

Designing an extensible framework for multigrid algorithm research

**Jeremie Gaidamour
Jonathan Hu, Chris Siefert, Ray Tuminaro**

**15th Copper Mountain Conference on Multigrid Methods
March 2011**

Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Introduction / Motivation
- Software
 - MueMat
 - MueLu
- Design overview of the framework
 - Interface, simple usage example
 - Design philosophy (Smoothed-Aggregation)
 - Data structures
- How to exploit algorithmic flexibility of energy minimization methods
 - Energy-minimization algorithms
 - Implementation details
- Examples of advanced usages
- Summary

Motivation for a new library

Why a new MG package?

Using MG solver as a black-box is not enough for challenging problems:

- Systems of PDEs (filtering, complexity)
- Sharp/Thin material interfaces, Anisotropic phenomena
- Physics-based methods

➡ We need an highly **flexible** framework to experiment with MG methods:

- Software flexibility:
 - Implementation of problem-specific improvement directly on the heart of the solver should be easy
 - Code reutilisability, adaptivity to other problems
- Algorithm flexibility:
 - A better control over all the solver parameters is needed

Motivation for a new library

Introducing algorithmic novelty:

- Central theme: **constraint-based energy-minimization**
 - More flexibility on the choice of inter-grid operators by using energy-minimization algorithms
 - Explicit control over sparsity patterns of grid transfer operators (complexity)
- Support block matrices, block diagonal and block algorithms (both constant and variable sizes) for multiphysics PDEs

Extensibility, flexibility for future research:

- Intentional design allows for variety of methods: geometric/classic/aggregation based methods and hybrid methods that chain together two or more different methods
- Exascale simulation: new R&D challenges
 - Challenges for scalable algorithms, even MG methods
 - Exploit multicore architectures, hybrid and heterogeneous machines...

=> Require dramatic changes on both software design and algorithms

Software

Software

- Two MG libraries:
 - MueMat: MATLAB version
 - MueLu: C++ (new Trilinos package)
- Simple interfaces (facades) provided for new users.
- Modularity for advanced users who want to reuse existing components and to tune MG methods for specific problems.
- Share the same *oriented object* design:
 - Easy control over all the component of the algorithm (aggregation, sparsity pattern, constraints, initial guess...) in the high level interface
 - Modular design allow swapping of algorithmic parts
- Other key features:
 - Support block matrices, block diagonal and block algorithms (both constant and variable sizes) for multiphysics PDEs
 - Intentional design allows for variety of methods: geometric/classic/aggregation based methods and hybrid methods that chain together two or more different methods

MueMat

- A sequential MATLAB version
- Why?
 - for rapid prototyping of the C++ version of the solver
 - for algorithm research and result analysis
 - for research collaboration, new staff, students...
- Turnkey capabilities: Smoothed Aggregation, Petrov-Galerkin SA (unsymmetric), Energy Minimization algorithm...
- User and developer documentation
- Will be released soon.

MueMat

File Edit Debug Desktop Window Help

Current Folder /home/jhgaida/dev/MueMat

Command Window

```
(--)
(oo) "MueMat"
/ | |
* | |
~~~ ~~
```

>> help Simple

A minimalist example of MueMat interface
This example solves a linear system $Ax=b$ using the default parameters of MueMat.

See also: Tutorial, DefaultParameters

>> Simple

Hierarchy: start level = 1
Hierarchy: maximum #levels = 2
Hierarchy: actual #levels = 2
(Level 1) GaussSeidel: sweeps=1, omega=1, mode='symmetric'
1: ||r||=28.7758
2: ||r||=20.3381
3: ||r||=0.443931
4: ||r||=0.0282968
5: ||r||=0.000935882
6: ||r||=4.28607e-05
7: ||r||=1.3042e-06
8: ||r||=5.55973e-08

||r_0|| / ||r_final|| = 1.93208e-09

f>>

File Edit View Go Favorites Desktop Window Help

Search

Contents | Search Results

- Release Notes
- Installation
- MATLAB
- MueMat Toolbox
 - Overview
 - Simple example
 - MueMat Tutorial
 - Understanding MueMat design
 - The Operator and Multivector class
 - Creating an MultiGrid Hierarchy
 - Grid Transfer Operators
 - Smoothers
 - Aggregation (Graph Coarsening)
 - Advanced usages
 - Class references
 - The Operator class
 - The Multivector class
 - Multigrid Hierarchy
 - Grid Transfer Operators
 - Smoothers
 - Aggregation (Graph Coarsening)
 - Developer resources
 - Contact
 - Release notes

MATLAB File Help: ILUSmusher

ILUSmusher

ILU smoother class
This smoother applies an incomplete factorization to the residual equation. The ILU factors are computed by Matlab's ILU. The default is ILU(0), but an optional parameter struct can be passed in to set any option accepted by Matlab's ILU.

See also

ILU

Class Details

Superclasses SmootherBase, SmootherPrototype
Sealed false
Construct on load false

Constructor Summary

ILUSmusher Constructor

Method Summary

protected Static	Apply	Apply the smoother
	Copy	Create a copy of the calling object.
	CopyCmd	Internal method to create generic copy constructor.
protected	Copy	Copy the parameters of another smoother prototype.
	GetOutputLevel	get the output level
	GetParameters	Get ILU parameters
	GetType	Get the smoother type.
	Print	Print smoother information

Help

MATLAB File Help: Contents.m

Contents.m

SMOOTHER

This directory contains smoother classes.

Superclasses:

- SmootherBase
- SmootherPrototype
- SmootherFactoryBase

Smoothers Factories:

- SmoothersFactory
- Hybrid2x2SmoothersFactory

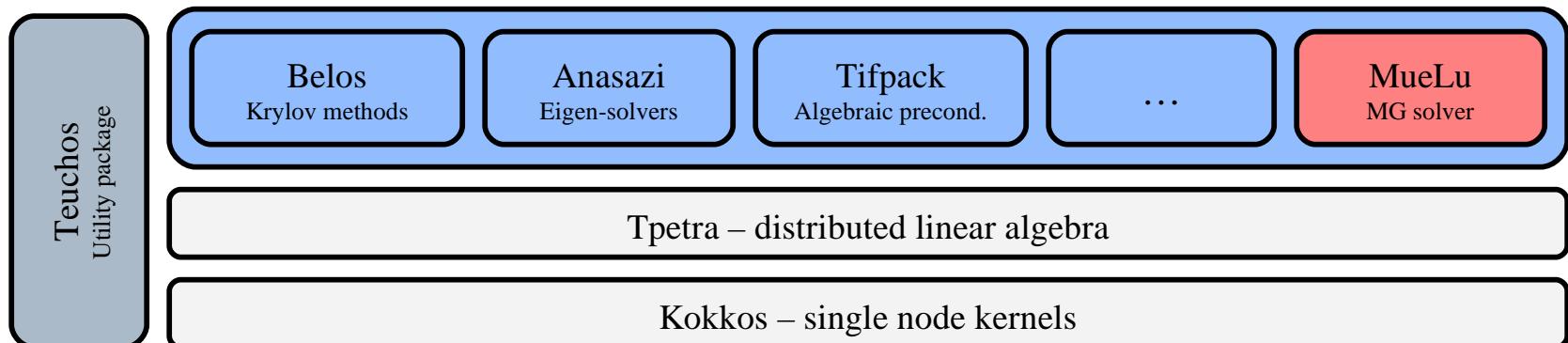
Available Smoothers:

- Smoothers
- ChebySmoothers
- ILUSmusher
- Hybrid2x2Smoothers
- DirectSolveSmoothers

Miscellaneous:

- MakeUpRandomB1ks

- Future package of the Trilinos project (to replace ML)
 - C++ - Object-oriented design
 - Massively parallel
 - Multicore and GPU aware
 - Templatized types for mixed precision calculation (32-bit – 64-bit) and type complex
- Objective is to solve problem with billions of DOF on 100Ks of cores...
- Leverage the Trilinos software stack:



- Currently in development...

- Supported native data storage:
 - Wrapper around Epetra or Tpetra matrices
 - Point and block matrices (CRS / VBR)
- Algorithms in MueLu written only once (for several matrix types)
- Data access:
 - independent from native storage format
ie: block smoothers can be applied to point matrices
 - view mechanism: any matrix can be accessed as a block or point matrix
 - point/block diagonal extraction

Overview of the framework

Overview of the framework

Basics:

- Object oriented design: *Prolongator (P), Restrictor (R), grid matrices (A, Ac) and smoothers are objects.*
- Extensive use of the factory method pattern:
factories == classes whose main purpose is creation of objects.
- Algorithm of the setup phase:

For each level, do:

```
P = ProlongatorFact.Build(....)
R = RestrictionFact.Build(....)
Ac = ProjectionFact.Build(....)
PreSmoothen = PreSmoothenFact.Build(....)
PostSmoothen = PostSmoothenFact.Build(....)
```

Basically, for each level of the MG hierarchy, user specifies how to build the level information by defining a set of factories. These factories work together to build P, R, A_{coarse} , ... during the setup phase.

Basic usage

User point of view:

- instantiate the factories that must be used (= define the MG method)
- levels are automatically built using the user provided factories
- data of levels are stored in a `Hierarchy` object (= list of levels)

Example:

Setup

```
PFact = SaPFactory(); % Smoothed-Aggregation
RFact = TransposeFactory(); % R = PT
SmootherFact = GaussSeidelFactory(); % Smoother = GaussSeidel
```

```
MgHierarchy = Hierarchy(A);
MgHierarchy.Populate(PFact, RFact, SmootherFact, 1, 5);
```

Solve

```
sol = MgHierarchy.Iterate(rhs, sol, 15);
```


Basic usage

User point of view:

- instantiate the factories that must be used (= define the MG method)
- levels are automatically built using the user provided factories
- data of levels are stored in a `Hierarchy` object (= list of levels)

Example:

Setup

```
PFact = SaPFactory(); % Smoothed-Aggregation
RFact = TransposeFactory(); % R = PT
SmoothenFact = GaussSeidelFactory(); % Smoother = GaussSeidel
SmoothenFact.SetNumIts(2);
```

Default behavior of factories easy to change

```
MgHierarchy = Hierarchy(A);
MgHierarchy.Populate(PFact, RFact, SmoothenFact, 1, 5);
```

Solve

```
sol = MgHierarchy.Iterate(rhs, sol, 15);
```


Overview of the framework

The MG method is fully described by the hierarchy object and defining more complex MG methods is also possible:

- Ex 1: use different smoothers or coarsening according to the level

Setup

```
PFact = SaPFactory();
RFact = TransposeFactory();
GSSmoothFact = GaussSeidelFactory(2);
ILUSmoothFact = ILUFactory();
```

```
MgHierarchy = Hierarchy(A);
MgHierarchy.FillHierarchy(PFact, RFact, 1,3);
MgHierarchy.SetSmoothers(GSSmoothFact, 1,1);
MgHierarchy.SetSmoothers(ILUSmoothFact, 2,1);
```


Overview of the framework

The MG method is fully described by the hierarchy object and defining more complex MG methods is also possible:

- Ex 1: use different smoothers or coarsening according to the level
- Ex 2: hybrid methods mixing geometric/algebraic MG

Setup

```
P1Fact = GeoPFactory();
P2Fact = SaPFactory();
RFact = TransposeFactory();
SmoothenFact = GaussSeidelFactory();

MgHierarchy = Hierarchy(A);
MgHierarchy.FillHierarchy(P1Fact, RFact, 1,1);
MgHierarchy.FillHierarchy(P2Fact, RFact, 2,1);
MgHierarchy.SetSmoothers(SmoothenFact);
```

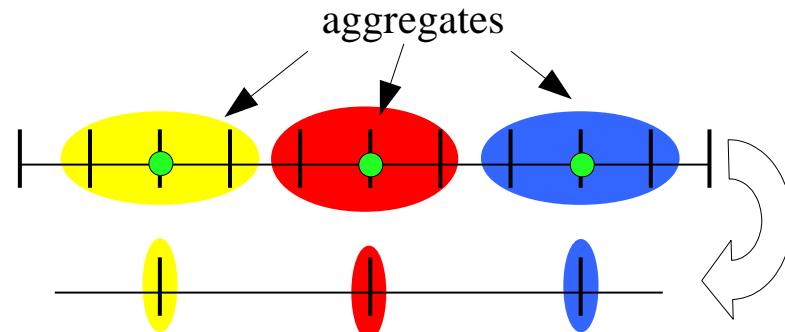

Overview of the framework

The MG method is fully described by the hierarchy object and defining more complex MG methods is also possible:

- Ex 1: use different smoothers or coarsening according to the level
- Ex 2: hybrid methods mixing geometric/algebraic MG
- Advantages:
 - no need of complex lists of parameters
 - object swapping easy to do (ex: changing the smoother)
 - adding new algorithm (like a new smoother) is straightforward. No need to understand/modify any existing code. Just create a new class and use it!
- Drawbacks:
 - users must understand the basics of a multigrid solver...
 - ... but we also provide “facade” for common MG approaches
 - not that easy in reality ...
 - ... specific requirements of some multigrid methods?
 - ... what are the exact input/output of the Build() methods of factories?

Smoothed Aggregation details

- Coarsening:
 - Choose *root* points ●
 - Group fine unknowns into aggregates to form coarse unknowns



- Build initial guess P_0 that interpolates nullspace B :
 1. Partition nullspace into locally supported function
 2. Orthogonalized with QR, i.e., initial guess P_0 satisfies constraints

$$B = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \vdots \end{bmatrix} \rightarrow \begin{bmatrix} 1 & & & & \\ 1 & & & & \\ 1 & & & & \\ & & & 1 & \\ & & & 1 & \\ & & & 1 & \\ & & & \ddots & \\ & & & & \ddots \end{bmatrix}$$

- Improve P_0 with one step of damped Jacobi: $P = (I - \omega D^{-1} A) P_0$

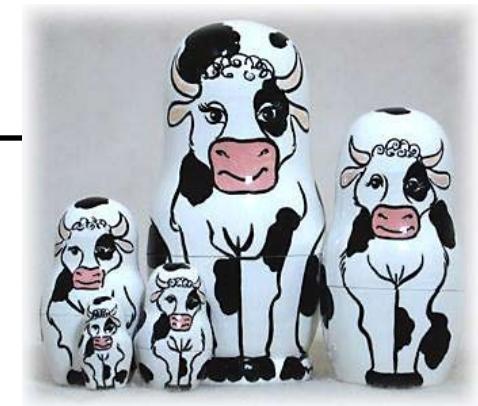
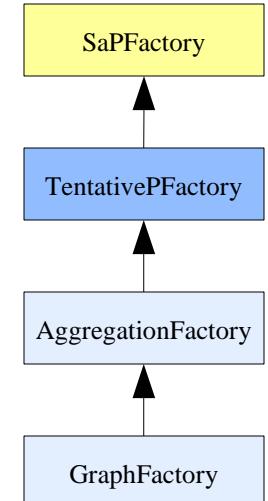
Smoothed-Aggregation

- Steps for building P:

```
Graph = CoalesceFact.Build(A);  
Aggregates = AggregationFact.Build(Graph);  
Ptent = TentativePFact.Build(Aggregates, NullSpace);  
P = SaPFactory.Build(Ptent);
```

- Design decision:

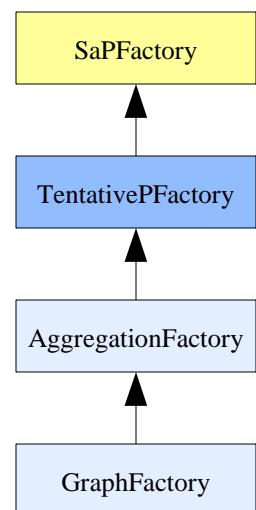
```
SaPFactory.Build() {  
    Ptent = this.TentativePFact_.Build();  
    P = (I - wD-1A) Ptent  
}  
  
TentativePFactory.Build() {  
    Aggregates = this.AggregationFact_.Build();  
    Ptent = ...  
}  
...
```



Design discussion

Usage:

```
1. PFact = SaPFactory( );  
  
2. PtentFact = TentativePFactory( );  
   PFact = SaPFactory(TentativePFactory);  
  
3. AggregationFact = AggregationFactory( );  
   AggregationFact.SetTargetSize(10);  
   PFact = SaPFactory(TentativePFactory(AggregationFact));
```



Advantages:

- No need for a driver to call factories in the right order
- Each factory can be used standalone and hide all the details because everything is embedded

Drawbacks:

- Complex (changing parameters)?
- What to do if data or factories are used several times?

Data structures

- In Hierarchy, each level is represented by an associative array `Level`
- Factories `Build()` methods share a common definition:
`Build(FineLevel, CoarseLevel)` or `Build(CurrentLevel)`
- Input/Output of all factories stored in a `Level` object:

```
TentativePFactory.Build(FineLevel, CoarseLevel) {  
    NullSpace = FineLevel('NullSpace');  
    ...  
    ...  
    CoarseLevel('P') = P;  
    CoarseLevel('NullSpace') = CoarseNullSpace;  
}
```

- It allows great flexibility on what factories can do:
 - data input:
 - Ex: Smoothed-Aggregation prolongation factories need NullSpace information, Geometric MG need geometry information...
 - data output:
 - Ex: Smoothed-Aggregation TentativePFactory compute the coarse nullspace that will be used to build the prolongator of the next level

Data structures

- Level also used as a “scratch pad” to store temporary data of the setup step:
Example of temporary data: *Graph, Aggregates, P tentative, Coarse nullspaces, Auxiliary matrices*
- Data deallocation:
 - Deallocation of data in Level as soon as possible
 - Idea: Reference count pointers
 - Before the setup phase, factories declares 'input' data
Example: `SaPFactory` need the prolongator produced by
`TentativePFactory => counter++`
 - After the execution of `SaPFactory`: `counter--`
 - if `counter==0` free temporary data.
 - Data can be kept for plotting, debugging...
- When you write a factory, no need to know:
 - How your factory will be linked with other
 - If you have to allocate data you are using or deallocate data you are producing

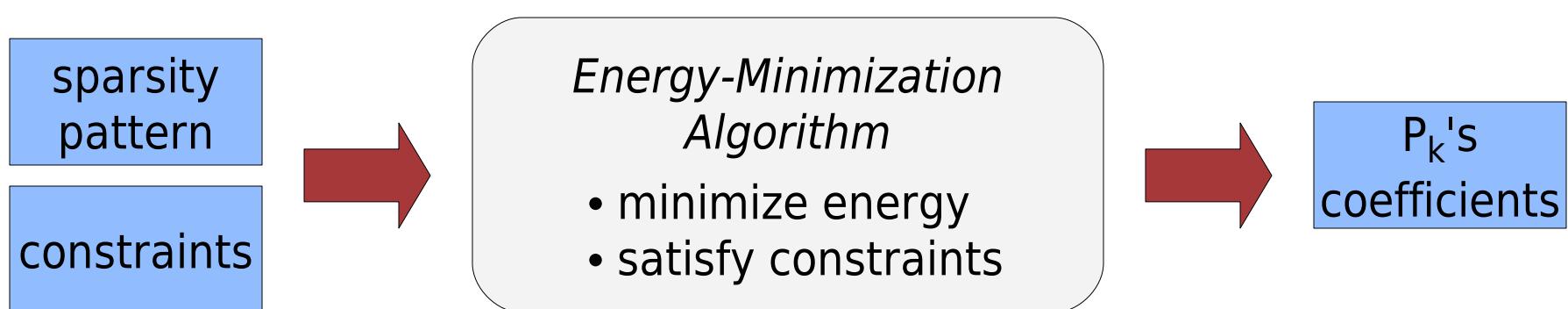
Algorithmic flexibility

Energy-minimization: Algorithm

$\min \sum p_i^T A p_i$ where p_i gives the i^{th} column of a prolongator

Idea: construct the grid transfer operator P by minimizing the energy of each column P_k while enforcing constraints (sparsity pattern and specified modes).

Input / output of energy-minimization algorithm:



Advantages:

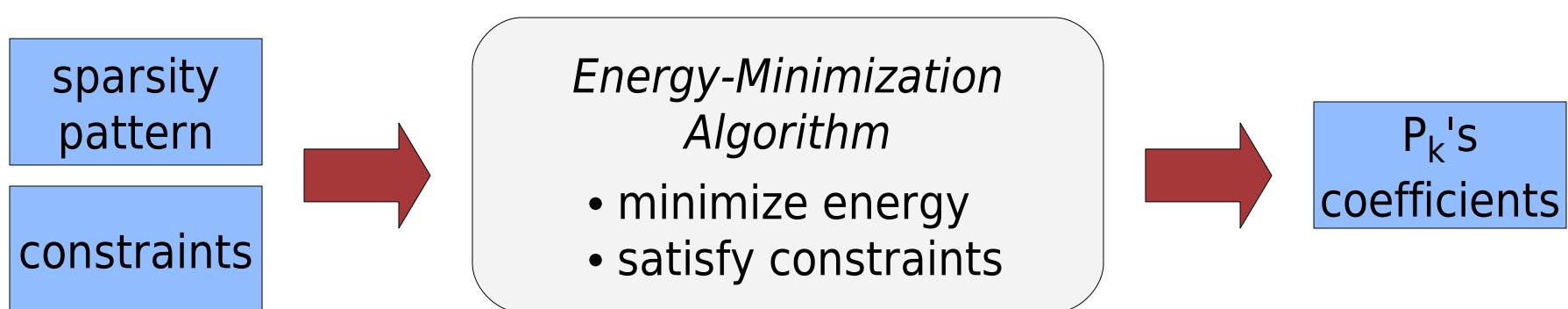
- Flexibility (input):
 - arbitrary coarsening
 - accept any sparsity pattern (arbitrary basis function support)
 - enforce constraints: important modes requiring accurate interpolation
 - choice of norm for minimization and search space
- Robustness

Energy-minimization: Algorithm

$\min \sum p_i^T A p_i$ where p_i gives the i^{th} column of a prolongator

Idea: construct the grid transfer operator P by minimizing the energy of each column P_k while enforcing constraints (sparsity pattern and specified modes).

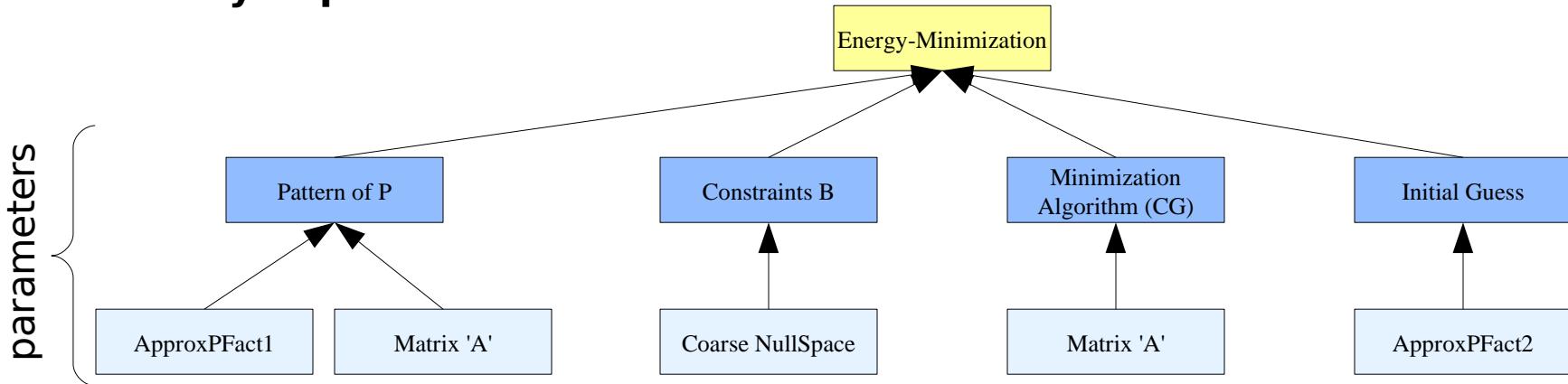
Input / output of energy-minimization algorithm:



Brannick, Brezina, Chan, Kolev, Mandel, Olson, Schroder, Smith, Vanek, Vassilevski, Wagner, Wan, Xu, Zikatanovc

Energy-Minimization

Factory dependencies:



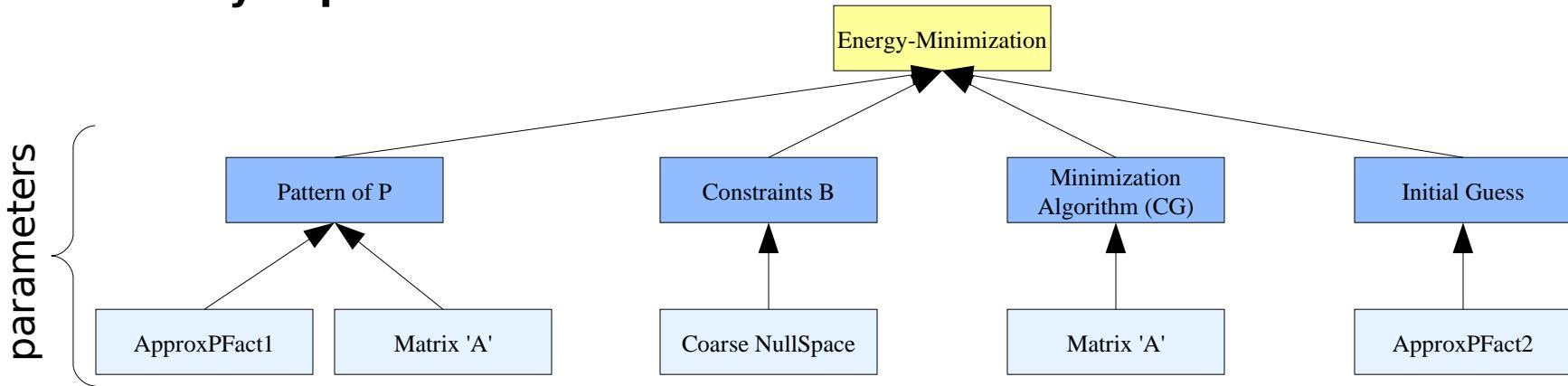
Example:

```
ApproxPFact = TentativePFactory();
PatternFact = PatternFactory(ApproxPFact);
ConstraintFact = ConstraintFactory();
EminSolver = CGEminSolver(10);

Pfact = EminPFactory(PatternFact, ConstraintFact,
                      EminSolver, ApproxPFact);
```

Energy-Minimization

Factory dependencies:



Remarks:

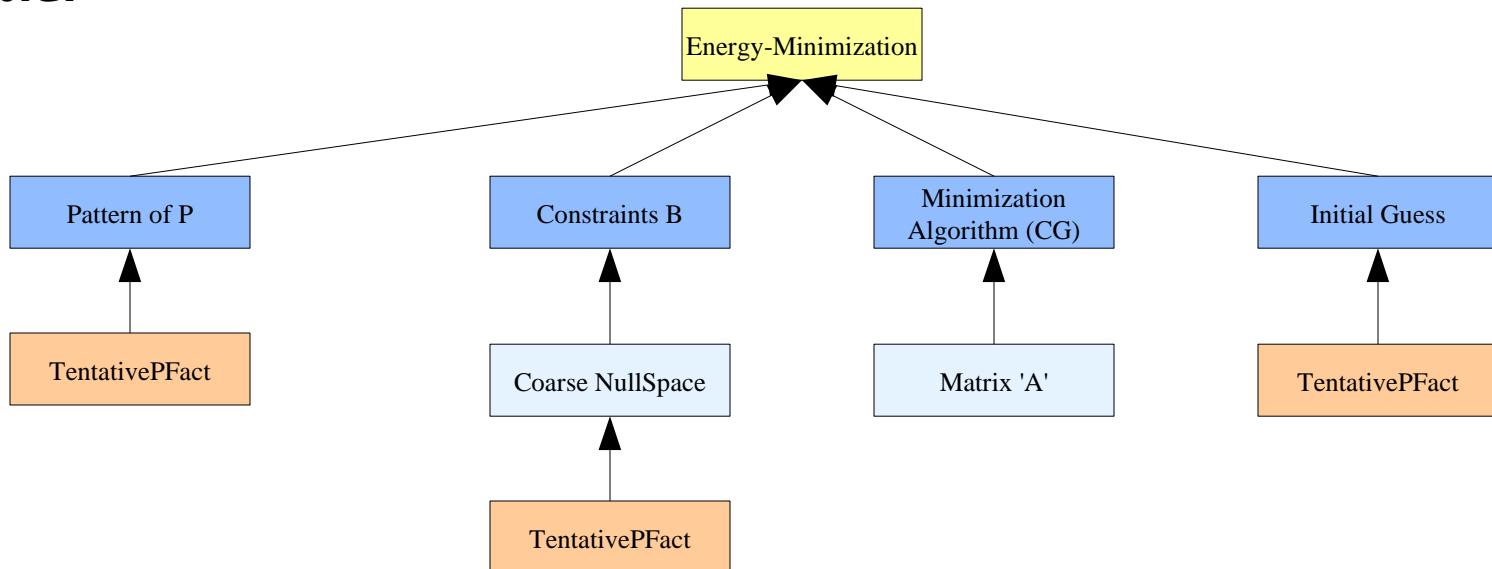
- ApproxPFact is used to build the initial guess of the Krylov minimization. The same factory can also be used to build the pattern of P
Example of ApproxPFact: TentativePFactory
- Building the constraints matrix require the coarse nullspace. It can be built by different methods, like injection, but also by ApproxPFact.

Problems:

- Not intuitively obvious where different factories get plugged in.
- How to avoid recomputation when output of factories are reused?

Energy-Minimization

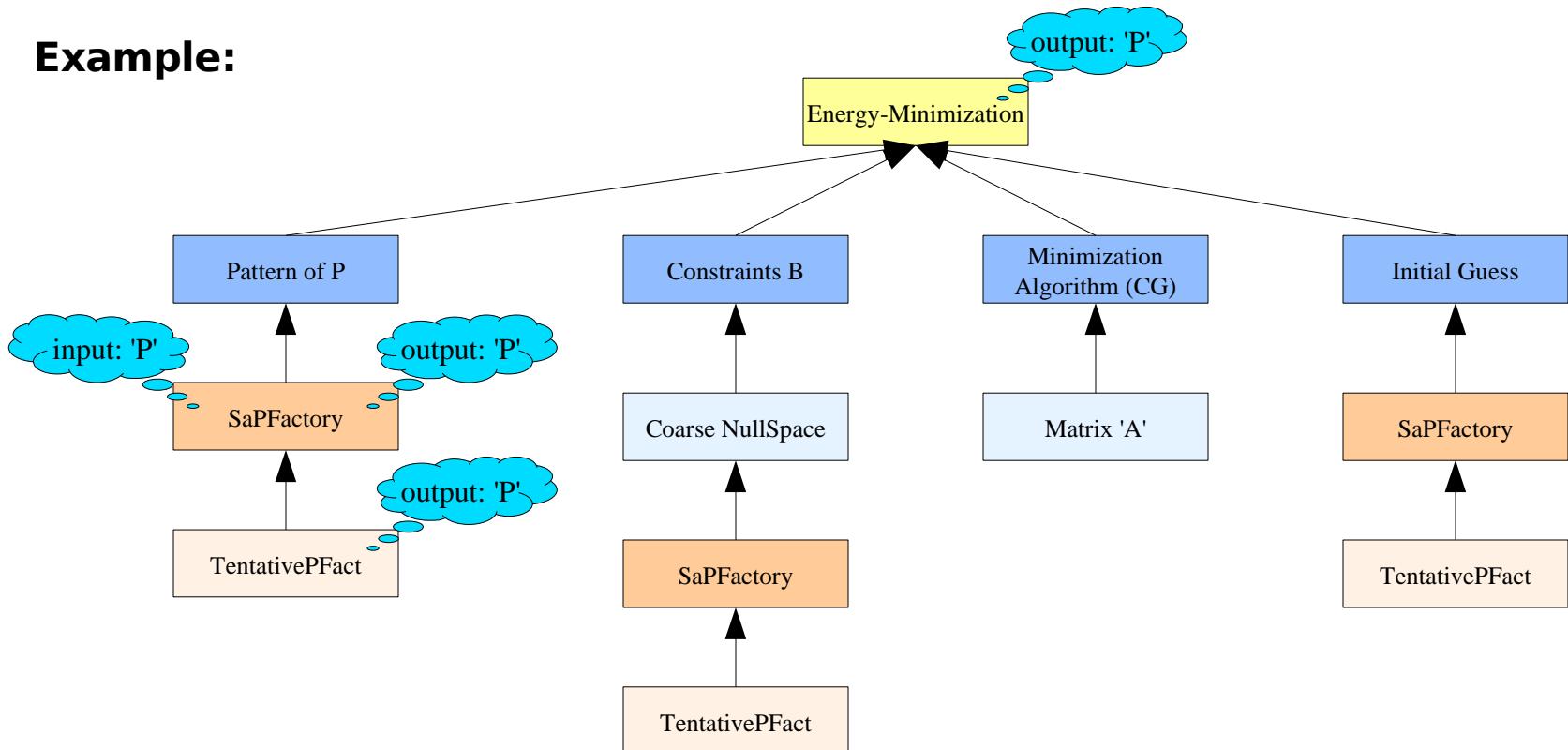
Example:



- What to do if a factory is used several time?
 - Idea 1: check if data already present on the hierarchy to avoid recomputation

Energy-Minimization

Example:



- What to do if a factory is used several time?
 - Idea 1: check if data already present on the hierarchy to avoid recomputation
 - Idea 2: on Level, keep track of which factory generates which data:

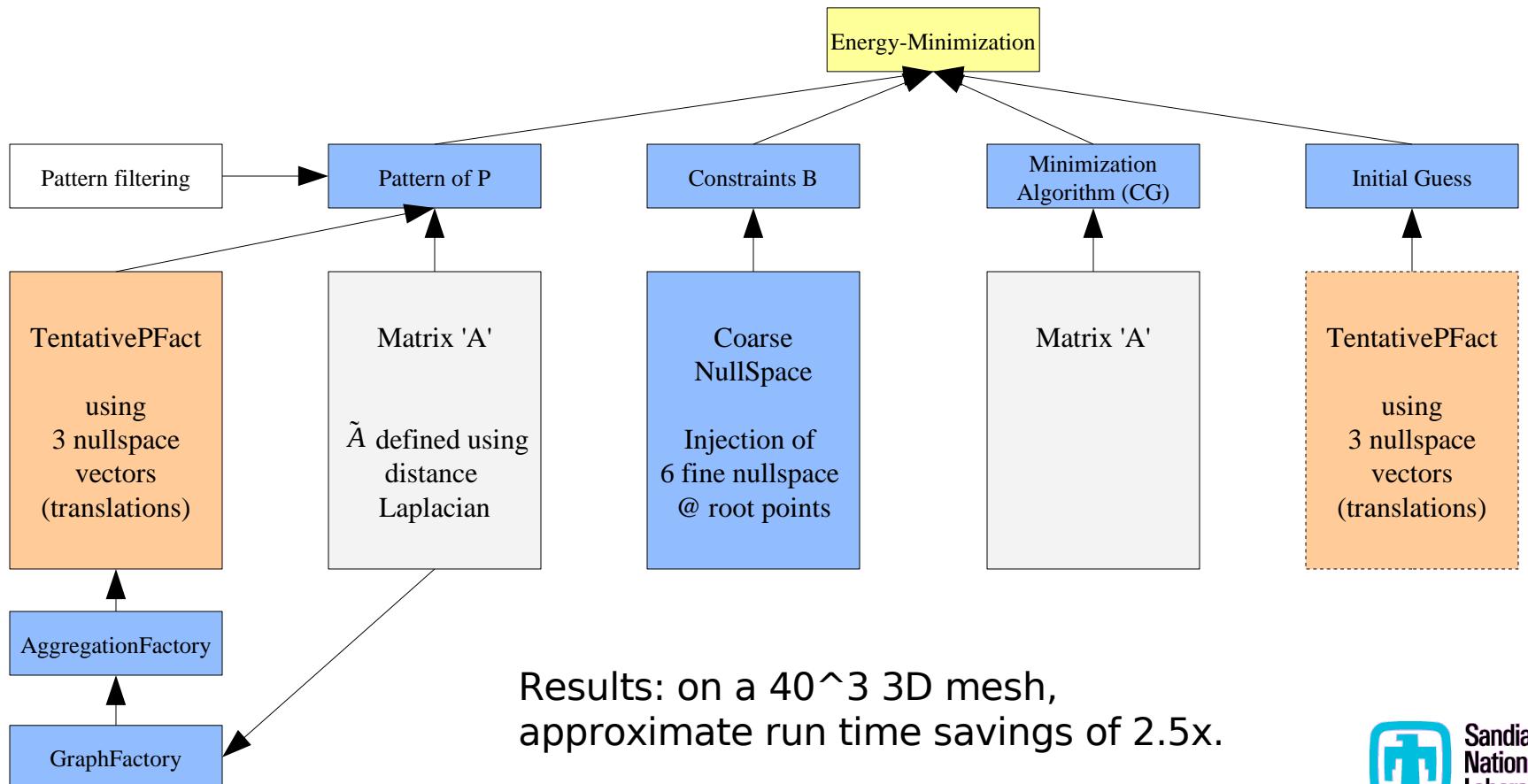
```
SaPFactory.Build(FineLevel, CoarseLevel) {  
    Ptent = FineLevel('P', this.tentativePFact_);  
}
```


More advanced usage

Exploiting the flexibility of the framework

Talk by Jonathan Hu - Friday morning: *Coarse Grid Representations of the Near Nullspace in an Energy Minimizing Multigrid*

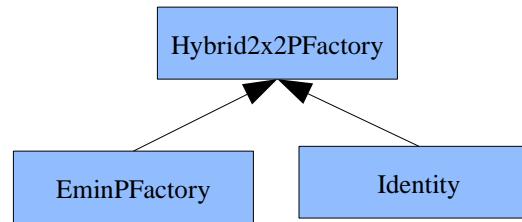
Reduce # DOFs on the coarse grid for Elasticity 3D problems but enforce a good coarse grid representation of the 6 nullspace vectors:



Exploiting the flexibility of the framework

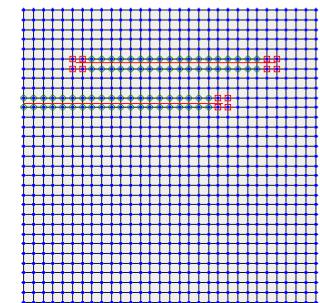
- Talk by Badri Hiriyan – was Tuesday morning: *A quasi-algebraic multigrid approach based on Schur complements for linear systems associated with XFEM*
 - AMG applied on the Schur complement without explicitly forming it (specific prolongation and smoother factories are needed but reused existing capabilities)

$$\bar{P} = \begin{bmatrix} P & 0 \\ 0 & I \end{bmatrix}$$

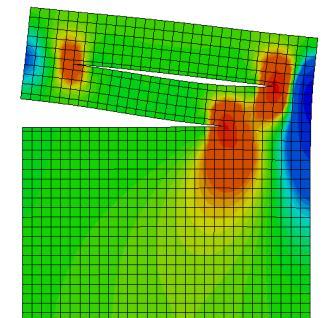


XFEM Linear System:

$$\begin{bmatrix} A_{rr} & A_{rx} \\ A_{xr} & A_{xx} \end{bmatrix} \begin{bmatrix} u_r \\ u_x \end{bmatrix} = \begin{bmatrix} \tilde{f}_r \\ \tilde{f}_x \end{bmatrix}$$

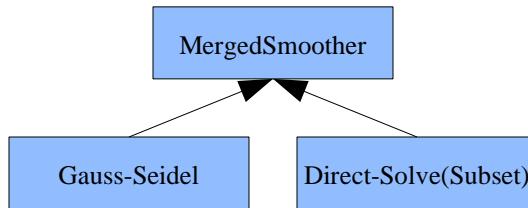


- Aggregation & Sparsity pattern modified to maintain discontinuities on coarse levels
- Crack geometry information projected on coarse levels
- Only regular DOFs are currently coarsened



Exploiting the flexibility of the framework

- Talk by Axel Gerstenberger – was Monday morning: *Algebraic Multi-Grid techniques for the eXtended Finite Element Method*
 - *Use a modified version of the nullspace for fracture problem*
 - *On the fine level, the smoother is a combination of classic smoothers on the whole system and a direct solve on enriched nodes*



- Talk by Tobias A. Wiesner – was Tuesday morning: *An improved AMG transfer operator for nonsymmetric positive-definite systems*
 - Reusing capabilities developed for symmetric MG to build appropriate nonsymmetric multigrid transfer operators
 - Adding prolongator filtering capabilities to the framework

Summary

- Flexible AMG framework helps address variety of scenarios.
- Energy minimization AMG is one path to flexibility:
 - Basic ingredients:
 - Sparsity pattern
 - Interpolation constraints
 - Initial guess
 - Matrix to define energy (e.g. A)
 - Minimization algorithm with a preconditioning strategy
- Current status of software packages:
 - MueMat: will be released soon
 - MueLu: in development