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Motivation for a new library

Why a new MG package?

Using MG solver as a black-box is not enough for challenging problems:
– Systems of PDEs (filtering, complexity)
– Sharp/Thin material interfaces, Anisotropic phenomena
– Physics-based methods

We need an highly flexible framework to experiment with MG methods:
– Software flexibility: 

• Implementation of problem-specific improvement directly on the 
heart of the solver should be easy

• Code reutilisability, adaptivity to other problems

– Algorithm flexibility:
• A better control over all the solver parameters is needed



Motivation for a new library

Introducing algorithmic novelty:

• Central theme: constraint-based energy-minimization
– More flexibility on the choice of inter-grid operators by using energy-

minimization algorithms
– Explicit control over sparsity patterns of grid transfer operators (complexity)

• Support block matrices, block diagonal and block algorithms (both constant and 
variable sizes) for multiphysics PDEs

Extensibility, flexibility for future research:

• Intentional design allows for variety of methods: geometric/classic/aggregation 
based methods and hybrid methods that chain together two or more different 
methods

• Exascale simulation: new R&D challenges
– Challenges for scalable algorithms, even MG methods
– Exploit multicore architectures, hybrid and heterogeneous machines...

       => Require dramatic changes on both software design and algorithms



Software



Software

• Two MG libraries:
– MueMat: MATLAB version
– MueLu: C++ (new Trilinos package)

• Simple interfaces (facades) provided for new users.

• Modularity for advanced users who want to reuse existing components 
and to tune MG methods for specific problems.

• Share the same oriented object design:
– Easy control over all the component of the algorithm (aggregation, 

sparsity pattern, constraints, initial guess...) in the high level interface
– Modular design allow swapping of algorithmic parts

• Other key features:
– Support block matrices, block diagonal and block algorithms (both 

constant and variable sizes) for multiphysics PDEs
– Intentional design allows for variety of methods: 

geometric/classic/aggregation based methods and hybrid methods that 
chain together two or more different methods

1 http://trilinos.sandia.gov



MueMat

• A sequential MATLAB version 

• Why?
– for rapid prototyping of the C++ version of the solver
– for algorithm research and result analysis
– for research collaboration, new staff, students...

• Turnkey capabilities: Smoothed Aggregation, Petrov-Galerkin SA 
(unsymmetric), Energy Minimization algorithm...

• User and developer documentation

• Will be released soon.
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MueMat



MueLu

• Future package of the Trilinos project (to replace ML)
– C++ - Object-oriented design
– Massively parallel
– Multicore and GPU aware
– Templated types for mixed precision calculation (32-bit – 64-bit) and 

type complex

• Objective is to solve problem with billions of DOF on 100Ks of cores...

• Leverage the Trilinos software stack:

• Currently in development...

Tpetra – distributed linear algebra

Kokkos – single node kernels

Belos
Krylov methods

Anasazi
Eigen-solvers

Tifpack
Algebraic precond.

… MueLu
MG solver
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MueLu

• Supported native data storage:
– Wrapper around Epetra or Tpetra matrices
– Point and block matrices (CRS / VBR)

• Algorithms in MueLu written only once (for several matrix types)

• Data access:
– independent from native storage format

ie: block smothers can be applied to point matrices
– view mechanism: any matrix can be accessed as a block or point 

matrix
– point/block diagonal extraction



Overview of the framework



Overview of the framework

Basics:
• Object oriented design: Prolongator (P), Restrictor (R), grid matrices (A, 

Ac) and smoothers are objects.

• Extensive use of the factory method pattern:

factories == classes whose main purpose is creation of objects.

• Algorithm of the setup phase:
For each level, do:

P = ProlongatorFact.Build(...)

R = RestrictionFact.Build(...)

Ac = ProjectionFact.Build(...)

PreSmoother = PreSmootherFact.Build(...)

PostSmooter = PostSmootherFact.Build(...)

Basically, for each level of the MG hierarchy, user specifies how to build 
the level information by defining a set of factories. These factories work 
together to build P, R, Acoarse, ... during the setup phase.



Basic usage

Setup

PFact = SaPFactory();                % Smoothed-Aggregation
RFact = TransposeFactory();          % R = PT

SmootherFact = GaussSeidelFactory(); % Smoother = GaussSeidel

MgHierarchy = Hierarchy(A);
MgHierarchy.Populate(PFact, RFact, SmootherFact, 1, 5);

Solve

sol = MgHierarchy.Iterate(rhs, sol, 15);

User point of view:
– instantiate the factories that must be used (= define the MG method)
– levels are automatically built using the user provided factories
– data of levels are stored in a Hierarchy object (= list of levels)

Example:



Basic usage

Setup

PFact = SaPFactory();                % Smoothed-Aggregation
RFact = TransposeFactory();          % R = PT

SmootherFact = GaussSeidelFactory(); % Smoother = GaussSeidel
SmootherFact.SetNumIts(2);

MgHierarchy = Hierarchy(A);
MgHierarchy.Populate(PFact, RFact, SmootherFact, 1, 5);

Solve

sol = MgHierarchy.Iterate(rhs, sol, 15);

User point of view:
– instantiate the factories that must be used (= define the MG method)
– levels are automatically built using the user provided factories
– data of levels are stored in a Hierarchy object (= list of levels)

Example:

Default behavior of factories easy to change



Overview of the framework

The MG method is fully described by the hierarchy object and defining more 
complex MG methods is also possible:

– Ex 1: use different smoothers or coarsening according to the level

Setup

PFact = SaPFactory();
RFact = TransposeFactory();
GSSmootherFact = GaussSeidelFactory(2);
ILUSmootherFact = ILUFactory();

MgHierarchy = Hierarchy(A);
MgHierarchy.FillHierarchy(PFact, RFact,   1,3);
MgHierarchy.SetSmoothers(GSSmootherFact,  1,1);
MgHierarchy.SetSmoothers(ILUSmootherFact, 2,1);



Overview of the framework

The MG method is fully described by the hierarchy object and defining more 
complex MG methods is also possible:

– Ex 1: use different smoothers or coarsening according to the level
– Ex 2: hybrid methods mixing geometric/algebraic MG

Setup

P1Fact = GeoPFactory();
P2Fact = SaPFactory();
RFact  = TransposeFactory();
SmootherFact = GaussSeidelFactory();

MgHierarchy = Hierarchy(A);
MgHierarchy.FillHierarchy(P1Fact, RFact, 1,1);
MgHierarchy.FillHierarchy(P2Fact, RFact, 2,1);
MgHierarchy.SetSmoothers(SmootherFact);



Overview of the framework

The MG method is fully described by the hierarchy object and defining more 
complex MG methods is also possible:

– Ex 1: use different smoothers or coarsening according to the level
– Ex 2: hybrid methods mixing geometric/algebraic MG

• Advantages:
– no need of complex lists of parameters
– object swapping easy to do (ex: changing the smoother)
– adding new algorithm (like a new smoother) is straightforward. No need to 

understand/modify any existing code. Just create a new class and use it!

• Drawbacks:
– users must understand the basics of a multigrid solver...

... but we also provide “facade” for common MG approaches
– not that easy in reality ...

... specific requirements of some multigrid methods?

... what are the exact input/output of the Build() methods of factories?



Smoothed Aggregation details

• Coarsening:
– Choose root points
– Group fine unknowns into aggregates 

      to form coarse unknowns

• Build initial guess P0 that interpolates nullspace B:

1.Partition nullspace into locally supported function
2.Orthogonalized with QR, i.e., 

initial guess P0 satisfies constraints

• Improve P0 with one step of damped Jacobi:

aggregates

B=[
1
1
1
1
1
1
⋮
] [

1
1
1
1
1 ⋯
1

⋱
]

P= I−D−1 AP0



Smoothed-Aggregation

• Steps for building P:
Graph = CoalesceFact.Build(A);

Aggregates = AggregationFact.Build(Graph);

Ptent = TentativePFact.Build(Aggregates, NullSpace);

P = SaPFactory.Build(Ptent);

• Design decision:
SaPFactory.Build() {

Ptent = this.TentativePFact_.Build();

P = (I - wD-1A) Ptent

}

TentativePFactory.Build() {

Aggregates = this.AggregationFact_.Build();

Ptent = ...

}

...

SaPFactory

TentativePFactory

AggregationFactory

GraphFactory



Design discussion

Usage:

1.PFact = SaPFactory();

2.PtentFact = TentativePFactory();
PFact = SaPFactory(TentativePFactory);

3.AggregationFact = AggregationFactory();
AggregationFact.SetTargetSize(10);
PFact = SaPFactory(TentativePFactory(AggregationFact));

Advantages:
• No need for a driver to call factories in the right order
• Each factory can be use standalone and hide all the details because 

everything is embedded

Drawbacks:
• Complex (changing parameters)?
• What to do if data or factories are used several time?

SaPFactory

TentativePFactory

AggregationFactory

GraphFactory



Data structures

• In Hierarchy, each level is represented by an associative array Level

• Factories Build() methods share a common definition: 
Build(FineLevel, CoarseLevel) or Build(CurrentLevel)

• Input/Output of all factories stored in a Level object:
TentativePFactory.Build(FineLevel, CoarseLevel) {

NullSpace = FineLevel('NullSpace');
...
...
CoarseLevel('P') = P;
CoarseLevel('NullSpace') = CoarseNullSpace;

}

• It allows great flexibility on what factories can do:
– data input: 

• Ex: Smoothed-Aggregation prolongation factories need NullSpace information,  
Geometric MG need geometry information...

– data output:
• Ex: Smoothed-Aggregation TentativePFactory compute the coarse nullspace 

that will be used to build the prolongator of the next level



Data structures

• Level also used as a “scratch pad” to store temporary data of the setup step:
Example of temporary data: Graph, Aggregates, P tentative, Coarse nullspaces, 
Auxiliary matrices

• Data deallocation:
– Deallocation of data in Level as soon as possible
– Idea: Reference count pointers

• Before the setup phase, factories declares 'input' data
Example: SaPFactory need the prolongator produced by 
TentativePFactory => counter++

• After the execution of SaPFactory: counter--
• if counter==0 free temporary data.

– Data can be kept for plotting, debugging...

• When you write a factory, no need to know:
– How your factory will be linked with other
– If you have to allocate data you are using or deallocate data you are 

producing



Algorithmic flexibility



Energy-minimization: Algorithm

sparsity
pattern

constraints

Energy-Minimization
Algorithm

• minimize energy
• satisfy constraints

Pk's
coefficients

Advantages:
– Flexibility (input): 

• arbitrary coarsening
• accept any sparsity pattern (arbitrary basis function support)
• enforce constraints: important modes requiring accurate interpolation
• choice of norm for minimization and search space

– Robustness

Idea: construct the grid transfer operator P by minimizing the energy of each 
column Pk while enforcing constraints (sparsity pattern and specified modes).

Input / output of energy-minimization algorithm:

min∑ pi
T A pi where p

i
 gives the ith column of a prolongator



Energy-minimization: Algorithm

sparsity
pattern

constraints

Energy-Minimization
Algorithm

• minimize energy
• satisfy constraints

Pk's
coefficients

Idea: construct the grid transfer operator P by minimizing the energy of each 
column Pk while enforcing constraints (sparsity pattern and specified modes).

Input / output of energy-minimization algorithm:

min∑ pi
T A pi where p

i
 gives the ith column of a prolongator

Brannick, Brezina, Chan, Kolev, Mandel, Olson, Schroder, Smith, Vanek, Vassilevski, Wagner, 
Wan, Xu, Zikatanovc



Energy-Minimization

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse NullSpaceMatrix 'A' Matrix 'A'ApproxPFact1 ApproxPFact2

Factory dependencies:

Example:

ApproxPFact = TentativePFactory();

PatternFact = PatternFactory(ApproxPFact);

ConstraintFact = ConstraintFactory();

EminSolver = CGEminSolver(10);

Pfact = EminPFactory(PatternFact,ConstraintFact,

                     EminSolver, ApproxPFact);

Example:

ApproxPFact = TentativePFactory();

PatternFact = PatternFactory(ApproxPFact);

ConstraintFact = ConstraintFactory();

EminSolver = CGEminSolver(10);

Pfact = EminPFactory(PatternFact,ConstraintFact,

                     EminSolver, ApproxPFact);
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Energy-Minimization

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse NullSpaceMatrix 'A' Matrix 'A'ApproxPFact1 ApproxPFact2

Factory dependencies:

Remarks:
• ApproxPFact is used to build the initial guess of the Krylov minimization. 

The same factory can also be used to build the pattern of P
Example of ApproxPFact: TentativePFactory

• Building the constraints matrix require the coarse nullspace. It can be built 
by different methods, like injection, but also by ApproxPFact.

Problems:
• Not intuitively obvious where different factories get plugged in.
• How to avoid recomputation when output of factories are reused?
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Energy-Minimization

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse NullSpace Matrix 'A'TentativePFact TentativePFact

TentativePFact

Example:

• What to do if a factory is used several time?
– Idea 1: check if data already present on the hierarchy to avoid 

recomputation



Energy-Minimization

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse NullSpace Matrix 'A'SaPFactory SaPFactory

SaPFactory

Example:

• What to do if a factory is used several time?
– Idea 1: check if data already present on the hierarchy to avoid 

recomputation
– Idea 2: on Level, keep track of which factory generates which data:
SaPFactory.Build(FineLevel, CoarseLevel) {

Ptent = FineLevel('P', this.tentativePFact_);
}

TentativePFact TentativePFact

TentativePFact

output: 'P'

output: 'P'

output: 'P'

input: 'P'



More advanced usage



Exploiting the flexibility of the framework

Talk by Jonathan Hu - Friday morning: Coarse Grid Representations of the 
Near Nullspace in an Energy Minimizing Multigrid

Reduce # DOFs on the coarse grid for Elasticity 3D problems but enforce a 
good coarse grid representation of the 6 nullspace vectors:

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse
NullSpace

Injection of 
6 fine nullspace 

@ root points

TentativePFact

using
3 nullspace

vectors
(translations)

TentativePFact

using
3 nullspace

vectors
(translations)

Matrix 'A'Matrix 'A'

     defined using
distance 
Laplacian

Pattern filtering

AggregationFactory

GraphFactory

Results: on a 40^3 3D mesh, 
approximate run time savings of 2.5x.

A



Exploiting the flexibility of the framework

• Talk by Badri Hiriyur – was Tuesday morning: A quasi-
algebraic multigrid approach based on Schur complements 
for linear systems associated with XFEM

– AMG applied on the Schur complement without explicitly 
forming it (specific prolongation and smoother factories 
are needed but reused existing capabilities)

– Aggregation & Sparsity pattern modified to maintain 
discontinuities on coarse levels

– Crack geometry information projected on coarse levels
– Only regular DOFs are currently coarsened

Hybrid2x2PFactory

EminPFactory Identity



Exploiting the flexibility of the framework

• Talk by Axel Gerstenberger – was Monday morning: Algebraic Multi-Grid 
techniques for the eXtended Finite Element Method

– Use a modified version of the nullspace for fracture problem
– On the fine level, the smoother is a combination of classic smoothers 

on the whole system and a direct solve on enriched nodes

• Talk by Tobias A. Wiesner – was Tuesday morning: An improved AMG 
transfer operator for nonsymmetric positive-definite systems

– Reusing capabilities developed for symmetric MG to build appropriate 
nonsymmetric multigrid transfer operators

– Adding prolongator filtering capabilities to the framework

MergedSmoother

Gauss-Seidel Direct-Solve(Subset)



Summary

• Flexible AMG framework helps address variety of scenarios.

• Energy minimization AMG is one path to flexibility:
Basic ingredients:

• Sparsity pattern
• Interpolation constraints
• Initial guess
• Matrix to define energy (e.g. A)
• Minimization algorithm with a preconditioning strategy

• Current status of software packages:
– MueMat: will be released soon
– MueLu: in development


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

