
Using GPUs for faster LAMMPS
particle simulations

Paul S. Crozier

Exploiting New Computer Architectures in
Molecular Dynamics Simulations

March 23, 2011

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2011-1446C

Acknowledgements

Ilmenau Univ. of Tech., Germany

Christian Trott & Lars Winterfeld

Sandia National Laboratories

Steve Plimpton & Aidan Thompson

Oak Ridge National Lab

Mike Brown, Scott Hampton & Pratul Agarwal

LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator)

http://lammps.sandia.gov

 Classical MD code.

 Open source, highly portable C++.

 Freely available for download under GPL.

 Easy to download, install, and run.

 Well documented.

 Easy to modify or extend with new features and functionality.

 Active user’s e-mail list with over 650 subscribers.

 Since Sept. 2004: over 50k downloads, grown from 53 to 175 kloc.

 Spatial-decomposition of simulation domain for parallelism.

 Energy minimization via conjugate-gradient relaxation.

 Radiation damage and two temperature model (TTM) simulations.

 Atomistic, mesoscale, and coarse-grain simulations.

 Variety of potentials (including many-body and coarse-grain).

 Variety of boundary conditions, constraints, etc.

http://lammps.sandia.gov/

Why Use LAMMPS?
Answer 1: (Parallel) Performance

Protein (rhodopsin) in solvated lipid bilayer

Fixed-size (32K atoms) & scaled-size (32K/proc) parallel efficiencies

Billions of atoms on 64K procs of Blue Gene or Red Storm

Typical speed: 5E-5 core-sec/atom-step (LJ 1E-6, ReaxFF 1E-3)

Why Use LAMMPS?

Answer 2: Versatility

Chemistry

Materials
Science

Biophysics

Granular
Flow

Solid
Mechanics

Why Use LAMMPS?

Answer 3: Modularity

LAMMPS Objects

atom styles: atom, charge, colloid, ellipsoid, point dipole

pair styles: LJ, Coulomb, Tersoff, ReaxFF, AI-REBO, COMB,
MEAM, EAM, Stillinger-Weber,

fix_styles: NVE dynamics, Nose-Hoover, Berendsen, Langevin,
SLLOD, Indentation,...

compute styles: temperatures, pressures, per-atom energy, pair
correlation function, mean square displacemnts, spatial and time
averages

Goal: All computes works with all fixes work with all pair styles work
with all atom styles

pair_reax.cpp fix_nve.cpp

pair_reax.h fix_nve.h

Why Use LAMMPS?

Answer 4: Potential Coverage

LAMMPS Potentials
pairwise potentials: Lennard-Jones, Buckingham, ...
charged pairwise potentials: Coulombic, point-dipole
manybody potentials: EAM, Finnis/Sinclair, modified EAM
(MEAM), embedded ion method (EIM), Stillinger-Weber, Tersoff, AI-
REBO, ReaxFF, COMB
electron force field (eFF)
coarse-grained potentials: DPD, GayBerne, ...
mesoscopic potentials: granular, peridynamics
long-range Coulombics and dispersion: Ewald, PPPM (similar to
particle-mesh Ewald)

Why Use LAMMPS?

Answer 4: Potentials

LAMMPS Potentials (contd.)
bond potentials: harmonic, FENE,...
angle potentials: harmonic, CHARMM, ...
dihedral potentials: harmonic, CHARMM,...
improper potentials: harmonic, cvff, class 2 (COMPASS)
polymer potentials: all-atom, united-atom, bead-spring, breakable
water potentials: TIP3P, TIP4P, SPC
implicit solvent potentials: hydrodynamic lubrication, Debye
force-field compatibility with common CHARMM, AMBER, OPLS,
GROMACS options

Why Use LAMMPS?

Answer 4: Range of Potentials

LAMMPS Potentials
Biomolecules: CHARMM, AMBER, OPLS, COMPASS (class 2),

long-range Coulombics via PPPM, point dipoles, ...

Polymers: all-atom, united-atom, coarse-grain (bead-spring FENE),
bond-breaking, …

Materials: EAM and MEAM for metals, Buckingham, Morse, Yukawa,
Stillinger-Weber, Tersoff, AI-REBO, ReaxFF, COMB, eFF...

Mesoscale: granular, DPD, Gay-Berne, colloidal, peri-dynamics, DSMC...

Hybrid: can use combinations of potentials for hybrid systems:
water on metal, polymers/semiconductor interface,
colloids in solution, …

• One of the best features of LAMMPS
–80% of code is “extensions” via styles
–only 35K of 175K lines is core of LAMMPS

• Easy to add new features via 14 “styles”
–new particle types = atom style
–new force fields = pair style, bond style, angle style, dihedral style, improper style
–new long range = kspace style
–new minimizer = min style
–new geometric region = region style
–new output = dump style
–new integrator = integrate style
–new computations = compute style (global, per-atom, local)
–new fix = fix style = BC, constraint, time integration, ...
–new input command = command style = read_data, velocity, run, …

• Enabled by C++
–virtual parent class for all styles, e.g. pair potentials
–defines interface the feature must provide
–compute(), init(), coeff(), restart(), etc

Why Use LAMMPS?

Answer 5: Easily extensible

Motivation for adding GPU capabilities to LAMMPS

• User community interest

• The future is many-core, and GPU computing is leading the way

• GPUs and Nvidia’s CUDA are the industry leaders
– Already impressive performance, each generation better

– More flops per watt

– CUDA is way ahead of the competition

• Other MD codes are working in this area and have shown
impressive speedups
– HOOMD

– NAMD

– Folding@home

– Others

Motivation: Better time-scales

Protein dynamical events

10-15 s 10-12 10-9 10-6 10-3 100 s

kBT/h Side chain and loop motions
0.1–10 Å

Elastic vibration of globular region <0.1 Å Protein breathing motions
Folding (3° structure), 10–100 Å

Bond
vibration

H/D exchange

10-15 s 10-12 10-9 10-6 10-3 100 s

Experimental techniques
NMR: R1, R2 and NOE

Neutron scattering
NMR: residual dipolar coupling

Neutron spin echo

2° structure

Molecular dynamics

10-15 s 10-12 10-9 10-6 10-3 100 s

2005 2011

Agarwal: Biochemistry (2004), 43, 10605-10618; Microbial Cell Factories (2006) 5:2; J. Phys. Chem. B 113, 16669-80.

A look at history

1 Gflop/s

1 Tflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

N=1

N=500

Top 500 Computers in the
World

Historical trends

Courtesy: Al Geist (ORNL), Jack Dongarra (UTK)

2012

2015

2018

Concurrency

Fundamental assumptions of system software architecture and
application design did not anticipate exponential growth in parallelism

Courtesy: Al Geist (ORNL)

Future architectures

• Fundamentally different architecture

– Different from the traditional MPP (homogeneous) machines

• Very high concurrency: Billion way in 2020

– Increased concurrency on a single node

• Increased Floating Point (FP) capacity from accelerators

– Accelerators (GPUs/FPGAs/Cell/? etc.) will add heterogeneity

Significant Challenges:

Concurrency, Power and Resiliency

2012  2015  2018 …

GPU-LAMMPS project goals & strategy

Goals

• Better time-to-solution on particle simulation problems we
care about.

• Get LAMMPS running on GPUs (other MD codes don’t
have all of the cool features and capabilities that
LAMMPS has).

• Maintain all of LAMMPS functionality while improving
performance (roughly 2x – 100x speedup).

• Harness next-generation hardware, specifically
CPU+GPU clusters.

Strategy

• Enable LAMMPS to run efficiently on CPU+GPU clusters.
Not aiming to optimize for running on a single GPU.

• Dual parallelism
– Spatial decomposition, with MPI between CPU cores
– Force decomposition, with CUDA on individual GPUs

• Leverage the work of internal and external developers.

CPU
Most of

LAMMPS code

GPU
Compute-

intensive kernels

positions fo
rc

es

CPU-GPU
communication

each
time-step

(the rest of the CPU/GPU cluster)

Inter-node MPI
communication

• Off-loading: improving performance in strong scaling

• Other Alternative: Entire (or most) MD run on GPU

• Computations are free, data localization is not

– Host-GPU data exchange is expensive

– In a multiple GPU and multi-node: much worse for entire
MD on GPU

We propose/believe:

• Best time-to-solution will come from not using a single
resource but most (or all) heterogeneous resources

• Keep the parallelism that already LAMMPS has

– Spatial decomposition: Multi-core processors/MPI

Our Approach:
Gain from multi-level parallelism

CPU

Compute
bonded terms

If needed
update the
neighbor list

Compute the
electrostatic and
Lennard-Jones
interaction terms for
energy/forces

Collect forces, time
integration (update
positions), adjust
temperature/pressure,
print/write output

Loop: i = 1 to N

CPU
{Bond} {Neigh} {Pair} {Other + Outpt}

{Comm} = communication

δt

Host only

Loop: i = 1 to N

GPU v1

Compute
bonded terms

Compute the
electrostatic and
Lennard-Jones
interaction terms for
energy/forces

Collect forces, time
integration (update
positions), adjust
temperature/pressure,
print/write output

GPU

CPU

If needed
update the
neighbor list

atomic positions &
neighbor’s list

forces

GPU as a
Co-processor

GPU v2/v3

If needed
update the
neighbor list

Compute the
electrostatic and
Lennard-Jones
interaction terms for
energy/forces

Collect forces, time
integration (update
positions), adjust
temperature/pressure,
print/write output

Loop: i = 1 to N

GPU

CPU

atomic positions

forces

Compute
bonded terms

GPU as an
Accelerator

With concurrent
computations on
CPU & GPU

GPU-LAMMPS project structure

Developers team
Paul Crozier (1435)
Mike Brown (ORNL)
Arnold Tharrington (ORNL)
Scott Hampton (ORNL)
Axel Kohlmeyer (Temple)
Christian Trott (Ilmenau)
Lars Winterfeld (Ilmenau)
Duncan Poole (Nvidia)
Peng Wang (Nvidia)
~10 others (PSU, RPI, Ga Tech, Mellanox)

Publicity
Presentations at SC09, SC10, LCI HPC

conference, SOS14, LAMMPS workshop,
ASC threading workshop, ORNL
biomolecular sims workshop

Best paper award @ HPCS 2010
Several more publications in preparation
Application for Thuringia, Germany research

prize, €17.5k

Collaboration infrastructure
http://lammps.sandia.gov
http://code.google.com/p/gpulammps/
External Subversion repository, wiki pages
E-mail list: gpulammps@sandia.gov
Monthly telecons
Periodic face-to-face meetings
- Nvidia HQ (Aug 2009)
- SC09 in Portland (Nov 2009)
- LAMMPS workshop @ CSRI (Feb 2010)

Funding
OLCF-3 Apps Readiness
Mantevo project led by Mike Heroux (Sandia)
Most team members have their own minimal funding

mailto:gpulammps@sandia.gov
http://code.google.com/p/gpulammps/
http://lammps.sandia.gov/

Force field coverage

• pairwise potentials: Lennard-Jones, Buckingham, Morse, Yukawa, soft, class 2 (COMPASS), tabulated

• charged pairwise potentials: Coulombic, point-dipole

• manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), Stillinger-Weber, Tersoff, AI-
REBO, ReaxFF

• coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO, cg/cmm

• mesoscopic potentials: granular, Peridynamics

• polymer potentials: all-atom, united-atom, bead-spring, breakable

• water potentials: TIP3P, TIP4P, SPC

• implicit solvent potentials: hydrodynamic lubrication, Debye

• long-range Coulombics and dispersion: Ewald, PPPM (similar to particle-mesh Ewald), Ewald/N for long-
range Lennard-Jones

• force-field compatibility with common CHARMM, AMBER, OPLS, GROMACS options

• Dual Quad Core Intel®
Xeon® Processors X5560
2.8GH

• 1 Tesla C1060 GPU

• Use of Tesla is almost always
faster than not using it on this
machine.

• Tesla 3.2x faster than Dual
Quad Core for 4000 atom
system.

Results for LAMMPS LJ benchmark

Workflow

Thread-per-atom vs Block-per-atom

Scaling problem: communications costs

Simulation speed vs system size

GPU speedups on several classes of materials

Using Newton’s 3rd law to cut work

Cell list vs neighbor list

Particles in a cell

Particles in a cell list

Cell list vs neighbor lists

LJ, fixed # atoms per node (weak scaling)

LJ, fixed size (strong scaling)

Silicate, fixed # atoms per node (weak scaling)

Silicate system, fixed size (strong scaling)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

1 2 3 4 1 2 3 4

c=4 c=7

56.8

108.8

145.2

190.2

75.2

145.6

175.7

235.0

85.0

163.0

217.4

284.8

115.3

223.2

269.4

360.4

GPGPU Times Speedup vs 1 Core
(c=cutoff, 32768 particles)

Thunderbird Glory

GPGPU: 1, 2, 3, or 4 NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 1 core of Dual 3.6 GHz Intel EM64T processors
Glory: 1 core of Quad Socket/Quad Core 2.2 GHz AMD

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 1 2 3 4

c=4 c=7

28.7

55.1

73.4

96.2

38.4

74.3

89.7

120.0

4.2
8.0

10.6 13.9

5.4
10.4 12.6 16.8

GPGPU Times Speedup vs 1 Node
(c=cutoff, 32768 particles)

Thunderbird Glory

GPGPU: 1, 2, 3, or NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 2 procs, Dual 3.6 GHz Intel EM64T processors
Glory: 16 procs, Quad Socket/Quad Core 2.2 GHz AMD

Biomolecular simulation with GPU-LAMMPS

7.12

11.86

19.13
21.35

32.45

52.54

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 GPU/CPU 2 GPUs/CPUs 4 GPUs/CPUs

T
im

e
s

 S
p

e
e

d
u

p
 v

s
 1

 C
P

U
 C

o
re

Joint-AMBER-CHARMM Benchmark
Intel Xeon E5540 (2.53 GHz) with Tesla C1060

23,558 atoms

v1

v3

GPU-LAMMPS bio-MD speedup
on a multi-node CPU/GPU cluster

LAMMPS (no GPUs, GPU package, CUDA package)
vs. HOOMD on an LJ benchmark

Benchmark parameters
• 442,368 LJ atoms
• 2000 timesteps
• *= 0.4, T* = 0.5

Hardware differences
• “no GPUs” case: N = # of CPUs
• “GPU package” case: N = # of C1060s & CPUs
• “CUDA package” case: N = # of C1060s
• “HOOMD” case: N = # of GTX 280s (slightly
faster than C1060s)

Other caveats
• HOOMD would likely perform better with fewer
particles and a longer run due to memory access
considerations
• Additional parameter tuning might improve
performance in several cases

Results: JAC benchmark
Single workstation

Serial Intel Xeon E5540 with Tesla C1060
JAC CPU GPU v1 GPU v2 GPU v3

Pair (%) 310.8 (93.9) 12.91(27.8) 13.6 (40.4) 8.4 (54.0)
Bond (%) 5.2 (1.6) 5.1 (10.9) 5.2 (15.3) 5.0 (32.4)
Neigh (%) 12.9 (3.9) 26.5 (57.0) 12.9 (38.1) 0.1 (0.4)
Comm (%) 0.2 (0.1) 0.2 (0.5) 0.2 (0.7) 0.2 (1.5)
Other (%) 1.9 (0.6) 1.8 (3.9) 1.9 (5.5) 1.8 (11.6)
Total (s) 331.0 46.5 33.8 15.5

Non-bonded

2 GPUs Intel Xeon E5540 with Tesla C1060
JAC CPU GPU v1 GPU v2 GPU v3
Pair (%) 162.6 (78.1) 6.5 (23.4) 7.0 (34.9) 4.6 (45.0)
Bond (%) 2.9 (1.4) 2.6 (9.2) 2.6 (12.7) 2.6 (25.2)
Neigh (%) 6.7 (3.2) 12.9 (46.4) 6.4 (31.5) 0.0 (0.3)
Comm (%) 34.8 (16.7) 4.7 (16.9) 3.1 (15.2) 1.9 (18.3)
Other (%) 1.2 (0.6) 1.1 (4.1) 1.1 (5.7) 1.1 (11.1)
Total (s) 208.2 27.9 20.2 10.2
4 GPUs Intel Xeon E5540 with Tesla C1060
Pair (%) 76.4 (58.1) 3.3 (19.1) 3.7 (29.5) 2.7 (43.3)
Bond (%) 1.3 (1.0) 1.3 (7.3) 1.3 (10.2) 1.3 (20.0)
Neigh (%) 3.1 (2.4) 6.2 (35.8) 3.1 (24.6) 0.0 (0.3)
Comm (%) 50.1 (38.0) 5.8 (33.6) 3.8 (30.1) 1.6 (25.1)
Other (%) 0.7 (0.6) 0.7 (4.0) 0.7 (5.6) 0.7 (11.1)
Total (s) 131.6 17.3 12.6 6.3

Joint AMBER-CHARMM
23,558 atoms

(Cut-off based)

Intel Xeon E5540
2.53 GHz

Performance: Single-node (multi-GPUs)

• Single workstation with 4 Tesla C1060 cards

• 10-50X speed-ups, larger systems – data locality

• Super-linear speed-ups for larger systems

• Beats 100-200 cores of ORNL Cray XT5 (#1 in Top500)

Performance metric (ns/day)

Challenge: How do all cores use a single (or limited) GPUs?

Solution: Use pipelining strategy*

Pipelining: scaling on
multi-core/multi-node with GPUs

* = Hampton, S. S.; Alam, S. R.; Crozier, P. S.; Agarwal, P. K. (2010), Optimal utilization of
heterogeneous resources for biomolecular simulations. Supercomputing 2010.

Results: Communications overlap

Need to overlap off-node/on-node communications

– Very important for strong scaling mode

less off-node
communication

more off-node
communication

Important lesson:
Off/on node

communication overlap

2 Quad-core
Intel Xeon E5540
2.53 GHz

Results: NVIDIA’s Fermi

• Early access to Fermi card: single vs double precision

• Fermi: ~6X more double precision capability than Tesla series

• Better and more stable MD trajectories
Double precision

Intel Xeon E5520 (2.27 GHz)

Results: GPU cluster

• 24-nodes Linux cluster: 4 quad CPUs + 1 Tesla card
per node

– AMD Opteron 8356 (2.3 GHz), Infiniband DDR

• Pipelining allows all up to 16 cores to off-load to 1 card

• Improvement in time-to-solution

LAMMPS (CPU-only)
Nodes 1 c/n 2 c/n 4 c/n 8 c/n 16 c/n

1 15060.0 7586.9 3915.9 2007.8 1024.1
2 7532.6 3927.6 1990.6 1052.9 580.5
4 3920.3 1948.1 1028.9 559.2 302.4
8 1956.0 1002.8 528.1 279.5 192.6

16 992.0 521.0 262.8 168.5 139.9*
24 673.8 335.0 188.7 145.1 214.5

GPU-enabled LAMMPS (1 C1060/node)
Nodes 1 c/n 2 c/n 4 c/n 8 c/n 16 c/n

1 3005.5 1749.9 1191.4 825.0 890.6
2 1304.5 817.9 544.8 515.1 480.6
4 598.6 382.2 333.3 297.0 368.6
8 297.9 213.2 180.1 202.0 311.7

16 167.3 126.7 118.8 176.5 311.1
24 111.1 89.2* 108.3 196.3 371.1

Protein in water
320,000 atoms
(Long range
electrostatics)

Results: GPU cluster

• Optimal use: matching algorithm with hardware

• The best time-to-solution comes from multi-level
parallelism

– Using CPUs AND GPUs

• Data locality makes a significant impact on the
performance

Cut-off = short range forces only
PME = Particle mesh Ewald method for long range

96,000 atoms (cut-off) 320,000 atoms (PPPM/PME)

• Kernel speedup = time to execute the doubly
nested for loop of the compute() function (without
cost of data transfer)

• Procedure speedup = time for the compute()
function to execute, including data transfer costs in
the GPU setup

• Overall speedup = run-time (CPU only) /

run-time (CPU + GPU)

baileybaby222:

Theoretical limit
(computations only)

Off-loading non-bonded
(data transfer included)

Entire simulation

Performance modeling

Long range electrostatics

• Gain from multi-level hierarchy

• Matching the hardware features with software
requirements

• On GPUs

– Lennard-Jones and short range terms (direct space)

– Less communication and more computationally dense

• Long range electrostatics

– Particle mesh Ewald (PME)

– Requires fast Fourier transforms (FFT)

– Significant communication

– Keep it on the multi-core

Should a block or a thread be assigned to each atom?

(Note that this question wouldn’t even be asked for a legacy CPU code.)

BpA = Block per Atom
• A block of threads is assigned to each atom
• Each thread then computes a single atom-atom interaction

TpA = Thread per Atom
• A single thread is assigned to each atom
• Each thread then computes all of that atom’s interactions with other atoms

 Which approach will be faster?

Results of BpA vs TpA study

• Speed differences up to 6.5x observed
• TpA is faster when below a critical cutoff distance, rcutcritical

• rcutcritical depends on force field, precision, hardware, and Natoms

Why is TpA faster when atoms have fewer neighbors?

• BpA has more overhead than TpA (you have to start one
block per atom instead only one thread per atom).
• BpA method does not flush out data you need on other
atoms as fast as the TpA method.

Conclusions for GPU-LAMMPS project:
• Make both options available to GPU-LAMMPS users.
• Have LAMMPS pick the faster option via a short test run,

but allow user to over-ride LAMMPS’s choice.

Broader conclusions:
• Writing fully-optimized many-core code will likely require

a lot of additional work.
• Porting legacy code to run efficiently on exascale machines

will be non-trivial.

Aspherical Particle Simulations

• Particles in nature and
manufacturing often have
highly irregular shapes

• Liquid crystal simulations

• Coarse Graining

• Majority of computational
particle mechanics (CPM)
simulators treat only
spherical particles

• Need a parallel and
scalable implementation
to attack realistic
problems (LAMMPS)

Gay-Berne Potential

• Single-site
potential for
asphericals

• h is the distance of
closest approach

• S is the shape
matrix

• The E matrix
characterizes the
relative well depths
of side-to-side,
face-to-face, and
end-to end
interactions

• ~30 times the cost
of an LJ interaction

U Ur A1,A 2,r12 12 A1,A 2 12 A1,A 2, ˆ r 12 

Ur  4


h12  











12




h12  











6











12 
2s1s2

det A1
TS1

2A1 A 2
TS2

2A 2 













 / 2

s  aibi  c ic i  aibi 
1/ 2

12  2ˆ r 12
T A1

TE1A1 A 2
TE2A 2 

1
ˆ r 12 



Liquid Crystal Simulations

Accelerated Gay-Berne in LAMMPS

• Good candidate for GPU acceleration

– Very expensive force calculation

• Available in the GPU package (make yes-asphere yes-gpu)

– Can run on multiple GPUs on a single node or in a cluster

– Multiple precision options: Single, Single/Double, and Double

– Can simulate millions of particles per GPU

Algorithm

1. Copy atom positions and quaternions to device

2. Did reneighbor occur ? copy neighbor list to device

3. Call neighbor_pack kernel

1 Atom per GPU Core

Perform cutoff check for all neighbors and store for coalesced
access

This limits thread divergence for the relatively expensive force
computation

4. Call force computation kernel

1 Atom per GPU Core

Use full neighbor lists (double the amount of computations
versus the CPU)

No collisions with this approach

Compute force, torque, energies, and virial terms

5. Copy forces, torques, energies, and virial terms to host

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

1 2 3 4 1 2 3 4

c=4 c=7

56.8

108.8

145.2

190.2

75.2

145.6

175.7

235.0

85.0

163.0

217.4

284.8

115.3

223.2

269.4

360.4

GPGPU Times Speedup vs 1 Core
(c=cutoff, 32768 particles)

Thunderbird Glory

GPGPU: 1, 2, 3, or 4 NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 1 core of Dual 3.6 GHz Intel EM64T processors
Glory: 1 core of Quad Socket/Quad Core 2.2 GHz AMD

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 1 2 3 4

c=4 c=7

28.7

55.1

73.4

96.2

38.4

74.3

89.7

120.0

4.2
8.0

10.6 13.9

5.4
10.4 12.6 16.8

GPGPU Times Speedup vs 1 Node
(c=cutoff, 32768 particles)

Thunderbird Glory

GPGPU: 1, 2, 3, or NVIDIA, 240 core, 1.3 GHz Tesla C1060 GPU(s)
Thunderbird: 2 procs, Dual 3.6 GHz Intel EM64T processors
Glory: 16 procs, Quad Socket/Quad Core 2.2 GHz AMD

52.4

55.6
56.8

58.1
59.7

62.3 62.7

50.4

53.8
55.5 56.5

57.8

60.8 60.9

11.1
12.213.0 13.5 13.7 14.0 14.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 100000 200000 300000 400000 500000 600000

Particles

Times Speedup vs 1 Core
(c=4, 1 Tesla C1060, 3.6 GHz Intel EM64T processor)

Single Mixed Double

Simulation Time Breakdown
32K Particles, Cutoff=4, 1 Tesla C1060

3%

0%

24%

37%

1%

1%

11%

23%

Atom Copy

Neighbor Copy

Neighbor Pack

Force Calc

Answer Copy

Other

CPU Neighbor

CPU Other

HPC Comparison

• A single 4-GPU accelerated node can run a simulation faster than a
256-core simulation on Thunderbird or Glory.

• The power requirements for the GPU accelerated run were <1.2 kW
versus 11.2 kW on Glory or 44.8 kW on Thunderbird

0.01

0.1

1

10

100

1000

0 100000 200000 300000 400000 500000 600000

T
im

e
s

te
p

s
/s

e
c

Particles

Biaxial Ellipsoid Simulations
c=4

TBIRD-256

GPU-4

GLORY-256

GPU-3

TBIRD-128

GPU-2

GLORY-128

GPU-1

GLORY-16

TBIRD-2

TBIRD-1

GLORY-1

Coding Issues

• Difficult to keep force computation in registers

– Had to manually scope variables to fit single precision in
registers

– Double precision goes to global memory

• Had to manually unroll Gaussian elimination loop

– Compiler could not figure out array pointer arithmetic

• Complicated memory management can lead to
separate implementations

– e.g. what if a given simulation has atom type constants
that do not fit in shared memory?

– Many GPU implementations are “benchmark codes”
meant for publication, not real use

Alternative Algorithms

• Forces divided evenly among GPU cores (as opposed to per
atom)
– Need atomic operations to avoid collisions
– No floating point atomic operations on current hardware
– Slower for large simulations
– >20x speedup for a 128 particle simulation with Gay-Berne (<1

particle per core)

• Neighbor list computation on the GPU
– For Lennard-Jones, the simulation time is halved using a GPU cell

list implementation

• Concurrent CPU execution
– Multithreaded force decomposition (OpenMP)
– Domain decomposition (separate MPI process for GPU and CPU

computations)
– Multiple threads/processes utilizing same GPU
– For Gay-Berne, the upper-bound for concurrent execution

performance gains is small
• Overhead (full neighbor lists, thread creation, domain sizes)

– For some potentials, concurrent execution may be needed in order to
achieve good speedups

Mixed Precision Results
LAMMPS rhodo benchmark (32,000 atom system, 1 million time-steps)

Cray XT4 Cray XT4 Linux cluster GPU cluster

CPU-cores 64 (16 x 4)b 256 (64 x 4) 64 (4 x 16) 8 (8 x 1)

GPUs 8 (8 x 1)

Compiler PGI
(v 8.0-3)

PGI
(v 8.0-3)

Gcc
(4.1.1)

gcc (4.1.1)
+CUDA (2.2)

Precision Double Double Double Mixed

OpenCL, CUDA-Driver, CUDA-Runtime?

• OpenCL offers a general API that is supported by many
vendors and allows the potential to run kernels efficiently
on the CPU in addition to coprocessor devices.

• CUDA Driver is a more mature GPGPU programming API
with stable compilers, freedom in the choice of host
compilers, and can potentially generate the most efficient
code for Nvidia devices.

• CUDA Runtime offers a more succinct API and support for
GPU code integrated with host code.

• Geryon – Software library that allows a single code to
compile using any of the 3 APIs. Change namespace to
change API.

Lessons learned

• Legacy codes can not be automatically “translated” to run efficiently on GPUs.

• GPU memory management is tricky to optimize and strongly affects
performance.

• Host-device communication is a bottleneck.

• Moving more of the calculation to the GPU improves performance, but requires
more code conversion, verification, and maintenance.

• Optimal algorithm on CPU is not necessarily the optimal algorithm on GPU or
on a hybrid cluster (i.e. neighbor lists, long-range electrostatics).

• Mixed- or single-precision is OK in some cases, and considerably faster.
Preferable to give users the choice of precision.

• Optimal performance requires simultaneous use of available CPUs, GPUs, and
communication resources.

Remaining challenges

1. Funding limitations

2. Merging of disparate efforts and “visions”

3. Better coverage: port more code (FFs, other) to GPU

4. Better performance (better algorithms & code)

5. Quality control (code correctness and readability)

6. Code maintenance

a. Synching with standard LAMMPS

b. User support

c. Bug fixes

