
— data of levels are stored in a Hi er ar chy object (= list of levels)

Example:
Setup
PFact = SaPFactory(); % Snoot hed- Aggr egati on
RFact = TransposeFactory(); %R = P’

% Snoot her = GaussSei del

MyHi erarchy = Hi erarchy(A);
MygHi er ar chy. Popul at e( PFact, RFact, , 1, 5);

Solve
sol = MyHi erarchy.lterate(rhs, sol, 15);

Sandia
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User point of view:
— instantiate the factories that must be used (= define the MG method)
— levels are automatically built using the user provided factories
— data of levels are stored in a Hi er ar chy object (= list of levels)

Basic usage

Example:
Setup
PFact = SaPFactory(); % Snoot hed- Aggr egati on
RFact = TransposeFactory(); %R = P’

% Snoot her = GaussSei del

Snoot her Fact . Set Num t s( 2) ;

_ _ ‘ Default behavior of factories easy to change]
MyHi erarchy = Hi erarchy(A);

MygHi er ar chy. Popul at e( PFact, RFact, , 1, 5);

Solve
sol = MyHi erarchy.lterate(rhs, sol, 15);

Sandia
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Overview of the framework

The MG method is fully described by the hierarchy object and defining more
complex MG methods is also possible:

— Ex 1: use different smoothers or coarsening according to the level

Setup

PFact = SaPFactory();

RFact = TransposeFactory();

GSSnoot her Fact = GaussSei del Factory(2);
| LUSnoot her Fact = | LUFactory();

MyHi erarchy = Hi erarchy(A);

MyHi erarchy. Fi |l | H erarchy(PFact, RFact, 1, 3);
MgHi er ar chy. Set Snoot her s( GSSnoot her Fact, 1, 1);
MygHi er ar chy. Set Snoot her s( | LUSnoot her Fact, 2,1);

(&)
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Overview of the framework

The MG method is fully described by the hierarchy object and defining more

complex MG methods is also possible:

— Ex 1: use different smoothers or coarsening according to the level

— Ex 2: hybrid methods mixing geometric/algebraic MG

Setup

PlFact = GeoPFactory();
P2Fact = SaPFactory();

RFact = TransposeFactory();

Snoot her Fact = GaussSei del Factory();

MyHi erarchy = Hierarchy(A);

MyHi erarchy. Fi | | H erarchy(PlFact, RFact, 1,1);
MyHi erarchy. Fi |l | H erarchy(P2Fact, RFact, 2,1);
MyHi er ar chy. Set Snoot her s( Snoot her Fact ) ;

Sandia
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& Overview of the framework

The MG method is fully described by the hierarchy object and defining more
complex MG methods is also possible:

— Ex 1: use different smoothers or coarsening according to the level
— Ex 2: hybrid methods mixing geometric/algebraic MG

 Advantages:
— no need of complex lists of parameters
— object swapping easy to do (ex: changing the smoother)

— adding new algorithm (like a new smoother) is straightforward. No need to
understand/modify any existing code. Just create a new class and use it!

* Drawbacks:
— users must understand the basics of a multigrid solver...
... but we also provide “facade” for common MG approaches
— not that easy in reality ...
... specific requirements of some multigrid methods?
... what are the exact input/output of the Build() methods of factories?

Sandia
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Smoothed Aggregation details

« Coarsening: aggregates
— Choose root points @

— Group fine unknowns into aggregates ! ! ¢
to form coarse unknowns

« Build initial guess P, that interpolates nullspace B:

1. Partition nullspace into locally supported function
2.0rthogonalized with QR, i.e., B=
initial guess P, satisfies constraints

. e e
PR

- Improve P, with one step of damped Jacobi: P=(I-wD ' A)P,

Sandia
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Smoothed-Aggregation

 Steps for building P:
G aph = Coal esceFact. Bui | d(A);
Aggr egat es = Aggregati onFact. Bui | d( G aph);

Ptent = TentativePFact. Buil d( Aggregates, Null Space);

P = SaPFactory. Buil d(Ptent);

* Design decision:
SaPFactory. Bui l d() {
Ptent = this.TentativePFact . Build();
P= (I - wD'A) Ptent

Tentati vePFactory. Bui l d() {

Aggregates = this.AggregationFact . Build();
Ptent = ...

SaPFactory

!

TentativePFactory

!

AggregationFactory

!

GraphFactory

Sandia
National
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Design discussion

Usage: SaPFactory
1. PFact = SaPFactory(); f
2. Ptent Fact = TentativePFactory();: TentativePFactory
PFact = SaPFactory(Tentati vePFactory); f
AggregationFactory

3. Aggr egati onFact = AggregationFactory();
Aggr egat i onFact . Set Target Si ze( 10) ; f
PFact = SaPFactory(TentativePFactory(AggregationFact)); GraphFactory

Advantages:
* No need for a driver to call factories in the right order

* Each factory can be use standalone and hide all the details because
everything is embedded

Drawbacks:
 Complex (changing parameters)?
 What to do if data or factories are used several time?

Sandia
National
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Data structures

* In Hi er ar chy, each level is represented by an associative array Level

* Factories Build() methods share a common definition:
Bui | d( Fi neLevel , Coarselevel) or Build(CurrentLevel)

* Input/Output of all factories stored in a Level object:

Tent ati vePFact ory. Bui | d( Fi neLevel, CoarselLevel) {
Nul | Space = Fi neLevel (' Nul | Space');

CoarseLevel (" P') = P;
Coar seLevel (' Nul | Space') = CoarseNul | Space;
}

* It allows great flexibility on what factories can do:
— data input:

* Ex: Smoothed-Aggregation prolongation factories need NullSpace information,
Geometric MG need geometry information...

— data output:

* Ex: Smoothed-Aggregation TentativePFactory compute the coarse nullspace
that will be used to build the prolongator of the next level Sani
andia
@ National
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4’ Data structures

* Level also used as a “scratch pad” to store temporary data of the setup step:
Example of temporary data: Graph, Aggregates, P tentative, Coarse nullspaces,
Auxiliary matrices

» Data deallocation:
— Deallocation of data in Level as soon as possible
— Idea: Reference count pointers

» Before the setup phase, factories declares 'input' data
Example: SaPFact ory need the prolongator produced by
Tent ati vePFactory => counter ++

» After the execution of SaPFact ory: counter - -
 if count er ==0 free temporary data.
— Data can be kept for plotting, debugging...

 When you write a factory, no need to know:
— How your factory will be linked with other
— If you have to allocate data you are using or deallocate data you are

producing
Sandia
National
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Algorithmic flexibility
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Energy-minimization: Algorithm

minz p; Ap. where p, gives the i"" column of a prolongator

Idea: construct the grid transfer operator P by minimizing the energy of each

column P, while enforcing constraints (sparsity pattern and specified modes).

Input / output of energy-minimization algorithm:

sparsity
pattern

constraints

=)

Advantages:
— Flexibility (input):
e arbitrary coarsening

* accept any sparsity pattern (arbitrary basis function support)

S

Energy-Minimization
Algorithm

e Minimize energy
e satisfy constraints

/

=)

PkIS

coefficients

* enforce constraints: important modes requiring accurate interpolation
* choice of norm for minimization and search space

— Robustness

(&)

Sandia
National
Laboratories



Y N .
Energy-minimization: Algorithm

minz p; Ap. where p, gives the i"" column of a prolongator

Idea: construct the grid transfer operator P by minimizing the energy of each
column P, while enforcing constraints (sparsity pattern and specified modes).

Input / output of energy-minimization algorithm:

sparsity Energy-Minimization
pattern Algorithm P's
‘ e minimize energy ‘ coefficients
constraints « satisfy constraints
N Y )

Brannick, Brezina, Chan, Kolev, Mandel, Olson, Schroder, Smith, Vanek, Vassilevski, Wagner,

Wan, Xu, Zikatanovc
Sandia
National
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parameters

Energy-Minimization

Factory dependencies:

Energy-Minimization

: TN T

: Minimization L
Pattern of P Constraints B Algorithm (CG) Initial Guess
ApproxPFactl Matrix 'A’ Coarse NullSpace Matrix ‘A’ ApproxPFact2
o
Example:

Appr oxPFact = TentativePFactory();

Patt ernFact = PatternFact ory(ApproxPFact);
Constrai nt Fact = Constraint Factory();

Em nSol ver = CGEmM nSol ver (10);

Pfact = Em nPFactory(PatternFact, Constrai nt Fact,
Em nSol ver, ApproxPFact); @ Sandia
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parameters

-2 d

Factory dependencies:

Energy-Minimization

Energy-Minimization

T

Pattern of P

N

Constraints B

Minimization
Algorithm (CG)

!

ApproxPFactl

Matrix ‘A’

Initial Guess

Coarse NullSpace

o

Remarks:
* ApproxPFact is used to build the initial guess of the Krylov minimization.

The same factory can also be used to build the pattern of P

Matrix ‘A’

!

Example of ApproxPFact: TentativePFactory
* Building the constraints matrix require the coarse nullspace. It can be built

by different methods, like injection, but also by ApproxPFact.

Problems:

* Not intuitively obvious where different factories get plugged in.

ApproxPFact2

* How to avoid recomputation when output of factories are reused?

(&)
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Energy-Minimization

Example:
Energy-Minimization
. Minimization o
Pattern of P Constraints B Algorithm (CG) Initial Guess
TentativePract Coarse Null Space Matrix ‘A’ TentativePFact
TentativePFact

* What to do if a factory is used several time?
— ldea 1: check if data already present on the hierarchy to avoid
recomputation

Sandia
National
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Energy-Minimization

Example:
Energy-Minimi zati((ﬂ
Pettern of P Constraints B A'}/gljlorrir:r]:rzna?gg) Initial Guess
= = T T
SaPFactory Coarse Null Space Matrix ‘A’ SaPFactory
TentativePFact SaPFactory TentativePFact
TentativePFact

 What to do if a factory is used several time?
— ldea 1: check if data already present on the hierarchy to avoid
recomputation
— Idea 2: on Level , keep track of which factory generates which data:
SaPFact ory. Bui | d( Fi neLevel, CoarselLevel) {
Ptent = FineLevel ('P', this.tentativePFact ): @ Sandia

National
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> Exploiting the flexibility of the framework

Talk by Jonathan Hu - Friday morning: Coarse Grid Representations of the
Near Nullspace in an Energy Minimizing Multigrid

Reduce # DOFs on the coarse grid for Elasticity 3D problems but enforce a
good coarse grid representation of the 6 nullspace vectors:

Energy-Minimization

o

Pattern filtering —— 9 Pattern of P Congtraints B A'Yggriirt';:rznat(igg) Initial Guess
TentativePFact Matrix ‘A’ Coarse Matrix ‘A’ TentativePFact
Null Space | ‘
using N | using
3 nullspace A defined using Injection of 3 nullspace
vectors distance 6 fine nullspace vectors |
(translations) Laplacian @ root points . (trandlations) |
AggregationFactory
+ Results: on a 40”3 3D mesh,
approximate run time savings of 2.5x. Sandia
GraphFactory National
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}" Exploiting the flexibility of the framework

* Talk by Badri Hiriyur — was Tuesday morning: A quasi- XFEM Linear System:
algebraic multigrid approach based on Schur complements [A Am] [u] [ ﬂ

for linear systems associated with XFEM A a4 F

U,

— AMG applied on the Schur complement without explicitly
forming it (specific prolongation and smoother factories
are needed but reused existing capabilities)

Hybrid2x2PFactory
_ P 0
P =
0 I :
EminPFactory I dentity

— Aggregation & Sparsity pattern modified to maintain
discontinuities on coarse levels

— Crack geometry information projected on coarse levels

— Only reqular DOFs are currently coarsened

Sandia
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Exploiting the flexibility of the framework

* Talk by Axel Gerstenberger — was Monday morning: Algebraic Multi-Grid

techniques for the eXtended Finite Element Method
— Use a modified version of the nullspace for fracture problem

— On the fine level, the smoother is a combination of classic smoothers

on the whole system and a direct solve on enriched nodes

MergedSmoother

/\

Gauss-Seidel

Direct-Solve(Subset)

» Talk by Tobias A. Wiesner — was Tuesday morning: An improved AMG

transfer operator for nonsymmetric positive-definite systems

— Reusing capabilities developed for symmetric MG to build appropriate
nonsymmetric multigrid transfer operators

— Adding prolongator filtering capabilities to the framework

(&)
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4" Summary

* Flexible AMG framework helps address variety of scenarios.

* Energy minimization AMG is one path to flexibility:
Basic ingredients:
e Sparsity pattern
Interpolation constraints
Initial guess
Matrix to define energy (e.g. A)
Minimization algorithm with a preconditioning strategy

* Current status of software packages:
— MueMat: will be released soon
— Muelu: in development

Sandia
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