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Mechanical behavior of an amorphous metal

Shear Band Event
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Combined approach of modeling techniques

Atomistic Continuum
Simulations Simulations
eInteratomic Potentials eConstitutive Relation
eTime Scale ~ 10-12- 106 eLonger Time Scale

eStrain Rate ~ 106 - 108
eLength Scale ~ 10-°

*Range of Strain Rates
eLarger Length Scale

Meso-scale
Simulations

eCharacteristic Event, STZ
eTime Scale ~ 102 - 103
Shi, Falk. Acta Mat 2007. eLength Scale ~ 102 - 10°
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}éoarse-graining the shear transformation zone
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Potential Energy Landscape Characteristic Attempt Frequency

Coarse-Grain
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} Key elements for a mesoscale model

Coarse-Grain STZ Activation Rate
STZ Gy expl - AT Y9,
o EXP T
: AF Ty Q
— . E— max /o 0
2D T eXp( kT) ( AT )
S=V -ex _E ex _r(a,g)-yo-Qo d:
3D ’ p( kT)gng p( 2T )g

Numerical Accuracy: 2D error ~1%, 3D error ~2%
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Kinetic Monte Carlo algorithm for STZs
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Validation of the STZ Dynamics framework

Shear stress at 300 K (GPa)
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Characteristic Model Response

Vitreloy 1 (Zr,, ,T1,5 sCu,, sN1,,Be,, <) Properties: G, v, 0, AF

2D (Pure Shear) 3D (Tension)
35nm x 58nm 10nm x 20 nm
=
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Low o
LowT
High o
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STZ Dynamics characteristic response

2D 3D

Strain Rate Sensitivity, m Strain Rate Sensitivity, m
[~ TS
0 025 05 075 1 1 0 025 05 075 1
Inhomogeneous = 10" ] 10 ' '
1075 i =y = : | Shear Banding Necking
Applied pressure: [ St ] w o o o o o o
3, ().(H)H()J(il’;n\ v \b o o o o o
= 2 q' g & Inhomogeneous
5 2 o ; Oy (0 GPa) s : 2 5 = = =
210 non-Newtonian 5 : N .2 5 = -
(] X % (5] a 104 -] 3z 10 f ° 10
§ % % v - —Z ; ﬁ x = o o
s |, y o . 5 A g Homogeneous
3 < = .
S 10 y Neverian s S x Elastic x @ o @
“ (negIEiEgl?bsltelzcﬂow) 0'%10® 10°® & (negligible flow)
% X ] [ ] | | 10-10 108 106 104 10,2 1 3_1
0.5 0.75 1 1.25 Yo 05 os 07 o3 107 L — e 8|
. . 0.5 0.75 1 1.25
g /T
9
Homer, Schuh. Acta Mat 2009. Schuh et al. Acta Mat. 2007. Homer, Schuh. Model Simul Mater
Sci Eng. 2010.
®e &)
® ®e (0.9)
0% /0 ee%Pee AF ™0.8) 7, &2,
§=v, expl-—— exp| — dg

2kT

- ()
National
Laboratories



'

},.'

Presentation Topics

I1lii” Amorphous Metals

[ Development & Validation\

— e—

0

Kinetic Monte Carlo
Finite Element Analysis

k 2D & 3D j

4L

Polycrystalline Metals

-

~

Y4

AN

Sandia
Laboratories



'

},,'

Presentation Topics

I1lii” Amorphous Metals

-

N

~N

v

Shear Localization

Applications

Nano-Indentation
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Constant Strain Rate Tensile Test

Strain Rate: 103 s! D: 20nm, H: 60nm
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Model & Experimental Comparisons
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Isolated Shear Localization Event
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Details of shear localization event
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Precision nanoindentation of a metallic glass

300
250 £
Eq. (1) — f’ N
200 |+ & d
z /4
E 150 L plastic yield point —
100 + /’
Astic range
50
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Packard, Schuh. Acta Mat. 2007.

) =



%yclic loading leads to nanoscale strengthening

6 61 1 T T T I 100
Y R Elastic
5 _E4 L Predictiori 1
"3 sl y 80
3 Ao 3 45 675 9 1 _e0 *Cycling load threshold
o 1 *Act of cycling required
S W 40 . . .
8 2 - *Saturation 1n strengthening
1 _Cycling 8 20
0 K‘l/ ot ] ] ] | 0 A5
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Packard et. al. APL. 2008. Packard, Homer, et al. Phil Mag. 2010.
40 nm
E i Microplasticity (STZ activity)
s *Energetically plausible
3 EB”Cm - *Imperceptible activity
*Low T kinetics — correct time

A
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*STZ activity leads to hardening
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Monotonic loading of a metallic glass
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}Effect of cycling indenter to a depth of 2.0 nm
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% STZ activity is significant and undetectable

Elastic

— 0.2 comparison
2
g 1.2nm . |_Load at which first
T 0.1 STZs activate
-~ / Load corresponding to
nominal yield stress
O 1 I | 1 1 L
Displacement 1 nm

Microplasticity (STZ activity)
*Energetically plausible
Imperceptible activity
*Low T kinetics — correct time
*STZ activity could lead to hardening

Packard, Homer, et al. Phil Mag. 2010.

Cycle Amplitude: 2.0 nm

After Cycle
1

Cycle Amplitude: 2.4 nm
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}Indentation of a strengthened metallic glass
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Strengthening a glass increases STZ load
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STZ Dynamics Extensions
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(STZ Dynamics Modelx 4 Source Code )

#oe iABAQUS

— ~ MySoL

Redistribute stress A
@, python C/C++

Isothermal Fortran
'\ S = S'(T, T) j & Parallel Processing j
Extensions Open-Source

Heat conduction
Shear band

Free olume Adibaticcondion Parallel Processing ~ C/C++

He:«'l cohduction

Un-deformed Shear-band tip (most deforme&)
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Schuh et al. Nat. Mat. 2003. Yang et al. APL. 2005.




STZ Dynamics Extensions: Composites

MGM Composites
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Hofmann et al. Nat. 2008.

Slip direction

Li. et al. Nanoscale Res Lett. 2010.
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Grain Boundary Motion
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Synthetic Driving Force Molecular Dynamics

: ) 1
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Energy and Mobility of Grain Boundaries

388 Different Boundaries Jf (Ag,ﬁ)
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Olmsted, Foiles, et al. Acta Mat. 2009. Olmsted, Holm, et al. Acta Mat. 2009.

Mobility Temperature-Dependence: ~ 10,000 Simulations
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' Temperature-Dependent Boundary Motion
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Shear-Coupled Boundary Motion
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Mobility and Shear Distributions

Thermally-Activated
Thermally-Damped
Unclassified

Ln( Mobility [m/(s GPA)])
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Future Grain Boundary Research

4 Boundary Sampling )

Sampling & Fitting

Uniform Sampling
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Extreme Environments of Nuclear Power

Irradiation & Thermal Effects

* Fission Gas Generation

e Damage / Plasticity

e Impurity Fission Bi-Products

* Diffusion

* Creep

e Chemical attack between cladding and fuel

ey

IR ST
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4,‘. ¥ e
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}Combined approach of modeling techniques

Phase-Field

eDeterministic Continuum Model
eSmoothly varying fields
eDiffuse Interfaces
eComputationally expensive

Potts Monte Carlo

eStatistical-Mechanical Model
eDiscrete Particles
eSharp Interfaces
eLess expensive

Combined Model

Chen. Annu Rev. Mat. Res. 2002.

ePotts: Grain evolution
ePF: Concentration evolution
eBalance resolution / efficiency

! Al A| Al B Al Al Al B
A B

A|lA| B| B Al Al BI B

Al C| B| B Alcl Bl B

0 clCc|C|C clclclc
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Details of the Combined Model

Combined Model Energetics Potts Evolution
N 1 n
Eys = 2| E4,C) %2 3 T(q4)) |+ [ £.(VCFdV A AlA|A|B
i1 J=l P exp(—kB—T) for AE >0 Al Al BI B
Ev=y[(C—C1)2+(C2—C)2]+a1(C—C3)2qa+a2(C4—C)2qﬁ 1 for AE<0 AlA]B|B
clC|C|C
07 : : : . Phase-Field Evolution

% _m, (V2 a—Ev—KCVT)
ot aC

Free Energy

e A o ;‘
() =
National
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% Coupled Potts — Phase Field Simulations

Combined Model Energetics Potts Evolution Phase-Field Evolution
AE
il 4 exp|———| forAE>0 aC JE,
By =D E0-C4 33 1(.0) |+ [R.(VCPay P —{ ( 6T z - MC(sz—KCWC)
Concentration

Sandia
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Future Nuclear Fuels Research

4 Potts — Phase Field )

ST
. . | o

2-Phase Nuclear Fuel
e TR Ll
) ; ﬂ

N v

0, 7% RN e
\ Oudinet. et. al. J. Nucl. Mat. 2008. j

4 Thermal Effects )

Walker. et al. J. Nucl. Mat. 2006.
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