
Designing an extensible framework for
multigrid algorithm research

Jeremie Gaidamour
Jonathan Hu, Chris Siefert, Ray Tuminaro

15th Copper Mountain Conference on Multigrid Methods
March 2011

Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000.

SAND2011-2070C

Outline

• Introduction / Motivation

• Software
– MueMat
– MueLu

• Design overview of the framework
– Interface, simple usage example
– Design philosophy (Smoothed-Aggregation)
– Data structures

• How to exploit algorithmic flexibility of energy minimization
methods

– Energy-minimization algorithms
– Implementation details

• Examples of advanced usages

• Summary

Motivation for a new library

Why a new MG package?

Using MG solver as a black-box is not enough for challenging problems:
– Systems of PDEs (filtering, complexity)
– Sharp/Thin material interfaces, Anisotropic phenomena
– Physics-based methods

We need an highly flexible framework to experiment with MG methods:
– Software flexibility:

• Implementation of problem-specific improvement directly on the
heart of the solver should be easy

• Code reutilisability, adaptivity to other problems

– Algorithm flexibility:
• A better control over all the solver parameters is needed

Motivation for a new library

Introducing algorithmic novelty:

• Central theme: constraint-based energy-minimization
– More flexibility on the choice of inter-grid operators by using energy-

minimization algorithms
– Explicit control over sparsity patterns of grid transfer operators (complexity)

• Support block matrices, block diagonal and block algorithms (both constant and
variable sizes) for multiphysics PDEs

Extensibility, flexibility for future research:

• Intentional design allows for variety of methods: geometric/classic/aggregation
based methods and hybrid methods that chain together two or more different
methods

• Exascale simulation: new R&D challenges
– Challenges for scalable algorithms, even MG methods
– Exploit multicore architectures, hybrid and heterogeneous machines...

 => Require dramatic changes on both software design and algorithms

Software

Software

• Two MG libraries:
– MueMat: MATLAB version
– MueLu: C++ (new Trilinos package)

• Simple interfaces (facades) provided for new users.

• Modularity for advanced users who want to reuse existing components
and to tune MG methods for specific problems.

• Share the same oriented object design:
– Easy control over all the component of the algorithm (aggregation,

sparsity pattern, constraints, initial guess...) in the high level interface
– Modular design allow swapping of algorithmic parts

• Other key features:
– Support block matrices, block diagonal and block algorithms (both

constant and variable sizes) for multiphysics PDEs
– Intentional design allows for variety of methods:

geometric/classic/aggregation based methods and hybrid methods that
chain together two or more different methods

1 http://trilinos.sandia.gov

MueMat

• A sequential MATLAB version

• Why?
– for rapid prototyping of the C++ version of the solver
– for algorithm research and result analysis
– for research collaboration, new staff, students...

• Turnkey capabilities: Smoothed Aggregation, Petrov-Galerkin SA
(unsymmetric), Energy Minimization algorithm...

• User and developer documentation

• Will be released soon.

1

MueMat

MueLu

• Future package of the Trilinos project (to replace ML)
– C++ - Object-oriented design
– Massively parallel
– Multicore and GPU aware
– Templated types for mixed precision calculation (32-bit – 64-bit) and

type complex

• Objective is to solve problem with billions of DOF on 100Ks of cores...

• Leverage the Trilinos software stack:

• Currently in development...

Tpetra – distributed linear algebra

Kokkos – single node kernels

Belos
Krylov methods

Anasazi
Eigen-solvers

Tifpack
Algebraic precond.

… MueLu
MG solver

T
eu

ch
os

U
til

ity
 p

ac
ka

ge

MueLu

• Supported native data storage:
– Wrapper around Epetra or Tpetra matrices
– Point and block matrices (CRS / VBR)

• Algorithms in MueLu written only once (for several matrix types)

• Data access:
– independent from native storage format

ie: block smothers can be applied to point matrices
– view mechanism: any matrix can be accessed as a block or point

matrix
– point/block diagonal extraction

Overview of the framework

Overview of the framework

Basics:
• Object oriented design: Prolongator (P), Restrictor (R), grid matrices (A,

Ac) and smoothers are objects.

• Extensive use of the factory method pattern:

factories == classes whose main purpose is creation of objects.

• Algorithm of the setup phase:
For each level, do:

P = ProlongatorFact.Build(...)

R = RestrictionFact.Build(...)

Ac = ProjectionFact.Build(...)

PreSmoother = PreSmootherFact.Build(...)

PostSmooter = PostSmootherFact.Build(...)

Basically, for each level of the MG hierarchy, user specifies how to build
the level information by defining a set of factories. These factories work
together to build P, R, Acoarse, ... during the setup phase.

Basic usage

Setup

PFact = SaPFactory(); % Smoothed-Aggregation
RFact = TransposeFactory(); % R = PT

SmootherFact = GaussSeidelFactory(); % Smoother = GaussSeidel

MgHierarchy = Hierarchy(A);
MgHierarchy.Populate(PFact, RFact, SmootherFact, 1, 5);

Solve

sol = MgHierarchy.Iterate(rhs, sol, 15);

User point of view:
– instantiate the factories that must be used (= define the MG method)
– levels are automatically built using the user provided factories
– data of levels are stored in a Hierarchy object (= list of levels)

Example:

Basic usage

Setup

PFact = SaPFactory(); % Smoothed-Aggregation
RFact = TransposeFactory(); % R = PT

SmootherFact = GaussSeidelFactory(); % Smoother = GaussSeidel
SmootherFact.SetNumIts(2);

MgHierarchy = Hierarchy(A);
MgHierarchy.Populate(PFact, RFact, SmootherFact, 1, 5);

Solve

sol = MgHierarchy.Iterate(rhs, sol, 15);

User point of view:
– instantiate the factories that must be used (= define the MG method)
– levels are automatically built using the user provided factories
– data of levels are stored in a Hierarchy object (= list of levels)

Example:

Default behavior of factories easy to change

Overview of the framework

The MG method is fully described by the hierarchy object and defining more
complex MG methods is also possible:

– Ex 1: use different smoothers or coarsening according to the level

Setup

PFact = SaPFactory();
RFact = TransposeFactory();
GSSmootherFact = GaussSeidelFactory(2);
ILUSmootherFact = ILUFactory();

MgHierarchy = Hierarchy(A);
MgHierarchy.FillHierarchy(PFact, RFact, 1,3);
MgHierarchy.SetSmoothers(GSSmootherFact, 1,1);
MgHierarchy.SetSmoothers(ILUSmootherFact, 2,1);

Overview of the framework

The MG method is fully described by the hierarchy object and defining more
complex MG methods is also possible:

– Ex 1: use different smoothers or coarsening according to the level
– Ex 2: hybrid methods mixing geometric/algebraic MG

Setup

P1Fact = GeoPFactory();
P2Fact = SaPFactory();
RFact = TransposeFactory();
SmootherFact = GaussSeidelFactory();

MgHierarchy = Hierarchy(A);
MgHierarchy.FillHierarchy(P1Fact, RFact, 1,1);
MgHierarchy.FillHierarchy(P2Fact, RFact, 2,1);
MgHierarchy.SetSmoothers(SmootherFact);

Overview of the framework

The MG method is fully described by the hierarchy object and defining more
complex MG methods is also possible:

– Ex 1: use different smoothers or coarsening according to the level
– Ex 2: hybrid methods mixing geometric/algebraic MG

• Advantages:
– no need of complex lists of parameters
– object swapping easy to do (ex: changing the smoother)
– adding new algorithm (like a new smoother) is straightforward. No need to

understand/modify any existing code. Just create a new class and use it!

• Drawbacks:
– users must understand the basics of a multigrid solver...

... but we also provide “facade” for common MG approaches
– not that easy in reality ...

... specific requirements of some multigrid methods?

... what are the exact input/output of the Build() methods of factories?

Smoothed Aggregation details

• Coarsening:
– Choose root points
– Group fine unknowns into aggregates

 to form coarse unknowns

• Build initial guess P0 that interpolates nullspace B:

1.Partition nullspace into locally supported function
2.Orthogonalized with QR, i.e.,

initial guess P0 satisfies constraints

• Improve P0 with one step of damped Jacobi:

aggregates

B=[
1
1
1
1
1
1
⋮
] [

1
1
1
1
1 ⋯
1

⋱
]

P= I−D−1 AP0

Smoothed-Aggregation

• Steps for building P:
Graph = CoalesceFact.Build(A);

Aggregates = AggregationFact.Build(Graph);

Ptent = TentativePFact.Build(Aggregates, NullSpace);

P = SaPFactory.Build(Ptent);

• Design decision:
SaPFactory.Build() {

Ptent = this.TentativePFact_.Build();

P = (I - wD-1A) Ptent

}

TentativePFactory.Build() {

Aggregates = this.AggregationFact_.Build();

Ptent = ...

}

...

SaPFactory

TentativePFactory

AggregationFactory

GraphFactory

Design discussion

Usage:

1.PFact = SaPFactory();

2.PtentFact = TentativePFactory();
PFact = SaPFactory(TentativePFactory);

3.AggregationFact = AggregationFactory();
AggregationFact.SetTargetSize(10);
PFact = SaPFactory(TentativePFactory(AggregationFact));

Advantages:
• No need for a driver to call factories in the right order
• Each factory can be use standalone and hide all the details because

everything is embedded

Drawbacks:
• Complex (changing parameters)?
• What to do if data or factories are used several time?

SaPFactory

TentativePFactory

AggregationFactory

GraphFactory

Data structures

• In Hierarchy, each level is represented by an associative array Level

• Factories Build() methods share a common definition:
Build(FineLevel, CoarseLevel) or Build(CurrentLevel)

• Input/Output of all factories stored in a Level object:
TentativePFactory.Build(FineLevel, CoarseLevel) {

NullSpace = FineLevel('NullSpace');
...
...
CoarseLevel('P') = P;
CoarseLevel('NullSpace') = CoarseNullSpace;

}

• It allows great flexibility on what factories can do:
– data input:

• Ex: Smoothed-Aggregation prolongation factories need NullSpace information,
Geometric MG need geometry information...

– data output:
• Ex: Smoothed-Aggregation TentativePFactory compute the coarse nullspace

that will be used to build the prolongator of the next level

Data structures

• Level also used as a “scratch pad” to store temporary data of the setup step:
Example of temporary data: Graph, Aggregates, P tentative, Coarse nullspaces,
Auxiliary matrices

• Data deallocation:
– Deallocation of data in Level as soon as possible
– Idea: Reference count pointers

• Before the setup phase, factories declares 'input' data
Example: SaPFactory need the prolongator produced by
TentativePFactory => counter++

• After the execution of SaPFactory: counter--
• if counter==0 free temporary data.

– Data can be kept for plotting, debugging...

• When you write a factory, no need to know:
– How your factory will be linked with other
– If you have to allocate data you are using or deallocate data you are

producing

Algorithmic flexibility

Energy-minimization: Algorithm

sparsity
pattern

constraints

Energy-Minimization
Algorithm

• minimize energy
• satisfy constraints

Pk's
coefficients

Advantages:
– Flexibility (input):

• arbitrary coarsening
• accept any sparsity pattern (arbitrary basis function support)
• enforce constraints: important modes requiring accurate interpolation
• choice of norm for minimization and search space

– Robustness

Idea: construct the grid transfer operator P by minimizing the energy of each
column Pk while enforcing constraints (sparsity pattern and specified modes).

Input / output of energy-minimization algorithm:

min∑ pi
T A pi where p

i
 gives the ith column of a prolongator

Energy-minimization: Algorithm

sparsity
pattern

constraints

Energy-Minimization
Algorithm

• minimize energy
• satisfy constraints

Pk's
coefficients

Idea: construct the grid transfer operator P by minimizing the energy of each
column Pk while enforcing constraints (sparsity pattern and specified modes).

Input / output of energy-minimization algorithm:

min∑ pi
T A pi where p

i
 gives the ith column of a prolongator

Brannick, Brezina, Chan, Kolev, Mandel, Olson, Schroder, Smith, Vanek, Vassilevski, Wagner,
Wan, Xu, Zikatanovc

Energy-Minimization

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse NullSpaceMatrix 'A' Matrix 'A'ApproxPFact1 ApproxPFact2

Factory dependencies:

Example:

ApproxPFact = TentativePFactory();

PatternFact = PatternFactory(ApproxPFact);

ConstraintFact = ConstraintFactory();

EminSolver = CGEminSolver(10);

Pfact = EminPFactory(PatternFact,ConstraintFact,

 EminSolver, ApproxPFact);

Example:

ApproxPFact = TentativePFactory();

PatternFact = PatternFactory(ApproxPFact);

ConstraintFact = ConstraintFactory();

EminSolver = CGEminSolver(10);

Pfact = EminPFactory(PatternFact,ConstraintFact,

 EminSolver, ApproxPFact);

p
a
ra

m
e
te

rs

Energy-Minimization

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse NullSpaceMatrix 'A' Matrix 'A'ApproxPFact1 ApproxPFact2

Factory dependencies:

Remarks:
• ApproxPFact is used to build the initial guess of the Krylov minimization.

The same factory can also be used to build the pattern of P
Example of ApproxPFact: TentativePFactory

• Building the constraints matrix require the coarse nullspace. It can be built
by different methods, like injection, but also by ApproxPFact.

Problems:
• Not intuitively obvious where different factories get plugged in.
• How to avoid recomputation when output of factories are reused?

p
a
ra

m
e
te

rs

Energy-Minimization

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse NullSpace Matrix 'A'TentativePFact TentativePFact

TentativePFact

Example:

• What to do if a factory is used several time?
– Idea 1: check if data already present on the hierarchy to avoid

recomputation

Energy-Minimization

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse NullSpace Matrix 'A'SaPFactory SaPFactory

SaPFactory

Example:

• What to do if a factory is used several time?
– Idea 1: check if data already present on the hierarchy to avoid

recomputation
– Idea 2: on Level, keep track of which factory generates which data:
SaPFactory.Build(FineLevel, CoarseLevel) {

Ptent = FineLevel('P', this.tentativePFact_);
}

TentativePFact TentativePFact

TentativePFact

output: 'P'

output: 'P'

output: 'P'

input: 'P'

More advanced usage

Exploiting the flexibility of the framework

Talk by Jonathan Hu - Friday morning: Coarse Grid Representations of the
Near Nullspace in an Energy Minimizing Multigrid

Reduce # DOFs on the coarse grid for Elasticity 3D problems but enforce a
good coarse grid representation of the 6 nullspace vectors:

Energy-Minimization

Pattern of P Constraints B
Minimization

Algorithm (CG)
Initial Guess

Coarse
NullSpace

Injection of
6 fine nullspace

@ root points

TentativePFact

using
3 nullspace

vectors
(translations)

TentativePFact

using
3 nullspace

vectors
(translations)

Matrix 'A'Matrix 'A'

 defined using
distance
Laplacian

Pattern filtering

AggregationFactory

GraphFactory

Results: on a 40^3 3D mesh,
approximate run time savings of 2.5x.

A

Exploiting the flexibility of the framework

• Talk by Badri Hiriyur – was Tuesday morning: A quasi-
algebraic multigrid approach based on Schur complements
for linear systems associated with XFEM

– AMG applied on the Schur complement without explicitly
forming it (specific prolongation and smoother factories
are needed but reused existing capabilities)

– Aggregation & Sparsity pattern modified to maintain
discontinuities on coarse levels

– Crack geometry information projected on coarse levels
– Only regular DOFs are currently coarsened

Hybrid2x2PFactory

EminPFactory Identity

Exploiting the flexibility of the framework

• Talk by Axel Gerstenberger – was Monday morning: Algebraic Multi-Grid
techniques for the eXtended Finite Element Method

– Use a modified version of the nullspace for fracture problem
– On the fine level, the smoother is a combination of classic smoothers

on the whole system and a direct solve on enriched nodes

• Talk by Tobias A. Wiesner – was Tuesday morning: An improved AMG
transfer operator for nonsymmetric positive-definite systems

– Reusing capabilities developed for symmetric MG to build appropriate
nonsymmetric multigrid transfer operators

– Adding prolongator filtering capabilities to the framework

MergedSmoother

Gauss-Seidel Direct-Solve(Subset)

Summary

• Flexible AMG framework helps address variety of scenarios.

• Energy minimization AMG is one path to flexibility:
Basic ingredients:

• Sparsity pattern
• Interpolation constraints
• Initial guess
• Matrix to define energy (e.g. A)
• Minimization algorithm with a preconditioning strategy

• Current status of software packages:
– MueMat: will be released soon
– MueLu: in development

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

