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Organic Materials Problems; 2
Organic Materials Aging and Degradation
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‘Accelerated Aging’

Temperature

Reaction Coordinate




General Approach/Goals

Macroscopic level
Physical property
Sealing Force

Tensile Strength

Permeation

Dimensional changes

Compression Set

Elongation

Goals

Molecular Level
Chemical Property

* Prediction of physical properties vs. time
 Predict remaining lifetime of field materials
e Develop condition monitoring method




Deception!

Conclusions derived from initial high temperature,
short duration (even out to 1 year) accelerated
aging can be misleading.

Chemistry / mechanisms must be understood.

Results must be critically analyzed to identify and
understand mechanism changes




Thermal-oxidative Aging: Nylon
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2000 days ~ 5.5 years




Arrhenius Equation

Arrhenius equation:
k =Ae-EaIRT

Old Chemist expression:
increase rate by 10 °C will double the rate
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Equation of a Line

v=mx +b

/ \\ y-intercept

what you want what you know

slope

(m)



10

Function of a Line

y intercept =b y=mXx +b

\ slope =m

/
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Arrhenius Equation

/Activation Energy
k =Ae-Ea/RT

/ ‘r [

Gas constant

rate

_ Temperature (Kelvin)
Pre-exponential factor

e

Empirical equation

(m)



Arrhenius Equation
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k =Ae-Ea/RT

In(k) = In(A) — Ea/RT

In(k) =— Ea/RT + In(A)

In(k) =( Ea/R)(1/T) + In(A)

(m)



Function of a Line °

y intercept =b y=mXx +b

\ slope =m

/




Function of a Line “

y intercept =In(A)

In(k) =—( Ea/R)(1/T) + In(A)
\ slope = -Ea/R

/

In(k)

1T
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Arrhenius Equation

Arrhenius equation:
k =Ae-EalRT In(k) =—( Ea/R)(1/T) + In(A)

k = anything

Plot log(a;) vs 1/T linear if Arrhenius

What is Ea?
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Energy
reactants

products

Reaction coordinate

---lmagine a marble--- @
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Energy
reactants

products

Reaction coordinate
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4 Intermediates/Transition states

Energy
reactants

products

Reaction coordinate




Are Diamonds forever?
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Kinetics vs. Thermodynamics ......

Energy
Diamond

Graphite

Reaction coordinate
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4 Intermediates/Transition states

Energy
Diamond

Graphite

Reaction coordinate
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Arrhenius Equation

k =Ae-Ea/RT

Critical assumption is that E_, is CONSTANT

Assume
Ass-u-me




Time-Temperature Superposition
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Does mechanism change as a function of temperature?

If same mechanism:

« same shape (log graph)
* should be constant acceleration (multiple)

—

. Pick a reference temperature

2. Multiply the time at each temperature by the
constant that gives the best overlap with the

reference temperature data
Define that multiple as ‘a;’ (a+ = 1 for ref. temp.)
Find a; for each temperature

ol

Plot log(a;) vs 1/T linear if Arrhenius

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Extrapolation of Accelerated Aging Data -Arrhenius or Erron

eous? 1997, 5, 250-257.

Arrhenius equation: empirical equation

k — e-Ea/RT

In(k) = In(A) — Ea/RT

(m)
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Thermal-oxidative Aging: Nylon
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1000 T

2000 days ~ 5.5 years
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Thermal-oxidative Aging: Nylon Shifted Data
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Thermal-oxidative Aging: Nylon Shift Factor Graph
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Thermal Exposure

Thermal-Oxidation

Polymer + O, > Oxidized Polymer

Quantify amount of oxygen consumed

Simple in theory
Difficult in practice
Amazingly sensitive




Schematic of Oxuptake
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Oxygen Consumption
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Enhanced Extrapolation ‘Good’

Normalized Measured Property

Shift Factor, a;

Measured Property
- = — = Oxygen Consumption

1/Temperature, K-

+“— High Temp

Low Temp —

30
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Enhanced Extrapolation: ‘Bad’

Normalized Measured Property

Shift Factor, a;

Measured Property
- === Oxygen Consumption
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—
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DLO, Need to Know

Diffusion Limited Oxidation (DLO) effects if oxygen dissolved in material
used up faster by reaction than it can be replenished by diffusion from
surrounding air atmosphere

Race between:
the oxygen consumption rate versus the oxygen diffusion rate

Therefore we need estimates of:

1. O, permeability versus aging temperature
2. 0O, consumption versus aging temperature
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Diffusion-Limited Oxidation (DLO)

0, 0,
02 O 02 02 O 02
2 —— > sy ——— 2
0, O, 0, O,
rxn rate > diffusion rate rxn rate < diffusion rate

Heterogeneous Homogeneous
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Modulus Profiling

Indentation technique Modulus vs. Shore A
ca. 50um resolution

Measure of Inverse tensile
compliance

10

Modulus, MPa

Closely related to tensile
modulus

1

L1l L1 L1l L1 L1l L1 | L1
20 30 40 50 60 70 80 90 100
Shore A hardness

Excellent to examine ‘geneity’ of aging
(heteo- or homo-) (DLO issues)

(m)
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Schematic of Modulus Profile Experiment

Probe tip, sample and mass Mass is applied in two steps
Mu
M | I
M
Mc
0

‘M.—_' e S SO
* , | /}F

e(®

SAMPLE

Gillen, K. T.; Clough, R. L.; Quintana, C. A. Polym. Degrad. Stab., Modulus profiling of polymers 1987, 17, 31-47 @
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Modulus Profiler
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Modulus Profiler Sample
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Homogeneous Aging

Aging of a nitrile rubber at temperatures Modulus profiles of samples aged at
ranging from 65°C to 125°C 65°C indicate the presence of
homogeneous aging

735 days
497 days ,
350 days
226 days
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Wise, J.; Gillen, K. T.; Clough, R. L. Polymer Degradation and Stability, An ultrasensitive technique for ing the Arrhenius extrapolati ption for thermally aged elastomers 1995, 49, 403-418.
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Heterogeneous Aging

Modulus profiles for samples aged at 95°C show that diffusion-limited oxidation
(DLO) is becoming important; at 125°C, DLO effects are very significant
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Nylon: Tensile versus Oxygen Consumption

Shift factor, a,
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Thermal-oxidative tensile: 41
Prediction vs. Experimental

Arrhenius Predictions

Arrhenius predictions severely off target

64 °C Thermal-oxidative suggest change in mechanism/non-
Arrhenius behavior

Initial data Predicted: 92% at ca. 3700 days
Observe: 92% at ca. 835 days

Oxygen consumption suggests no change
in thermal-oxidative mechanism

Possible explanation involving mechanism change?

(m)
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Nylon Structure

H N\/\/\/\
2 NH,
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— 0 —
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Humidity Aging Schematic

v

Time,
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Humidity Aging Hardware
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Organic Materials Aging and Degradation

Specifics -o-rings
General path -most organic materials

This talk —details not important (all published)
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O-ring Published Documentation

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the
Lifetime of Fluorosilicone O-rings 2009, 94, 2107-2133.

Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone O-Ring Aging Study,”
SAND2007-6781, Sandia National Laboratories, 2007.

Chavez, S. L.; Domeier, L. A. "Laboratory Component Test
Program (LCTP), Stockpile O-Rings," BB1A3964, 2004.

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability,
Predicting and Confirming the Lifetime of O-rings 2005, 87, 257-270.

Gillen, K. T.; Celina, M.; Bernstein, R. In Polymer Degradation and Stability
Validation of Improved Methods for Predicting Long-Term Elastomeric Seal
Lifetimes from Compression Stress-Relaxation and Oxygen Consumption

Techniques, 2003; Vol. 82, pp 25-35.
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O-rings Background

Used as environmental seals or other seals

O-RING CROSS-SECTIONS

Most systems filled with inert gas
to protect interior components
from oxidation & hydrolysis

UNAGED 15 yr in field

Previously:
No technique to measure equilibrium sealing force
No technique to rapidly achieve equilibrium compression set

No correlation @
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CSR Jigs

Gap of jig can be adjusted to any desired
size

O-ring pieces cut to allow air circulation

Measurement of force involves very slow
and slight compression until electrical
contact is broken between the top and
bottom plates

Jigs can be placed in ovens, thus
providing isothermal measurements
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Compression Stress Relaxation (CSR)

Shawbury-Wallace Compression Stress Relaxometer (CSR) MK Il

Commercial Instrument
Measure of Force
-O-ring sealing force
Can Adjust Gap Size to Approximate Actual
Compression in System

(Wallace Test Equipment, Cryodon, England)
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Accelerated aging

1) Physical force decay
-Equilibrium values achieved
-Ability to get field returned o-ring force

2) Chemical force decay
Prediction of force changes as a function of aging

(m)
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Why we do isothermal measurements...

9 I IIIIIII| I IIIIIII| I IIIIIII| I IIIIIII| I IIIIIII| T TTTT

8

F/L, N/cm

0 | IIIIIII| | IIIIIII| | IIIIIII| | IIIIIII| | IIIIIII| R
10*  10° 107 107 10 10" 10?
Time after removal from 110°C oven, days

Sealing force per unit length versus time out of a 110 °C oven for two CSR jigs containing Butyl-A o-ring segments that had aged under
25% compression until the force degraded by ~42% (top curve) and ~72% (bottom curve), respectively.

Gillen, K. T.; Celina, M.; Bernstein, R. In Polymer Degradation and Stability Validation of Improved Methods for Predicting Long-Term Elastomeric Seal Lifetimes from Compression Stress-
Relaxation and Oxygen Consumption Techniques, 2003; Vol. 82, pp 25-35.
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All Jigs at Temperatures -Fluorosilicone

Jig#3 138 °C
Jig#4 138°C
Jig#5 138 °C
Jig#1 138°C
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Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone O-Ring Aging Study,” SAND2007-6781, Sandia National Laboratories, 2007.

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O-rings 2009, 94, 2107-2133.
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Time-Temperature Superposition
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Does mechanism change as a function of temperature?

If same mechanism:

« same shape (log graph)
* should be constant acceleration (multiple)

—

. Pick a reference temperature

2. Multiply the time at each temperature by the
constant that gives the best overlap with the

reference temperature data
Define that multiple as ‘a;’ (a+ = 1 for ref. temp.)
Find a; for each temperature

ol

Plot log(a;) vs 1/T linear if Arrhenius

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Extrapolation of Accelerated Aging Data -Arrhenius or Erron

eous? 1997, 5, 250-257.

Arrhenius equation: empirical equation

k — e-Ea/RT

In(k) = In(A) — Ea/RT

(m)



Time-Temperature Superposition
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Shift Factor Plot
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Shift factor, a;
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‘Accelerated Aging’

Temperature

Reaction Coordinate
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Shift Factor Plot
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Shift factor, a;
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Shifted Data with RT ‘Prediction’ w/o 80 C data

Predicted Time at 23 °C, Years

1 10 100 1000




Shift Factor Plot
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Shift factor, a;
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Shifted Data with RT ‘Prediction’ All data

% FIF,
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Predicted Time at 23 °C, Years
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Shift Factor Plot
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Shift factor, a;
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% FIF,

Shifted Data with RT ‘Prediction’ 109 and 80 only

Predicted Time at 23 °C, Years

0.01 0.1 1 10 100
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Shift Factor Plot
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Shift factor, a;
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O-ring

Sealing force arguably most important parameter

Correlation between equilibrium values
sealing force < . compression set

Difficult to measure Easy to measure
slow and laborious quick and simple

O-RING CROSS-SECTIONS

UNAGED  15yr in field
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Force versus Compression Set Data -Fluorosilicone
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Field Data* 66

* not quite the whole story, but good enough for this conversation!

100 — [T T T [ " [ " [ " " " [ " [ T T T T
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60
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Compression set (~1 day), %

20

10

r L
0 2 4 6 8 1012 14 16 18 20 22 24 26 28
Aging time, years
Compression set measurements of three fluorosilicone o-rings taken on surveillance units approximately 1 day

after removal from the unit. The solid curve and the dashed curve assume a linear relationship between set and
force decay.

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O-rings 2009, 94, 2107-2133
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Other Compression Set Data
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Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001. @
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Compression Set
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Arrhenius Plot for Compression Set
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Arrhenius plot of the shift factors for silicone compression set which leads to an
aging room temperature prediction for compression set @

Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001.
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Force versus Compression Set Data
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Force versus Compression Set Data

Predicted Time at Room Temperature,Years

20

40

60

Compression set, %

80

100

Correlation between current Silicone Force data and

Compression set data obtained from three different
sources (and different sizes!)

Fluorosilicone versus Silicone!!

Displays confidence in generalized predictions about

silicone o-rings state of health (CS easy to measure)
under oxidative environments* @
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Butyl Force vs. Compression set; lab and field aged
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Equilibrium values of compression set plotted versus F/F, for laboratory-
aged o-rings for three butyl materials plus field results for Butyl-B plotted
assuming that F; = 10 N/cm.

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Predicting and Confirming the Lifetime of O-Rings 2005, 87, 257-270.
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Heavily Filled Silicone
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Progression of Stress Relaxation due to Chemical Aging

Time =0 Time = .S5sec Time =.8sec Time = 1sec

SIGYY
SRR I -191 psi=133 N/cm?

-89 psi= 61 N/cm?

Time = 30 years Time = 56 year Time 90 years = 13psi= 9 N/em?

Slide Courtesy of David Lo @
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Take home messages...

1) Be aware of mechanism changes

2) Understand chemistry/be careful with the details
-DLO, O, vs. H,0 etc

1) Find something to measure

2) Do things at many temp (as far apart as possible)

3) Do things for very very long time

4) Validate against real world

5) It would be nice to know your performance
requirements
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Lots of help...

Dora Derzon, Brad Hance, Don Bradley, Roger Assink, James
Hochrein, Steven Thornberg, David Lo, Kathy Alam, Laura Martin,
John Schroeder, Patti Sawyer, Mark Stavig, and Ken Gillen
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Questions...




