.
- ‘ SAND2011- 1446C

Using GPUs for faster LAMMPS
particle simulations

Paul S. Crozier

Exploiting New Computer Architectures in
Molecular Dynamics Simulations

March 23, 2011

B /A F W04 subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration National

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned Sﬂﬂ dia
=l v O
7 M A AN under contract DE-AC04-94AL85000. @ T
’ aboratories

>~

Acknowledgements

limenau Univ. of Tech., Germany
Christian Trott & Lars Winterfeld

Sandia National Laboratories
Steve Plimpton & Aidan Thompson

Oak Ridge National Lab
Mike Brown, Scott Hampton & Pratul Agarwal

(&)

Sandia
National
Laboratories

'

\

Classical MD code.

Open source, highly portable C++.

Freely available for download under GPL.
Easy to download, install, and run.

Well documented.

Easy to modify or extend with new features and functionality.
Active user’s e-mail list with over 650 subscribers.

LAMMPS

arge-scale Atomic/Molecular Massively Parallel Simulator)
http://lammps.sandia.gov

o

e

Since Sept. 2004: over 50k downloads, grown from 53 to 175 kloc.
Spatial-decomposition of simulation domain for parallelism.
Energy minimization via conjugate-gradient relaxation.

Radiation damage and two temperature model (TTM) simulations.

Atomistic, mesoscale, and coarse-grain simulations.
Variety of potentials (including many-body and coarse-grain).

Variety of boundary conditions, constraints, etc.

L8 A"

Uy

Parallel Efficiency (%)

100

—8-ASCI Red (175)
—8-Hoss (58.6)
~@- Liberty (19)
~O~ Spirit (15.4)

Cheetah (40.1)
—®-HPCx (19.9)
=0O~Blue Gene Light (63.6)
=0O—Red S5torm (18.2)

1 8 64 512 4096 16K 64K 0

Processors

http://lammps.sandia.gov/

Answer 1: (Parallel) Performance

Protein (rhodopsin) in solvated lipid bilayer

Why Use LAMMPS?

Fixed-size (32K atoms) & scaled-size (32K/proc) parallel efficiencies
Billions of atoms on 64K procs of Blue Gene or Red Storm

Fixed-size Rhodopsin Protein

100+

[22] @
[=] (=]
T T

Parallel Efficiency (%)
B
2

—&— Spirit (138)
HPCx (131)

20 —@— Blue Gene Light (661)

~®— Red Storm (145)

—®— Intel Xeon Dual Quad Core (79.1)

1 8

64
Processors

100+

Parallel Efficiency (%)

20

Scaled-size Rhodopsin Protein

@
(=]

[22]
[=]
T

B
Q
T

180
60
140

—&— Spirit (138)

HPCx (131)

- —@— Blue Gene Light (661) 120

—®—Red Storm (145)

—®— Intel Xeon Dual Quad Core (79.1)

1 8 64 512 4096 16K 64K

Processors

Typical speed: SE-5 core-sec/atom-step (LJ 1E-6, ReaxFF 1E-3)

Why Use LAMMPS?

Answer 2: Versatlllty

Material

Solid -‘“’*g S:i:r:::aes
Mechanics .ﬁ‘ I .!.

Chemistry

Granular
= Flow

"m.ﬂ%,‘r%(

-

= A 4
%> \Why Use LAMMPS?

Answer 3: Modularity pair_reax.cpp fix_nve.cpp
pair_reax.h fix_nve.h

LAMMPS Objects

atom styles.: atom, charge, colloid, ellipsoid, point dipole

pair styles: LJ, Coulomb, Tersoff, ReaxFF, AI-REBO, COMB,
MEAM, EAM, Stillinger-Weber,

fix styles: NVE dynamics, Nose-Hoover, Berendsen, Langevin,
SLLOD, Indentation,...

compute styles: temperatures, pressures, per-atom energy, pair
correlation function, mean square displacemnts, spatial and time
averages

Goal: All computes works with all fixes work with all pair styles work
with all atom styles @ Sandia

National _
Laboratories

= A 4
%" \Why Use LAMMPS?

Answer 4: Potential Coverage

LAMMPS Potentials

pairwise potentials: Lennard-Jones, Buckingham, ...

charged pairwise potentials: Coulombic, point-dipole

manybody potentials: EAM, Finnis/Sinclair, modified EAM
(MEAM), embedded 1on method (EIM), Stillinger-Weber, Tersoff, Al-
REBO, ReaxFF, COMB

electron force field (eFF)

coarse-grained potentials: DPD, GayBerne, ...

mesoscopic potentials: granular, peridynamics

long-range Coulombics and dispersion: Ewald, PPPM (similar to

particle-mesh Ewald)
@ Sandia
National
Laboratories

= A 4
%" \Why Use LAMMPS?

Answer 4: Potentials

LAMMPS Potentials (contd.)

bond potentials: harmonic, FENE,...

angle potentials: harmonic, CHARMM, ...

dihedral potentials: harmonic, CHARMM,...

improper potentials: harmonic, cvit, class 2 (COMPASS)

polymer potentials: all-atom, united-atom, bead-spring, breakable
water potentials: TIP3P, TIP4P, SPC

implicit solvent potentials: hydrodynamic lubrication, Debye
force-field compatibility with common CHARMM, AMBER, OPLS,
GROMACS options

Sandia
National
Laboratories

= A 4
%" \Why Use LAMMPS?

Answer 4: Range of Potentials

LAMMPS Potentials
Biomolecules: CHARMM, AMBER, OPLS, COMPASS (class 2),
long-range Coulombics via PPPM, point dipoles, ...

Polymers: all-atom, united-atom, coarse-grain (bead-spring FENE),
bond-breaking, ...

Materials: EAM and MEAM for metals, Buckingham, Morse, Yukawa,
Stillinger-Weber, Tersoff, AI-REBO, ReaxFF, COMB, ¢FF...

Mesoscale: granular, DPD, Gay-Berne, colloidal, peri-dynamics, DSMC...

Hybrid: can use combinations of potentials for hybrid systems:

water on metal, polymers/semiconductor interface,
colloids in solution, ... @ Sandia

National _
Laboratories

Why Use LAMMPS?

Answer 5: Easily extensible

* One of the best features of LAMMPS
—80% of code is “extensions” via styles
—only 35K of 175K lines is core of LAMMPS
- Easy to add new features via 14 “styles”
—new particle types = atom style
—new force fields = pair style, bond style, angle style, dihedral style, improper style
—new long range = kspace style
—new minimizer = min style
—new geometric region = region style
—new output = dump style
—new integrator = integrate style
—new computations = compute style (global, per-atom, local)
—new fix = fix style = BC, constraint, time integration, ...
—new input command = command style = read_data, velocity, run, ...
* Enabled by C++
—virtual parent class for all styles, e.g. pair potentials
—defines interface the feature must provide
—compute(), init(), coeff(), restart(), etc @ Sandia

National _
Laboratories

=

Motivation for adding GPU capabilities to LAMMPS

* User community interest
* The future is many-core, and GPU computing is leading the way

 GPUs and Nvidia’s CUDA are the industry leaders

— Already impressive performance, each generation better
— More flops per watt
— CUDA is way ahead of the competition

« Other MD codes are working in this area and have shown
impressive speedups
— HOOMD
— NAMD
— Folding@home
— Others

Sandia
National
Laboratories

\

Motivation: Better time-scales

N

10-15s 10-12 107 10-6 103 10%s

Molecular dynamics :2005 , :2011

v

Protein dynamical events

Elastic vibration of globular region <0.1 A Protein breathing motions

Bond kgT/h Side chain and loop motions Folding (3° structure), 10-100 A
vibration 0.1-10 A 2° structure l
l / ' N
[\ "4 \
10-15s 10-12 10-° 106 10-3 10°s
Experimental techniques
. NMR: R, R, and NOE NMR: residual dipolar coupling H/D exchange
Neutron scattering ,
| l Neutron spin echo l l
e ¢ ™ ¢ ~ ™ N
‘ -~ <
10-15s 10-12 10-9 106 10-3 10%s

Agarwal: Biochemistry (2004), 43, 10605-10618; Microbial Cell Factories (2006) 5:2; J. Phys. Chem. B 113, 16669-80.

A look at history

1 Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflop/s

1 Tflop/s

100 Gflop/s

10 Gflop/s
1 Gflop/s

Courtesy: Al Geist (ORNL), Jack Dongarra (UTK) @

2015 --°
A"

2012 -- B
< o
~ AN
))
(Q\ (Q\

Sandia
National
Laboratories

Y

Fundamental assumptions of system software architecture and
application design did not anticipate exponential growth in parallelism

Concurrency

Average Number of Processors Per

Supercomputer
100,000
90,000
Top20 of the Top500

E0,000

F0,000

60,000

50,000

40,000

30,000

20,000

10,000 I .

o m m = m 0 B NN Courtesy: Al Geist (ORNL)

National

H S DD H do N H P
S m@m S~ @ Sandia
Laboratories

=X
Future architectures

 Fundamentally different architecture

— Different from the traditional MPP (homogeneous) machines
* Very high concurrency: Billion way in 2020

— Increased concurrency on a single node
* Increased Floating Point (FP) capacity from accelerators

— Accelerators (GPUs/FPGAs/Cell/? etc.) will add heterogeneity

Significant Challenges:

Concurrency, Power and Resiliency

Sandia
National
Laboratories

GPU-LAMMPS project goals & strategy

Goals

 Better time-to-solution on particle simulation problems we
care about.

* Get LAMMPS running on GPUs (other MD codes don’t
have all of the cool features and capabilities that
LAMMPS has).

« Maintain all of LAMMPS functionality while improving
performance (roughly 2x — 100x speedup).

* Harness next-generation hardware, specifically
CPU+GPU clusters.

Strategy

» Enable LAMMPS to run efficiently on CPU+GPU clusters.

Not aiming to optimize for running on a single GPU.
* Dual parallelism
— Spatial decomposition, with MPIl between CPU cores
— Force decomposition, with CUDA on individual GPUs
» Leverage the work of internal and external developers.

N~

suonisod

Inter-node MPI

communication

CPU-GPU

communication
each

time-step

forces

(&)

Sandia
National
Laboratories

V
3 "‘" Our Approach:

Gain from multi-level parallelism

« Off-loading: improving performance in strong scaling
« Other Alternative: Entire (or most) MD run on GPU

« Computations are free, data localization is not
— Host-GPU data exchange is expensive

— In a multiple GPU and multi-node: much worse for entire
MD on GPU

We propose/believe:

« Best time-to-solution will come from not using a single
resource but most (or all) heterogeneous resources

* Keep the parallelism that already LAMMPS has
— Spatial decomposition: Multi-core processors/MPI

Sandia
National
Laboratories

ost only

GPU as a
Co-processor

GPU as an
Accelerator

With concurrent
computations on

CPU & GPU

{Bond} {Neigh} {Pair} {Other + Outpt}
CPU ;
Compute the Collect forces, time
If needed electrostatic and integration (update
p| Compute P! update the P Lennard-Jones P positions), adjust >
bonded terms neighbor list interaction terms for temperature/pressure,
energy/forces print/write output
{Comm} = communication Loop:i=1toN
GPU vl
CPU
Collect forces, time
If needed integration (update
p| Compute P update the positions), adjust >
bonded terms neighbor list temperature/pressure,
Jorces print/write output
— —] — — — — — — — — — — — — — — —
GPU atr)_mic posit{ons & Compute the
neighbor’s list electrostatic and
Lennard-Jones
interaction terms for
energy/forces
Loop:i=1to N
GPU v2/v3
>
CPU ;
Collect forces, time
integration (update
Compute positions), adjust >

GPU

atomic positions

bonded terms

forces

If needed
> update the
neighbor list

A 4

Compute the
electrostatic and
Lennard-Jones
interaction terms for
energy/forces

Loop:i=1to N

temperature/pressure,
print/write output

GPU-LAMMPS project structure

Developers team

Paul Crozier (1435)

Mike Brown (ORNL)

Arnold Tharrington (ORNL)

Scott Hampton (ORNL)

Axel Kohlmeyer (Temple)

Christian Trott (Ilmenau)

Lars Winterfeld (Ilmenau)

Duncan Poole (Nvidia)

Peng Wang (Nvidia)

~10 others (PSU, RPI, Ga Tech, Mellanox)

Publicity

Presentations at SC09, SC10, LClI HPC
conference, SOS14, LAMMPS workshop,
ASC threading workshop, ORNL
biomolecular sims workshop

Best paper award @ HPCS 2010
Several more publications in preparation

Application for Thuringia, Germany research
prize, €17.5k

Collaboration infrastructure

http://lammps.sandia.gov

http://code.google.com/p/gpulammps/

External Subversion repository, wiki pages
E-mail list: gpulammps@sandia.gov
Monthly telecons
Periodic face-to-face meetings

- Nvidia HQ (Aug 2009)

- SCO09 in Portland (Nov 2009)

- LAMMPS workshop @ CSRI (Feb 2010)

Funding

OLCF-3 Apps Readiness
Mantevo project led by Mike Heroux (Sandia)
Most team members have their own minimal funding

Sandia
National
Laboratories

mailto:gpulammps@sandia.gov
http://code.google.com/p/gpulammps/
http://lammps.sandia.gov/

\

Force field coverage

* pairwise potentials: Lennard-Jones, : , Yukawa, soft, class 2 (COMPASS), tabulated
» charged pairwise potentials: , point-dipole
* manybody potentials: , Finnis/Sinclair EAM, , Stillinger-Weber, Tersoff, Al-

REBO, ReaxFF

» coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO, cg/cmm
* mesoscopic potentials: , Peridynamics

* polymer potentials: all-atom, united-atom, bead-spring, breakable

« water potentials: , TIP4P,

« implicit solvent potentials: hydrodynamic lubrication,

* long-range Coulombics and dispersion: Ewald, , Ewald/N for long-
range Lennard-Jones

« force-field compatibility with common , AMBER, OPLS, options

Sandia
National
Laboratories

\

Results for LAMMPS LJ benchmark

* Dual Quad Core Intel®
Xeon® Processors X5560
2.8GH

* 1 Tesla C1060 GPU

* Use of Tesla 1s almost always
faster than not using it on this
machine.

* Tesla 3.2x faster than Dual
Quad Core for 4000 atom
system.

MD timesteps per second

\ =TeslaGPU
’:: iy

-=1CPU

—+2 CPUs
=<4 CPUs
-8 CPUs

100 1000 10000 100000 1000000

Sandia
National
Laboratories

number of atoms

Workflow

Sandia
National
Laboratories

;’

Thread-per-atom vs Block-per-atom

LJ-Melt Silicate
2 | | | | | | | | 1
I 1 151
é 1.5 . _
e i 1
~—~ 1 — |
féq i - - 2 |s—a single prec. |
— 0.5 1 o5- =—o double prec.|_|
U 1 | I | 1 | I | 1 | u| | I | 1 | 1 | -
0 2 4 6 8 10 5 10 15 20
cutoft [C] cutoff [A]

Sandia
National
Laboratories

\

Scaling problem: communications costs

Time per step [ms]
2 e
< <

=
o

-2 R (U8]
N o N
T T T T

[[—
hn =] LN
T T T T

Hitting bandwidth limit?

~a

MPT transfer (lower limit

/ Pair time

__

7n

16

of MPI processes / GPUs

\

Simulation speed vs system size

5%10

L
X
—
(]
-

(%]
X
[
<
=1

=1

atomsteps per second
[\
a
)

[—
X
f—
-
|

&

== LAMMPS __ .
@-o LAMMPS __

<< HOOMD 0.9.1
&AL AMMPS J
£-A T, AMMPS x40

..... @,
L 0.0{}]
Ll |@T:——"|r‘;|||1—t’i "jl"" 1 |||‘f|\"||| 'ﬁ‘l 1 |f§i‘|||l‘é‘ |‘j—\‘| fﬂﬁl‘?ﬁl'ﬁ
1x10° 1x10° 1x10* 1x10° 1x10°
of atoms

(&)

Sandia
National
Laboratories

GPU speedups on several classes of materials

Sandia
National
Laboratories

(&)

- o

Using Newton’s 3" law to cut work

Sandia

Laboratori

Cell list vs neighbor list

14

tcell > tneigh

|
12 |
10_—5
g |
S
o :
4 |
ol

(&)

Sandia
National
Laboratories

>~

Particles in a cell

(&)

Sandia
National
Laboratories

Particles in a cell list

Sandia
National
Laboratories

\

Cell list vs neighbor lists

10E
ERe
5 C
L

£

0.1 3 s—ocell lists
=—= neighbor lists
| | 1 | 1 | 1 | | | 1 | 1
0o Ity 26 30 46 50 66 70

cutoff radius

Sandia
National
Laboratories

;’

LJ, fixed # atoms per node (weak scaling)

—
]

CUDA
le+09E
- | oo LAMMPS GPU

- [AATLAMMPS

le+08 3

le+07 3

atomsteps per sec [sec

le+06™ 4 16 64
of (QuadCore) CPUs / GPUs

Sandia
National
Laboratories

;’

LJ, fixed size (strong scaling)

p—

le+09; E

le+08 3

le+07 3

atomsteps per sec [sec

le+06= 4 16 64
of (QuadCore) CPUs / GPUs

Sandia
National
Laboratories

\

Silicate, fixed # atoms per node (weak scaling)

]

-1

le+08; =

le+07§—

le+06 3

atomsteps per sec [sec

let05¢

1 16 256
of (QuadCore) CPUs / GPUs

Sandia
National
Laboratories

\

Silicate system, fixed size (strong scaling)

"o le+08E |
L E .
2t
5 _

Q 1let+07k __
. :
Q
(@) -
& 1e+06F -
2 :
E [
Q let05F L =
= © - oL | | |
C 1 8 64 512
l I |
1 16 256

of (QuadCore) CPUs / GPUs

Sandia
National
Laboratories

LAMMPS ., performance with GPUDirect

LJ - melt Benchmark

80 14%
I ~ Without GPUDirect __ 129
B With GPUDirect] i
— I t %
—8 60 mprovement 7o 10%
Q
() -
2 8%
5 40—
Q. 6%
¥)] L
)
@ 20+ 4%

2%

0%

3 GPUs 9 GPUs

Sandia
National
Laboratories

GPGPU Times Speedup vs 1 Core

(c=cutoff, 32768 particles)

400.0 mThunderbird = Glory

350.0

300.0

250.0

200.0

150.0

100.0

50.0

0.0

GPGPU: 1, 2, 3, or 4 NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 71 core of Dual 3.6 GHz Intel EM64T processors
Glory: 1 core of Quad Socket/Quad Core 2.2 GHz AMD

Sandia
National
Laboratories

GPGPU Times Speedup vs 1 Node

(c=cutoff, 32768 particles)

120.0 ® Thunderbird m Glory

96.2
100.0

80.0

60.0

40.0

20.0

0.0

GPGPU: 1, 2, 3, or NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 2 procs, Dual 3.6 GHz Intel EM64T processors
Glory: 16 procs, Quad Socket/Quad Core 2.2 GHz AMD

Sandia
National
Laboratories

iomolecular simulation with GPU-LAMMPS

Joint-AMBER-CHARMM Benchmark
Intel Xeon E5540 (2.53 GHz) with Tesla C1060
23,558 atoms

60.00

52.54
50.00

N
o
o
o

mvi

mv3

N
©
o
S

Times Speedup vs 1 CPU Core
S
o
o

10.00

0.00 -

1 GPU/CPU 2 GPUs/CPUs 4 GPUs/CPUs

Sandia
National
Laboratories

g
%‘GPU-LAMMPS bio-MD speedup

on a multi-node CPU/GPU cluster

150——F———— 17 71—
@—@ Host only
B—H GPU v1
GPU v2
A—A GPU v3
Q_100— -
T
L®]
(b
O
7
50 =
..._ 1 1 I 1 1 I 1 1 I 1 1 l 1 1
4 8 12 16 20 24

Number of nhodes @ Sandia

National _
Laboratories

\

LAMMPS (no GPUs, GPU package, CUDA package)
vs. HOOMD on an LJ benchmark

1000

Benchmark parameters

* 442,368 LJ atoms
* 2000 timesteps
p=04,T*=0.5

——no GPUs

—-GPU package

—4—CUDA package

. X HOOMD
Hardware differences

* “no GPUs” case: N =# of CPUs

* “GPU package” case: N =# of C1060s & CPUs
* “CUDA package” case: N = # of C1060s

* “HOOMD?” case: N = # of GTX 280s (slightly
faster than C1060s)

100 -+

time-to-solution (s)

Other caveats

* HOOMD would likely perform better with fewer
particles and a longer run due to memory access
considerations

* Additional parameter tuning might improve
performance in several cases 0 1 2 3 4 5 6 7 8

Sandia
National
Laboratories

e
ﬂesults: JAC benchmark

Single workstation

Intel Xeon E5540 with Tesla C1060

Serial

JAC CPU e] JURVE GPUvV2 GPUV3
Pair (%) 310.8(93.9) 12.91(27.8) 13.6 (40.4) 8.4(54.00 <== Non-bonded
Bond (%) 52(1.6) 5.1(10.9) 52(15.3) 5.0(32.4)
Neigh (%) 12.9 (3.9) 26.5(57.0) 12.9(38.1) 0.1 (0.4)
Comm (%) 0.2 (0.1) 0205 0207 0215 Joint AMBER-CHARMM
Other (%) 1.9 (0.6) 1.8(3.9) 1.9(55) 1.8(11.6)
Total (s) 331.0 46.5 33.8 15.5 23,558 atoms
(Cut-off based)
2 GPUs Intel Xeon E5540 with Tesla C1060
Intel Xeon E5540) JAC CPU e] JURVE GPU v2 ¢] JURVE]
2.53 GHz —> Pair (%) 162.6 (78.1) 6.5(23.4) 7.0(34.9) 4.6 (45.0)
Bond (%) 29(1.4) 26(92) 26(127) 2.6(25.2)
Neigh (%) 6.7 (3.2) 12.9(46.4) 6.4 (31.5) 0.0 (0.3)
Comm (%) 34.8(16.7) 4.7(16.9) 3.1(152) 1.9(18.3)
Other (%) 1.2(0.6) 1.1(4.1) 1.1(5.7) 1.1(11.1)
Total (s) 208.2 27.9 20.2 10.2
4 GPUs Intel Xeon E5540 with Tesla C1060
—> Pair (%) 76.4 (58.1) 3.3(19.1) 3.7(29.5) 2.7 (43.3)
Bond (%) 1.3(1.0) 1.3(7.3) 1.3(10.2) 1.3(20.0)
Neigh (%) 3.1(24) 6.2(35.8) 3.1(24.6) 0.0 (0.3)
Comm (%) 50.1 (38.0) 5.8(33.6) 3.8(30.1) 1.6(25.1)
Other (%) 0.7(06) 07(4.0) 0.7(5.6) 0.7(11.1)
Total (s) 131.6 17.3 12.6 6.3

Performance: Single-node (multi-GPUs)

« Single workstation with 4 Tesla C1060 cards
 10-50X speed-ups, larger systems — data locality

« Super-linear speed-ups for larger systems

 Beats 100-200 cores of ORNL Cray XTS5 (#1 in Top500)

uBQ JAC rhodo
60~ (11,938 atoms) (23,558 atoms) (32,000 atoms) N
s 2 507 Performance metric (ns/day)
o CPU-cores/ “UBQ JAC Rhodo
2r 315 325 GPUs (11,938 atoms) (23,338 atoms) (32,000 atoms)
) 27.6 GPU XT5 GPU XTs GPU XTs
8 ool 193 215 s 1 15.11 8.80 2.04
» ' 2 2345 13.35 5.51
4 35.12 21.58 10.50
0 32 16.95 6.63 7.67
1 2 4 1 2 4 1 2 4 64 24 .88 11.58 14.11
rhodo X2 rhodo X3 rhodo X10 128 3275 19.94 22.99
(64,000 atoms) (96,000 atoms) (320,000 atoms) 256 39.15 30.11 2097
60— 53.6 578 Cores/ thodoX2 rhodoX3 rhodoX10
47.2 GPUs (64,000 atoms) (96,000 atoms) (320,000 atoms)
g— 40 - 1 1.32 0.79 0.12
5 205 20.3 2 2.79 1.71 0.36
o 293 4 5.03 3.61 0.88
8201 14s 38 32 4.09 276 0.82
8.47 64 7.64 5.38 1.63
0 ’7 128 13.98 9.72 3.32
1 2 4 1 2 4 1 2 4

Number of GPUs

. Pipelining: scaling on
multi-core/multi-node with GPUs

LAMMPS (CPU only) Off-load pipe-line
ot - CPU1 CPU2
> ! ! CPU-cores
CPU {Bond} {Neigh} {Pair} {Other} -----:n---- ---__E.____
f needed Compute the LJ Collect forces, time . .
.| Compute rlie(i ih and EEL (PPPM) integration (update -~ Yy VvV VYV V3
"| bonded terms zZigiSOr ﬁst interaction terms "| positions), adjust i
for energy/forces temperature/pressure,
print/write output FIFO queue | :> GPU 1

{Comm} = communication

Loop:i=1to N
P FIFO queue |I:> GPU 2
CPU GPU LAMMPS non-bonded .
Qollect forces, time .
Compute | | Compute N ggzgir::;n a(llcji?jsatte . MU"I-I’IOde GPU CIUSter
bonded terms kspace (PPPM) temperattjre/pressure, [mmmm e m e m e II/I_PI_
print/write output

atomic positions o Spppym——— N Sop——— Y ——— I S———
If needed Compute LJ and Il ﬂ ﬂ ﬂ
»| update the »| direct space ||
neighbor (PPPM) terms
list for energy/forces G P U G P U G P U G P U
Loop:i=1to N

Challenge: How do all cores use a single (or limited) GPUs?
Solution: Use pipelining strategy*

* = Hampton, S. S.; Alam, S. R.; Crozier, P. S.; Agarwal, P. K. (2010), Optimal utilization of

heterogeneous resources for biomolecular simulations. Supercomputing 2010. @ ﬁgtﬂ_dia :
lona
Laboratories

‘ Results: Communications overlap

Need to overlap off-node/on-node communications
— Very important for strong scaling mode

rhodoX3 (96,000 atoms)/cut-off rhodoX3 (96,000 atoms)/PME
) T T T T T T T 600 . I . : . ; :
50 - —
2000 T T T | 4000 T T T -
I 1500 |- 1 3000 | J
n ~ 500 - —
§ 200 1000 | \\’\1 | 3 2000 J
c I 4
(=] 500 L 4
2 L s | gl w 4 | 2 Quad-core
o o
- 150 ! -t i
2 S a0k
g I 2w Intel Xeon E5541
S S
@ 100 - @
.? S 200] 2 5 3 GHZ
2 | m—m CPUonly g m—acruony 4 .
= sor 3 apUs \an s F 100} y s M |
| v—v4GPUs] | ¥—V4GPUs 1
L 1 " | L | L | " 1 L 1 L
0= > 4 6 8 05 2 4 6 8
cores cores
© JAC (23,558 atoms)/cut-off © JAC (23,558 atoms)/PME
80 : T T T T 100 T | T T T T T
| m—mCPUonly 300] M 600 | I I I T
0 2 g:g o 80
R L I i
260~ v—vaGPUs - B e
;3, r L el 0 2 4 6 8 o
c ' [= b
g s g R —
E 3
e @ aof- -
- e | A] Important lesson:
2 20} 2 =m—= CPU only v
£ — E | e 8icry A Off/on node
2 GPU . .
| v—v2aPUs | communication overlap
' 1 L 1 L 1 ' L 1 L L
00 2 4 6 8 00 é 4Il é 8
cores cores

communication communication National

less off-node more off-node @ Sandia
Laboratories

Total energy (kcal/mol)

V
| “ "Results: NVIDIA’s Fermi

» Early access to Fermi card: single vs double precision

Fermi: ~6X more double precision capability than Tesla series

* Better and more stable MD trajectories

-61950

-61960

-61970

10000

T

—— GPU single precision
GPU double precision
—— CPU only

(3]
(=3
o
o

o

3000
2000

1000

0
600

Time-to-solution (seconds)

400

|
200

| L |
409 600
time-steps

|
800

1000 200

0

Intel Xeon E5520 (2.27 GHz) @ Sandia

Double precision

rhodox1o/Pme L] CPU-only u
I with C1060 (Tesla) |

I with C2050 (Ferml)

IIHI- e B

rhodoX3/PME

IIHI- ﬂl-_ml-_

JAC/PME

cores

National _
Laboratories

Results: GPU cluster

A

» 24-nodes Linux cluster: 4 quad CPUs + 1 Tesla card
per node

— AMD Opteron 8356 (2.3 GHz), Infiniband DDR
 Pipelining allows all up to 16 cores to off-load to 1 card
* Improvement in time-to-solution

LAMMPS (CPU-only)
Nodes 1c/n 2c/n 4 c/n 8c/n 16c/n
1 15060.0 7586.9 3915.9 2007.8 10241
2 7532.6 3927.6 1990.6 1052.9 580.5
4 3920.3 1948.1 1028.9 559.2 302.4

Protein in water 8 19560 1002.8 528.1 2795 192.6

16 992.0 521.0 262.8 168.5 139.9*

320,000 atoms 24 673.8 3350 1887 1451 2145
(Long range GPU-enabled LAMMPS (1 C1060/node)

. Nodes 1c/n 2c/n 4 c/n 8c/ln 16c/n

electrostatics) 1 30055 1749.9 11914 8250 890.6

2 1304.5 817.9 544.8 515.1 480.6
4 598.6 382.2 333.3 297.0 368.6
8 2979 2132 180.1 202.0 311.7
16 167.3 176.5 311.1

24 196.3 371.1 @ Sandia
National
Laboratories

V
P~ ' Results: GPU cluster

* Optimal use: matching algorithm with hardware

* The best time-to-solution comes from multi-level
parallelism

— Using CPUs AND GPUs
Data locality makes a significant impact on the

narformance
96,000 atoms (cut-off) 320,000 atoms (PPPM/PME)

. 104? 8 1 ~ | f 16 24 nodes |
>
_?5 16 _._?5 o 7
~ \: o -
5 24nodes %) coreamone &4l T oreanoce -
=, 4 cores/node = 4 cores/node
¥*—¥ 8 c /node o 3 ¥—¥ 8 cores/node b
g' ®® 16 s/node 3 3k @@ 16 cores/node _
1 5 — -1 1
T
2 2 I '
Q. Qo 2+
n n | T
| acceleration @ ®~ ">~y ____
acceleration T slow-down
slow-down l I
0 1 1 1 Ll 1 1 1 L1111 1 1 o 1 | raal
1 10 100 1 10 100
Total number of cores Total number of cores
(with 1 Tesla C1060/node) (with 1 Tesla C1060/node)
Cut-off = short range forces only ﬁgtﬂ_dlal
. iona
PME = Particle mesh Ewald method for long range Laboratories

'
4 z " Performance modeling

0
Theoretical limit
= kernel (v1,v2) (computations only)
60 & procedure (v1)]
—0— procedure (v2)
g' -0 application (v1)
o —0— application (v2)
40 -
o
Q
7))
20 [- Off-loading non-bonded
(data transfer included)
0 Entire simulation
0
LAMMPS L NOdes
tP
_H&t y—> &tkL —>
! 3| COMPUTE | > * Kernel speedup = time to execute the doubly
GPU v1 1 nested for loop of the compute() function (without
—ts g i cost of data transfer)
——> Rebuld NL —>{Copy data_|-> _ CopyNL _ ;-] COMPUTE |->{Copy deta_|—> « Procedure speedup = time for the compute()
function to execute, including data transfer costs in
GPU v2 tz
« s T s the GPU setup
——> Rebuild NL ——>{Copy data_}> Calc. neighbors > COMPUTE }->{ Copy data |—> ° Overall speedup = run-time (CPU only) /

. . 4 Sandia
| it/ - | R run-time (CPU + GPU) @ National
wall-clock time Laboratories

=X
Long range electrostatics

« Gain from multi-level hierarchy

- Matching the hardware features with software
requirements

*« On GPUs

— Lennard-Jones and short range terms (direct space)

— Less communication and more computationally dense
* Long range electrostatics

— Particle mesh Ewald (PME)

— Requires fast Fourier transforms (FFT)

— Significant communication

— Keep it on the multi-core

Sandia
National
Laboratories

\

hould a block or a thread be assigned to each atom?

(Note that this question wouldn’t even be asked for a legacy CPU code.)

BpA = Block per Atom
* A block of threads is assigned to each atom
 Each thread then computes a single atom-atom interaction

TpA = Thread per Atom
* A single thread is assigned to each atom
* Each thread then computes all of that atom’s interactions with other atoms

» Which approach will be faster?

Sandia
National
Laboratories

double precision single precision

10 = 10 =

e g T IF E
= r 3 = 3
— —_ BpA — - —]

O.IE— — TpA _E O.IE— _E
oo1— L 1t b g e

o
b2
=
(=)
o0
S
o
b2
=~
(@)
o0
S

10 10

Time
| IIIIIII|
| IIIIIII|
I IIIIIII|
| IIIIIII|

0.1 0.1

0‘0 1] |] |] |] | 0.0l |] |] |] |]
0 0
cutoff cutoff

wn
[S—
o
[a—
wn
9
(e
R
wn
wn
[a—
o
[S—
wh
)
o
P9

IRN-I'T

quio[no))-weysunong

V '
} Results of BpA vs TpA study

* Speed differences up to 6.5x observed
* TpA 1s faster when below a critical cutoff distance, rcut
* rcut

critical

«itica; d€pends on force field, precision, hardware, and N, ..

Why 1s TpA faster when atoms have fewer neighbors?

* BpA has more overhead than TpA (you have to start one
block per atom instead only one thread per atom).

* BpA method does not flush out data you need on other
atoms as fast as the TpA method.

Sandia
National
Laboratories

:;,.7

Conclusions for GPU-LAMMPS project:

* Make both options available to GPU-LAMMPS users.

 Have LAMMPS pick the faster option via a short test run,
but allow user to over-ride LAMMPS’s choice.

Broader conclusions:

* Writing fully-optimized many-core code will likely require
a lot of additional work.

* Porting legacy code to run efficiently on exascale machines
will be non-trivial.

Sandia
National
Laboratories

Kspace Time is plotted (LJ System with Coulomb, Density: 0.1, GTX280, Dual Xeon5560 2.67GHz)

10

[
o

Execution time (S)

KSpace Benchmark LAMMPS

CUDA

N

<> <> GPU PPPM le-4
4 ¢ GPU PPPM le-6
& 0 CPU (1Core) PPPM 1le-4

3—=1 CPU (8Core) PPPM 1le-4
B CPU (8Core) PPPM le-6
&—o CPU (8Core) Ewald 1e-4
#—e CPU (8Core) Ewald 1e-6

10"

of atoms

10

>~

Aspherical Particle Simulations

 Particles in nature and
manufacturing often have
highly irregular shapes

* Liquid crystal simulations
» Coarse Graining

« Majority of computational
particle mechanics (CPM)
simulators treat only
spherical particles

* Need a parallel and
scalable implementation
to attack realistic
problems (LAMMPS)

(&)

Sandia
National
Laboratories

=X
Gay-Berne Potential

 Single-site U=U(A A ALA ALAT
pOtgntlal for r(1° 2,1‘12)1712(1 2)7(12(1 29’"12)
asphericals

* h is the distance of I 12 - Y]
closest approach U = 4gl(j —(j |

* S is the shape [\ +y0) by +yo) |

matrix

* The E matrix - i
ChIa;aCtenzl?z th?h 25,5, |
relative well depths My, =
of side-to-side, P o | det[ATSTA, + AgsgAz]J
face-to-face, and i 1/2
end-to end s =ab, +Cici][aibi]
interactions

« ~30 times the cost
of an LJ interaction E T(ATEA, +ATEA,) 12}

Sandia
National
Laboratories

7))
o
lm
wid
L
-
E
/p)
©
whed
7))
-
O
=)
-
1)
—d

Laboratories

Sandia
National

(&)

Tﬁ

' F&%ME;

f_,

| J—
ki

Al
e i 4
oG
___..t _r...._‘_..%—. m i

]

; i_z it ,5 Ef
i oy ,_mﬁ__%

Al 55_
?ﬁﬁi A ,"_.3

,m

x__,,__,f f,

et

;
f }_E ﬁa w,..ndi 4 }_E;
t. AN mv ¢
r___ E.;: fyﬁ

T

Y
' Accelerated Gay-Berne in LAMMPS

* Good candidate for GPU acceleration
— Very expensive force calculation

 Available in the GPU package (make yes-asphere yes-gpu)
— Can run on multiple GPUs on a single node or in a cluster
— Multiple precision options: Single, Single/Double, and Double
— Can simulate millions of particles per GPU

Sandia
National
Laboratories

>~

1. Copy atom positions and quaternions to device

2. Did reneighbor occur ? copy neighbor list to device
3. Call neighbor_pack kernel

1 Atom per GPU Core

Perform cutoff check for all neighbors and store for coalesced
access

This limits thread divergence for the relatively expensive force
computation

4. Call force computation kernel
1 Atom per GPU Core

Use full neighbor lists (double the amount of computations
versus the CPU)

No collisions with this approach
Compute force, torque, energies, and virial terms
5. Copy forces, torques, energies, and virial terms to host

Algorithm

Sandia
National
Laboratories

GPGPU Times Speedup vs 1 Core

(c=cutoff, 32768 particles)

400.0 B Thunderbird = Glory

350.0

300.0

250.0

200.0

150.0

100.0

50.0

0.0

GPGPU: 1, 2, 3, or 4 NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 71 core of Dual 3.6 GHz Intel EM64T processors
Glory: 1 core of Quad Socket/Quad Core 2.2 GHz AMD

Sandia
National
Laboratories

GPGPU Times Speedup vs 1 Node

(c=cutoff, 32768 particles)

120.0 ® Thunderbird m Glory

96.2
100.0

80.0

60.0

40.0

20.0

0.0

GPGPU: 1, 2, 3, or NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 2 procs, Dual 3.6 GHz Intel EM64T processors
Glory: 16 procs, Quad Socket/Quad Core 2.2 GHz AMD

Sandia
National
Laboratories

Times Speedup vs 1 Core
(c=4, 1 Tesla C1060, 3.6 GHz Intel EM64T processor)

70.0

e = %869

60.0

50.0

40.0

=—Single =>¢Mixed -#—Double

30.0

20.0

W‘.c: 440 = 14.0
100 E 11T

0.0

0 100000 200000 300000 400000 500000 600000

Particles
Sandia
National
Laboratories

=X
* Simulation Time Breakdown

32K Particles, Cutoff=4, 1 Tesla C1060

0%

23%
24%

| = Atom Copy
‘ = Neighbor Copy
\ Neighbor Pack

m Force Calc

o Answer Copy

= Other

CPU Neighbor

/ CPU Other

1%\\
1%

Sandia
National
Laboratories

\

HPC Comparison

1000

Biaxial Ellipsoid Simulations
c=4
100 +
—o— TBIRD-256
—=—GPU-4
1}
o 10 - GLORY-256
% —w—GPU-3
o
i) TBIRD-128
7}
“E’ —e— GPU-2
£ 1.
= —— GLORY-128
GPU-1
GLORY-16
01 —e—TBIRD-2
. TBIRD-1
—a— GLORY-1
0-01 T T T T T 1
0 100000 200000 300000 400000 500000 600000
Particles

» A single 4-GPU accelerated node can run a simulation faster than a
256-core simulation on Thunderbird or Glory.

* The power requirements for the GPU accelerated run were <1.2 kW
versus 11.2 kW on Glory or 44.8 kW on Thunderbird Sandia
@ gat}:ﬂg?cllﬁes

>~

* Difficult to keep force computation in registers

— Had to manually scope variables to fit single precision in
registers

— Double precision goes to global memory
* Had to manually unroll Gaussian elimination loop
— Compiler could not figure out array pointer arithmetic
« Complicated memory management can lead to
separate implementations

— e.g. what if a given simulation has atom type constants
that do not fit in shared memory?

— Many GPU implementations are “benchmark codes”
meant for publication, not real use

Coding Issues

Sandia
National
Laboratories

V
*‘ Alternative Algorithms

* Forces divided evenly among GPU cores (as opposed to per

atom)

Need atomic operations to avoid collisions
No floating point atomic operations on current hardware
Slower for large simulations

>20x speedup for a 128 particle simulation with Gay-Berne (<1
particle per core)

* Neighbor list computation on the GPU
— For Lennard-Jones, the simulation time is halved using a GPU cell

list implementation

 Concurrent CPU execution

Multithreaded force decomposition (OpenMP)

Domain decomposition (separate MPI process for GPU and CPU
computations)

Multiple threads/processes utilizing same GPU

For Gay-Berne, the upper-bound for concurrent execution
performance gains is small

« Overhead (full neighbor lists, thread creation, domain sizes)

For some potentials, concurrent execution may be needed in order to

achieve good speedups

(&)

Sandia
National
Laboratories

28800 [~

/) ‘\
28400 [

-256080

-256120

-256160

Energy (kcal/mol)

—GPU

— Cray XT4 (256)

-284400 |-

-284800

-285200

Cray XT4
CPU-cores 64 (16 x 4)°
GPUs
Compiler PGI
(v 8.0-3)
Precision Double

Time (ps)

Cray XT4

256 (64 x 4)

PGI
(v 8.0-3)

Double

400.0 600.0

Linux cluster
64 (4 x 16)

Gcce
(4.1.1)

Double

GPU cluster
8 (8x1)
8 (8x1)

gcc (4.1.1)
+CUDA (2.2)

“

>,

OpenCL, CUDA-Driver, CUDA-Runtime?

* OpenCL offers a general API that is supported by many
vendors and allows the potential to run kernels efficiently
on the CPU in addition to coprocessor devices.

« CUDA Driver is a more mature GPGPU programming API
with stable compilers, freedom in the choice of host
compilers, and can potentially generate the most efficient
code for Nvidia devices.

« CUDA Runtime offers a more succinct APl and support for
GPU code integrated with host code.

» Geryon — Software library that allows a single code to
compile using any of the 3 APIs. Change namespace to
change API.

Sandia
National
Laboratories

>~

« Legacy codes can not be automatically “translated” to run efficiently on GPUs.

« GPU memory management is tricky to optimize and strongly affects
performance.

 Host-device communication is a bottleneck.

» Moving more of the calculation to the GPU improves performance, but requires
more code conversion, verification, and maintenance.

» Optimal algorithm on CPU is not necessarily the optimal algorithm on GPU or
on a hybrid cluster (i.e. neighbor lists, long-range electrostatics).

» Mixed- or single-precision is OK in some cases, and considerably faster.
Preferable to give users the choice of precision.

» Optimal performance requires simultaneous use of available CPUs, GPUs, and
communication resources.

Lessons learned

Sandia
National
Laboratories

>~

AU o e

Remaining challenges

Funding limitations

Merging of disparate efforts and “visions”

Better coverage: port more code (FFs, other) to GPU
Better performance (better algorithms & code)
Quality control (code correctness and readability)

Code maintenance

a. Synching with standard LAMMPS
b. User support

c. Bug fixes

Sandia
National
Laboratories

