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Abstract—Most statistical software packages implement a
broad range of techniques but do so in an ad hoc fashion,
leaving users who do not have a broad knowledge of statistics
at a disadvantage since they may not understand all the
implications of a given analysis or how to test the validity
of results. These packages are also largely serial in nature, or
target multicore architectures instead of distributed-memory
systems, or provide only a small number of statistics in parallel.

This paper surveys a collection of statistics algorithm imple-
mentations developed as part of a common framework over the
last 3 years. The framework strategically groups modeling tech-
niques with associated verification and validation techniques to
make the underlying assumptions of the statistics more clear.
Furthermore it employs a design pattern specifically targeted
for distributed-memory parallelism, where architectural ad-
vances in large-scale high-performance computing have been
focused. Moment-based statistics (which include descriptive,
correlative, and multicorrelative statistics; principal component
analysis (PCA); and k-means statistics) scale nearly linearly
with the data set size and number of processes. Entropy-based
statistics (which include order and contingency statistics) do not
scale well when the data in question is continuous or quasi-
diffuse but do scale well when the data is discrete and compact.
We confirm and extend our earlier results by now establishing
near-optimal scalability with up to 10,000 processes.

Keywords-Informatics, Statistics, Principal Component Anal-
ysis, Clustering, Parallel Computing, Design Patterns

I. INTRODUCTION

Many tools provide ad hoc, serial, statistical analysis
capabilities. These two descriptors (ad hoc and serial) are
important limitations which this paper attempts to address.
Ad hoc implementations are, by definition, well-suited to
a specific task or range of tasks but can be hard to adapt
to new workflows and, more importantly, hard for inexpe-
rienced users to evaluate and combine into a meaningful
analysis workflow. Serial implementations of statistical al-
gorithms are frequently less memory intensive than other
scientific software because common assumptions such as
independence of observations lead to streaming or on-line
algorithms. However, as data sets grow to peta-scale and
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beyond [1], relying on serial algorithms is no longer feasible.
Existing statistical software is either serial, parallelized only
across multiple cores of a single node, has limited support
for parallel computation of statistics, or requires that parallel
operations be explicitly specified, cf. in particular [2] and [3]
regarding R and Stata, respectively, and [4] for a survey.

Consider, for example, R — which is an interpreter de-
signed for statistical calculations plus a set of modules that
implement various statistics. Firstly, the interpreter itself is
serial. A number of modules provide shared-memory and
distributed-memory parallel algorithm implementations for
specific algorithms such as hierarchical clustering, however
most do not focus on distributed data but rather distributed
computation (e.g., using parallelism to perform many ran-
dom samples for Markov-chain Monte Carlo analysis instead
of computing statistics on large distributed data sets). Other
modules for R provide low-level access to parallel message-
passing libraries such as MPI [5] but require users to ex-
plicitly direct the communication in order to obtain a result.
This is undesirable since, even if users were familiar with the
underlying libraries, the development of numerically stable
parallel versions of serial algorithms is not a trivial task. The
canonical repository for R scripts has a detailed list of what
parallel functionality is provided [6].

This paper presents a consistent design pattern and pro-
grammatic interface for a wide range of data-parallel sta-
tistical analyses and describes how each statistic fits the
pattern and how its implementation scales in a distributed-
memory parallelism context. The design decisions made
during development were motivated by two primary factors:
first, we wanted to mimic the predominant types of data
analysis workflows, so that a data analyst using our frame-
work would find it natural and intuitive to use; second, we
wanted the design to be conducive to embarrassingly parallel
implementations when possible. This is accomplished by
isolating those parts of the analysis which by construction
are not embarrassingly parallel (due to the mathematics of
the statistical analysis itself, not due to our design) so that
parallel design trade-offs are limited to those components
where embarrassingly parallel implementations are not vi-
able.

All of the algorithms discussed here are implemented as
C++ classes in VTK [7], itself part of the Titan Informatics



Table I: A table of observations used as input data by a statistics

algorithm.
row | A B C D E
1 0 1 0 1 1.03315
2 1 2 2 2 0.76363
3 0 3 4 6 0.49411
4 1 5 6 24 0.04492
5 0 7 8 120  0.58395
6 1 11 10 720 1.66202

Toolkit [8]. The source code is freely and publicly available
in order that the results in this paper may be reproduced and
compared to other implementations as desired.

In this paper we summarize the scalable, parallel statistical
analysis toolkit which we have designed and implemented,
in terms of available capabilities, design choices, and parallel
performance. While many of the statistics have been docu-
mented in other publications, this paper provides guidelines
for choosing among them. We begin in § II by providing
a complete list of the currently implemented statistical
workflows and of their functionality as they are articulated
within our statistics design pattern. In § III we provide a
detailed parametric study of the strong and weak parallel
scaling of those statistics which we have not yet published,
with up to 10,000 processes. We conclude this paper in § IV
by outlining perspectives for further work and generalizing
some previous findings made in a more limited context
(cf. [9] and [10] in particular).

II. THE PARALLEL STATISTICS WORKFLOWS

The following 7 parallel statistics workflows are imple-
mented at the time of writing (February 2011):

« descriptive statistics,

o histograms and order statistics,

« bivariate linear correlation and regression,

« contingency statistics and information entropy,

o multi-variate linear correlation,

e principal component analysis,

o k-means clustering.

In this section, we explain what type of input data sets the
statistical engines can process, how our design constraints
have resulted in the splitting of the statistical analysis work-
flow into 4 distinct operations, and how those are articulated
for each of these 7 parallel statistical engines. We describe
each operation in detail, illustrate their use in the case of
descriptive statistics, and explain how we implemented them
in the context of data parallelism to achieve as much parallel
speed-up as possible.

A. Data Organization

Each statistical workflow processes data sets stored in one
or more tables: observations in the first table, and statistical
model and test data in the other tables. In particular, each
column of the input observations table is a variable, while
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Figure 1: The 4 operations of statistical analysis and their interactions
with input observations and models. When an operation is not requested,

it is eliminated by connecting input to output ports.

each row is an observation (i.e., a simultaneous occurrence
of one value for each variable). By design, the statistics
classes do not allow table rows with missing entries. This
is because application-specific rules are generally used to
determine how such rows should be processed. Typically
applications will either discard such rows or interpolate
missing values from spatial or temporal neighbors. As a
result, observation tables must be dense, as illustrated in Ta-
ble I, which has 6 observations of 5 variables. Preprocessing
raw measurements into simultaneously observed tuples is not
part of the implementation and is beyond the scope of this
paper. However, the interested reader can refer to [11] for
one example of interpolation performed prior to statistical
analysis, in the case of asynchronous data collection.

B. Operations

In order to meet the two overlapping but not exactly
congruent design requirements outlined in § I, we partition
the statistical analysis workflow into 4 operations: Learn a
model from observations, Derive statistics from a model, As-
sess observations with a model, and Test the null hypothesis.
These operations, when all are executed, occur in order as
shown in Figure 1. However, it is also possible to execute
only a subset of these, for example when it is desired that
previously computed models, or models constructed with
expert knowledge, be used in conjunction with existing data.
Note that in earlier publications (e.g., [7], [9], [10]) only
the first 3 operations are mentioned; the Test operation,
which we initially saw as a part of Derive, was separated
out for reasons we discuss in § II-C. These operations,
performed on a request comprising a set of columns of the
input observations table, are denominated as follows:

1) Learn: Calculate a primary statistical model from an
input data set. By primary, we mean the minimal (in partic-
ular, non-redundant) representation of the desired model for
a given statistical technique. For example, with descriptive
statistics, those are the sample size, minimum, maximum,
mean, and centered My, M3 and M, aggregates (cf. [9]).
For a request limited to column B of Table I, these values
are 6, 1, 11, 4.83, 68.83, 159.4, and 1759.8194, respectively.

2) Derive: Calculate a more detailed statistical model
from a minimal model. By “more detailed”, we mean
a model which includes the primary model along with
additional, derived or redundant statistics, generally more
commonly used for analysis purposes than the primary



Table II: The different operations currently made available by the Titan statistics classes.

Learn Derive Assess Test
Descriptive Calculate minimum, maxi- Calculate variance, standard Mark with relative devia- Calculate Jarque-Bera statis-
mum, mean, and centered deviation, skewness, and tion (one-dimensional Maha-  tic [13] and perform x2 good-
Mo, M3 and My aggre- Kkurtosis (various estimators lanobis distance [12]) ness of fit test
gates [9] available for each statistic)
Order Calculate histogram Calculate arbitrary quantiles  Mark with quantile index Calculate Kolomogorov-
(e.g., quartiles, deciles, etc.) Smirnov test statistic [14]
Correlative Calculate minima, maxima, Calculate variances, covari- Mark with squared two-  Calculate bivariate Jarque-
means, and centered M2 ag-  ance, Pearson correlation r,  dimensional Mahalanobis  Bera-Srivastava statistic [15]
gregates [9] and both linear regressions distance [12] and x2 goodness of fit test
Contingency Calculate the bivariate contin- ~ Calculate joint, conditional, ~Mark with joint and condi- Calculate Pearson x2 test
gency table (also called a 2-  and marginal probabilities, as  tional PDF values, as well as  of independence without and
dimensional histogram) well as information entropies  pointwise mutual information  with Yates correction [16]
Multi- Calculate means and pairwise ~ Calculate covariance matrix ~ Mark with squared multi- N/A
Correlative centered Mo aggregates [9] and its (lower) Cholesky de-  dimensional Mahalanobis dis-
composition tance [12]
PCA Identical to the multi- Identical to the multi- Mark with coordinates in ba-  Calculate multivariate Jarque-
correlative algorithm correlative algorithm, plus the  sis of all, or only first eigen-  Bera-Srivastava statistic [15]
eigenvalues and eigenvectors  vectors with cumulative en-  and perform x? goodness of
of the covariance matrix [17]  ergy above a given threshold  fit test
k-Means Compute k cluster centers Calculate global and local Mark with closest cluster id  In progress

given a positive integer k [18]

rankings amongst sets of
clusters, and total error [19]

and associated distance for
each set of cluster centers

statistics from which they derive. For instance in the case
of descriptive statistics, the following derived statistics
are calculated from the minimal model: variance, standard
deviation, skewness, kurtosis, and sum. These additional
values for column B of Table I are 13.76, 3.7103, 0.52025,
—1.4524, and 29 respectively.

3) Assess: Annotate each observation with a number of
quantities relative to a given a statistical model. These quan-
tities generally measure how well the particular observation
coincides with the model. The model used to annotate an ob-
servation need not have been calculated from the same data.
With, e.g., descriptive statistics, each datum is marked with
its relative deviation with respect to the model mean and
standard deviation (i.e., the one-dimensional Mahalanobis
distance [12]). Table I, described as having 5 input variables
earlier, can also be interpreted as having 4 input variables
(A-D), plus a new column (E) containing the Mahalanobis
distance of each observation in column B with respect to
the priorly calculated mean and standard deviation.

4) Test: Given a statistical model, and possibly a data set,
calculate at least one test statistic so at least one hypothesis
can be tested. For descriptive statistics, a Jarque-Bera test
of goodness of fit [13] is performed, calculating the test
statistic with the skewness and kurtosis, and then retrieving
the corresponding p-value from the 2 distribution with 2
degrees of freedom by a single call to R for all variables
at once; therefore, a second pass through the data is not
needed. Again for column B of Table I, one obtains a test
statistic of 0.79803 for a corresponding p-value of 0.67098.

The embodiments of Learn, Derive, Assess, and Test for

all of the statistics implemented are shown in Table II.

C. Parallelism

While the first of our design goals for partitioning the
workflow into 4 operations was to mimic the typical use
patterns of statistical analysis, the second design goal was
the enabling of scalable parallelization on distributed data.
And indeed, from the parallelism standpoint, the partition
reduces two operations to the map-reduce pattern [20] and
the remaining two are embarrassingly parallel.

Specifically, Learn is essentially a special case of the map-
reduce pattern [20], a framework within which the map
function generates a set (key,value) pairs in parallel. All
intermediate values associated with the same intermediate
key are then merged by the reduce function to compute
the final solution of interest. In some of our statistical
algorithms, it is not necessary to communicate the keys
for there is a fixed number of them, identical across all
processes, and these keys may be ordered uniquely, so
sending values alone is unambiguous. However, for other
algorithms, tables with an arbitrary number of key-value
pairs must be communicated and different keys may be
present on each process.

By construction, Learn is the only operation which always
requires inter-process communication; for instance, in the
case of descriptive statistics, cardinality, extremal values,
and centered aggregates up to the fourth order must be
exchanged and updated to assemble a global model. The
Test operation may, for some types of analyses, also require
inter-process communications when a second pass through
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Figure 2: Example showing parallel execution of the Learn, Derive, and
Assess operations of order statistics on 3 processes.

the data is required by the type of statistical test being
performed. As mentioned in § II-B Test was separated from
Derive because:

(i) Test tends to be more computationally intensive and
in our current implementation relies in some cases on
calls to the R library [21] for p-value retrieval,

(i) For some statistics algorithms it requires a second pass
through the data in order to compute per-observation
quantities involving derived model information that
cannot be obtained in an on-line fashion', henceforth
requiring a second step of parallel updates, and

(iii) it rests on assumptions which are not accepted by all
statisticians, namely statistical significance.

We note that the Learn (and Test) operations of most of
the currently implemented statistical algorithms demonstrate
optimal parallel speed-up and scalability, as they rely on a
small number of statistics to be exchanged and updated,
such as in the aforementioned descriptive statistics case.

'For example, the multi-variate normality test requires that multi-
skewness and multi-kurtosis be computed, but those estimators in turn need
each observation to be projected to the eigenvectors of the data set, which
cannot be computed incrementally and thus are not available until after all
observations have been processed.

In [9] we have shown how to perform these updates in a
numerically stable, yet single-pass, way, for all statistics
algorithms which make use of moments and co-moments,
hence resulting in optimal parallel scaling for the Learn
and Test operations for such statistics. In [10], on the
other hand, we have discussed the design trade-offs and
limitations encountered when computing contingency tables
in parallel, which resulted in our choosing of what we called
the Full-reduce+broadcast approach; in this case, the Learn
operation of the algorithm is difficult to characterize because
its parallel scaling properties range from embarrassingly
parallel to serial, depending on the distribution of the input
data. We nonetheless showed that the case where our parallel
design does not scale well exactly corresponds to the class
of problems for which contingency tables are not suited
for analysis, hence validating our design pattern even for
non moment-based algorithms. For the Test operation of
those engines which currently rely on R for the retrieval
of the p-values corresponding to calculated x? statistics, it
is important to note that the invokation of R is done by
each process independently from all other processes, each
one retrieving the same p-value from a previously globally
calculated y? statistic. Therefore, the use of the (serial)
R package does not invalidate the embarrassingly parallel
nature of this operation.

The Derive and Asses operations can always be computed
in an embarrassingly parallel fashion. The calculations for
the derivation of additional statistics from a primary sta-
tistical model always need only be executed once, without
communication, independently and after all parallel updates
of primary variables. Likewise, the Assess operation anno-
tates only the observations in the portion of the data residing
on the local process, and thus no communication is required.
The result is a new dataset distributed in the same way across
processes but with additional columns for the annotations.

Figure 2 shows the communication patterns and parallel
computations performed when calculating order statistics
on simple character data distributed across 3 processes;
note that the Test operation is not depicted here as its
implementation is not complete yet for all statistical engines
and some changes are to be expected in the near future.

D. Code Structure

Each statistics algorithm is first implemented in C++ in a
serial fashion as a subclass of a base statistics algorithm class
that provides virtual methods for each of the 4 phases (Learn,
Derive, Assess, and Test). Each serial implementation then
serves as a base class for a parallel implementation which
overrides the Learn and, optionally, Test methods as shown
in Figure 3. These methods invoke the serial superclass’s
implementation and then use an abstract communication-
class instance to perform the inter-process communication
required for the reduction operation. This separation be-
tween serial and parallel implementations also allows for



StatisticsAlgorithm
virtual int Learn() = 0
virtual int Derive() = 0
virtual int Assess() = 0
virtual int Test() = 0

LP

DescriptiveStatistics
virtual int Learn()
virtual int Derive()
virtual int Assess()
virtual int Test()

7

ParallelDescriptiveStatistics
virtual int Learn()

Figure 3: The inheritance pattern of the descriptive statistics implementa-
tion. This serves to illustrate how parallel communication is separated into
a subclass which may use its superclass’s implementation for all but the

reduction operation.

experiments with different programming models: e.g., one
where a full reduction operation might not be necessary to
sufficiently, in some sense, approximate the global model.
The descriptive, correlative, multi-correlative, and PCA
statistics algorithms perform their respective parallel aggre-
gations using the update formulas presented in [9], cf. [22]
for implementation details. These moment-based parallel
statistics classes thus all have optimal parallel scalability
properties. Similarly, the order and contingency statistics
classes respectively derive from the univariate and bivariate
statistics classes and implement their own aggregation mech-
anisms for the Learn operation. However, unlike moment-
based statistics (descriptive, correlative, multi-correlative,
PCA, and k-means), these aggregation operations are not, in
general, embarrassingly parallel; as a result, these statistical
methods scale sub-optimally when used outside of their
intended domain of applicability, as shown in [10] for
contingency statistics, and here in § III for order statistics.

III. PARALLEL SCALABILITY STUDIES

In earlier publications we have studied the parallel speed-
up and scalability properties of some of the parallel statistics
engines of Titan. For instance, in [9] we demonstrated that
thanks to numerically stable, yet single pass, parallel update
formulas, our implementation of moment-based statistics
such as descriptive, correlative, multi-correlative statistics,
and PCA achieved near optimal strong and weak scaling.

On the other hand, we dealt in [10] with the parallel
computation of contingency statistics, where scalability of
the algorithm is particularly difficult to characterize because
it can run in an embarrassingly parallel manner, in a com-
pletely serial manner, or anywhere in between, depending
on the nature of the input data. However, by making design
trade-offs in the parallelization of the Learn operation, we
were able to show that the types of input resulting in poor

scalability corresponds to the case where contingency tables
should not be used, not from a computational, but from a
statistical point of view. We have generalized these design
trade-offs, namely, what we call the Full-reduce+broadcast
pattern, and applied them to other statistics where the vari-
ability of the size of the primary statistics model manifests
itself: histogram and order statistics.

In this section, we present the results of a series of
tests with our implementation of the parallel order statistics
algorithms and show that we retrieve speed-up results similar
to contingency statistics. We therefore conjecture that this
is a feature of the approach itself and not a mere accident.
Finally, we contrast these results with another recent addition
to the toolkit, the k-means statistics engine, which does
indeed scale optimally as we apply to it our online updating
methodology for moment-based statistics.

A. Evaluation Criteria

We intend here to study the scalability properties of
the algorithms of interest independently of load-balancing
issues and thus use a series of (pseudo-) randomly-generated
samples, hence creating data sets of equal size on each
process in order to obtain perfectly balanced test cases.
Only Learn, Derive, and Assess operations are invoked, as
Test relies on the external calls to R, whose execution we
want to keep aside from our study. We also exclude the
amount of time needed to create the input data tables from
the analysis, as inputs can in reality come from a variety
of outside sources, such as databases or flat files. With this
setting, we use the following evaluation criteria:

1) strong scaling, i.e., at constant total work, also known
as relative speed-up, and

2) weak scaling, i.e., at constant work per process, also
known as rate of computation scalability.

We provide here a description of these evaluation criteria.
Hereafter p will denote the number of processes and N (or
N (p) when it varies with p) the size of the problem, which
in our case is the data set cardinality.

1) Strong Scaling: The wall clock time measured to
execute the calculation is denoted Tn(p). Then, strong
scaling is defined as:

_ Tn(1)
Tn(p)

Some authors prefer to write the numerator as 7T rather than
Tn(1) to make it clear that the parallel algorithm should
be compared to the most efficient serial implementation
available and not just the parallel algorithm run on a single
process. Evidently, optimal (linear) scaling is attained when
Sn(p) = p and, therefore, strong scaling results can be
visually inspected by plotting Sy versus the number of
processes: optimal scaling is revealed by a line, the angle
bisector of the first quadrant.

Sn(p)



2) Weak Scaling: The rate of computation is defined as:

N(p)
T ()’

where N(p) now varies with p. Weak scaling is then
measured by normalizing the rate of computation by that
which is obtained with a single process. In particular, if the
sample size is made to vary in proportion to the number of
processes, i.e., if N(p) = pN(1), then
R(p) = r(p) _ PTn(1)(1) _ pTn(1y(1) _ TN(1)(1)_
r(1)  Tonwy(p)  pTnay(e)  Tnay(p)

Therefore, optimal (linear) scaling is attained with p pro-
cesses when R(p) = p. Note that without linear dependency
between N and p, the latter equality no longer implies opti-
mal scalability. Parallel scalability can thus also be visually
inspected by plotting the values of R versus the number of
processes, and in this case also, optimality corresponds to
the angle bisector of the first quadrant.

B. Test Platforms

We first conducted systematic, multiple-parameter study
of the scalability properties of all algorithms using a 240-
CPU computational cluster; we then validated some of the
observed scalability results at a much larger scale with up
to 10,000 cores on a tera-scale system.

1) catalyst: The small test platform was the
catalyst computational cluster at Sandia National Labo-
ratories, which comprises 120 dual-CPU 3.06 GHz Pentium
Xeon compute nodes with 2 GB of memory each, operating
with a Linux 2.6.17.11 kernel. The results reported in this
article were computed using two processes per node, i.e., one
per processor, except for the single-process baseline runs.
Also, the numbers of processes was chosen as increasing
powers of 2, for convenience only; using other values did
not change the outcome of the evaluation.

2) jaguar: The very large platform is the jaguar tera-
scale cluster at Oak Ridge National Laboratories. Its Cray
XT4 partition comprises 7,832 compute nodes in addition to
dedicated login/service nodes. Each compute node contains a
quad-core AMD Opteron 1354 (Budapest) processor running
at 2.1 GHz, 8 GB of DDR2-800 memory (although some
nodes use DDR2-667 memory), and a SeaStar2 router. The
resulting partition contains 31,328 processing cores, more
than 62 TB of memory, over 600 TB of disk space, and
a peak performance of 263 teraflop/s (263 trillion floating
point operations per second). We carried out the scalability
study on this XT4 partition using up to 10,000 cores.

C. The All-reduce Pattern and k-Means Statistics

The phrase cluster analysis describes a class of unsu-
pervised learning algorithms whose primary objective is to
partition data sets into subsets (clusters) according to a
given measure of association. For instance, with k a positive
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Figure 4: Parallel k-means statistics: strong scaling (at constant total
work), with a total data size of N = 10° doubles.

integer, k-means clustering [18] is one such algorithm which
groups observations into k clusters by minimizing a metric
between each observation and the center of the cluster
to which it is assigned. The general algorithm can be
summarized as follows:

1) Choose k, the number of clusters.

2) Determine k initial cluster centers.

3) Assign each observation to the nearest center.

4) Recompute the new cluster centers.

5) Repeat 3 and 4 until a convergence criterion is met.

This straightforward k-means clustering algorithm is cur-
rently available in Titan; note, however, that it is a heuristic
algorithm and therefore convergence is not guaranteed. In
addition to this intrinsic limitation, the value of k must be
provided to the algorithm and the final results may strongly
depend on the initial choice of cluster centers. Another
consideration that should be noted regarding k-means clus-
tering is that it requires that the data being processed have
some notion of a mean, which is used to compute the new
cluster centers. When data does not have a computable mean,
an alternate approach is to use the k-medoids algorithm
[23] which uses data observations as cluster centers. Our
implementation uses means stricto sensu and thus belongs
to the class of moment-based statistics. As such, the parallel
subclass was implemented using the All-reduce approach we
used for other moment-based parallel engines [9]; as a result,
optimality can be expected for both strong and weak scaling.
We therefore verify it here experimentally with only up to
p = 64 processes on catalyst, for we already reported
in [9] optimal scalability with up to p = 1500 for another
moment-based statistics algorithm.

The parallel k-means engine is tested with input tables
comprising 6 columns, each of which is created at run time
by sampling from 8 independent pseudo-random Gaussian
variables (X;)1<;<s with mean 7¢ and unit standard devia-
tion, thus creating 6-dimensional data clustered around those
8 different means.

1) Strong Scaling: All cases in the study of strong scaling
have identical total size N = 106. The strong scaling results
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are plotted in Figure 4. The heuristic nature of the k-means
algorithm makes it difficult to predict the time required for
a particular input data set. However, because the k-means
algorithm performs iterative passes through the data until
a convergence criterion is met, it is particularly amenable
to a data parallel implementation. As can be seen, the
measured scaling is optimal (within £10% fluctuations at
least partially attributable to system overheads). One can
also note some instances where uninitialized runs appear to
scale super-linearly, which may be attributed to the early
termination at a locally optimal solution.

2) Weak Scaling: A series of increasingly large sam-
ples was generated to assess weak scaling, each sample
consisting of 6 variables with N(p) = np observations,
where n = 2.5 x 10° is the per-process cardinality. The
corresponding results are plotted in Figure 5. These clearly
exhibit optimal scalability (again within fluctuations at-
tributable to outside causes), thus experimentally verifying
the embarrassingly parallel nature of these algorithms. As
with the speed-up results, it should be noted that in some
instances the uninitialized runs appear to scale super-linearly,
which may be attributed to early termination at a locally
optimal solution.

D. The Full-reduce+broadcast Pattern and Order Statistics

Order statistics can be calculated on data sets equipped
with a total order such as numeric values or strings (endowed
with the lexicographic order). Its Learn operation computes
per-variable histograms, i.e., key-value maps from each
distinct observation (key) to the number of times that obser-
vation appears in the table (value). The Derive operation then
computes a probability mass function from each histogram,
and a set of quantiles for each variable, where the number 7,
of such quantiles (as well as the interpolation method when
several choices are possible) is set by the user; for instance,
with n, = 4 (resp. ny, = 10, 100) the quantiles are quartiles
(resp. deciles, percentiles). These are obtained by traversing
the histogram keys in increasing order, until the sum of
their values (cardinality) is equal or greater than iN/n, for
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Figure 7: Parallel order statistics: strong scaling (at constant total work),
with a total data size of N = 2.56 x 107 doubles.

i € {1,2,...,n4}, where N is the total cardinality of the
histogram. The Assess operation marks each datum with an
index indicating to which inter-quartile it belongs; if it is
smaller (resp. bigger) than the minimum (resp. maximum),
then it is marked with O (resp. ng + 1). Finally, the Test
operation estimates, by means of a Kolmogorov-Smirnov
statistic (cf. [14]), the difference between the empirical CDF
of the observations and a piecewise-constant CDF.

For the series of tests presented here, input tables with
a single column are created at run time by rounding to the
nearest integer the outcomes of a centered normal pseudo-
random variable with standard deviation ¢ > 0. The values
of o are chosen with increasing values in {5;500; 50000}
in order to yield order tables with varying sizes, for the
probability that any realization a of centered Gaussian fall
outside the [—30, 30] interval is only ca. 0.27%. With the
chosen set of standard deviations, the observed histograms
— illustrated with realizations in Figure 6 — have sizes on
the order of 10, 103, and 10°, respectively. The overall
scaling is a strong function of the histogram size as the
parallel communication costs for these histograms are vastly
different. This single column is then selected as the column
of interest for the order statistics engine.

1) Strong Scaling: All cases in the study of strong scaling
are computed on catalyst and have identical total size
N = 2.56 x 107. The strong scaling results are plotted
in Figure 7. We observe that with ¢ = 5, the ensuing
local order tables are small enough that the cost of the
parallel updates is negligible to the point that the algorithm
becomes, effectively, embarrassingly parallel: the measured
scaling is nearly optimal, within 4%, which may also be
due in part to operating system overhead unrelated to the
algorithm itself. Near optimal speed-up continues until, as
a result of the decreasing amount of work per process, time
taken by updates and overheads, albeit small in absolute
terms, becomes sufficiently noticeable as compared to the
overall computation time. With ¢ = 5, this trends begins
to slightly appear with p = 64 and further with p = 128,
where the speed-up is sub-optimal by ca. 19%. Eventually
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Figure 8: Parallel order statistics: weak scaling (at constant work per
process) on catalyst, with N(p)/p = 3.2 x 106.

the decreasing amount of work per process should result in
no additional speed-up, but with ¢ = 5 we have not observed
for p up to 200.

On the other hand, with larger values of the standard
deviation, and thus with much larger histograms to be
exchanged between processes, optimal speed-up is lost much
earlier: specifically, with p > 32 when o = 500, and
as early as with p = 2 when ¢ = 50000. In fact, in
the latter case with p > 16 no more parallel speed-up is
achieved as the Amdahl limit [24] is reached and speed-
down eventually occurs. Further, for sufficiently large (in a
platform dependent sense) values of o, no parallel speed-up
can be achieved at all, effectively turning the algorithm into
a serial implementation.

From this we can draw two main conclusions, confirming
those which we had already discovered in [10] for the
parallel contingency statistics engine:

(1) This algorithm scales optimally with categorical data,
not with (quasi-)continuous data. This experimental
observation is aligned with the fact that order statis-
tics are intended for discrete rather than continuous
measurements.

(ii)) One should be careful with claims that some algo-
rithms would, or would not, be a priori amenable
to “Map-Reduce” implementations. As this case con-
firms, the same algorithm can behave as an embarrass-
ingly parallel one, or as a completely coupled, intrin-
sically serial one, or anything in between depending
solely on the value of a single input parameter.

As a result, once again we assert that there may be a
continuum of speed-up properties for the same algorithm;
there is no general solution to the problem of parallelizing
data analysis algorithms in a scalable fashion.
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Figure 9: Parallel order statistics: weak scaling (at constant work per
process) on jaguar, with N(p)/p = 2 x 107.

2) Weak Scaling: We begin by assessing weak scaling
on catalyst with the same test case as in § III-D1, with
the difference that, in order to maintain a constant work per
process, increasingly large samples are created: specifically,
each data sets contains N (p) = np doubles, where n = 3.2x
108. The weak scaling results are plotted in Figure 8. When
o = 5, and thus a relatively small order table, the algorithm
exhibits nearly optimal scaling with the same observations
as for the strong scaling. With ¢ = 500 one continues to
observe parallel scalability for p > 128, with an overall
order of about 0.96. However, with the very large histograms
generated when o = 50000, scalability is sub-optimal from
the beginning with p = 2 processes, and this becomes more
pronounced as the number or processes increases: with p =
128 the overall order drops to about 0.7.

We then verify the optimal scalability results for o = 5
by increasing the size of the problem to n = 7 x 107 and up
to p = 10* on jaguar. The corresponding weak scaling
results are plotted in Figure 9: near-optimal scalability
continues up to p = 10 with an order of almost 0.99.

These observations confirm what we both noticed in
§ III-D1 for strong scaling and in [10] in the case of contin-
gency statistics for strong and weak scalability, namely, that
such algorithms should not be a statistic of choice when
dealing with quasi-continuous data (which, in the context
of floating-point representation, amounts to the same as
extremely large discrete data sets). This situation means that
either another statistical analysis method must be used, or
the data should be quantized differently (e.g., with different
bucket sizes). In any event, the main conclusion which we
can make here is again that this engine scales optimally
when used in the context of honestly discrete measurements,
which is the category of data for which its underlying
statistical method is intrinsically intended.



IV. CONCLUSION AND FUTURE WORK

We have presented a comprehensive view of the scalable,
parallel statistical analysis framework which we designed
and implemented. We have described our decomposition of
the statistical analysis workflow of all currently available
statistical methods into 4 separate base operations, and
demonstrated that this division is sensible both from the data
analyst’s perspective and for the sake of parallel scalability.
Furthermore, we confirmed with the k-means statistics en-
gine that our previously described single-pass, numerically
robust parallel update formulas allow for embarrassingly par-
allel implementations of moment-based statistics algorithms.
On the other hand, we extended our earlier and more limited
results for non moment-based statistical methods, which are
not amenable to an embarrassingly parallel implementation.
Specifically, we confirmed that the design choices we made
between efficiency and robustness for this class of problems
allow for optimal strong and weak scaling when those
statistical techniques are used in their appropriate context,
namely, when the input data is not quasi-diffuse, but honestly
represents discrete measurements.

A. Implementation

Our implementation is available as part of Titan, an open-
source informatics toolkit built on top of the Visualization
Tool Kit, VTK. The statistics classes, along with some of
the test programs used above for testing purposes, are part
of VTK. Specifically, they belong to the Infovis directory
of VTK, publicly available via Git. Detailed download and
build instructions are provided by these pages:

http://www.vtk.org/Wiki/VTK/Git
http://www.vtk.org/Wiki/VTK_Building_VTK

A number of programs which make use of the
parallel statistics classes of Titan are available in
the VIK/Infovis/Testing/Cxx/ sub-directory of VTK.
These can be used to reproduce or extend the parallel
scalability tests in this paper. For additional details about
VTK, please refer to the user manual [7] or the online docu-
mentation [25]. ParaView [26] and OVIS [11] are examples
of open-source applications that use this parallel statistics
functionality, in the context of high performance computing.

Ongoing and future work includes the implementation
of Test operations for those few engines who do not yet
have one, the generalization of contingency tables to n-way
arrays, exploring other ways to measure and improve the
efficiency of non moment-based parallel scalability for large
and high-dimensional data, and expanding the functionality
of our existing framework with additional engines as needed
by client applications.

B. Efficiency

In [10], we introduced the global efficiency £, of a con-
tingency as an a posteriori estimator obtained by comparing

Table III: Reduction efficiency for various values of the standard devi-
ation of random inputs to order (left) and contingency (right) algorithms,
where o denotes the standard deviation of the truncated centered univariate
and bivariate Gaussian pseudo-random inputs of size 8 x 109.

Engine order statistics contingency statistics
o 5 500 50000 5 50 200

&g 0.9999 0.9994 0.9619 0.9977 0.9866 0.8732

the number of entries in the global contingency table N, to
the number of input observations N:

E=1-—-1 (D)

Here we generalize this estimator to all quantization-based
statistics algorithms, by replacing N, with the number of
quantizers Ny in (1), and calling it the reduction effi-
ciency estimator. The definition of guantizer depends on
the particular statistical algorithm, but should be trivial in
relevant cases: for instance, histogram values and populated
contingency table entries for order and contingency statistics
respectively.

In [10] we had reasoned that reduction efficiency near 0
indicates that data should either be discretized more coarsely
to lower the number of distinct observations that may be en-
countered, or that contingency tables should be discarded for
this particular problem because of the non-discrete nature of
the underlying measurement. Furthermore, we reasoned that
values near 1 should point at computational scalability, with
the caveat that data may need to be discretized less coarsely
for the statistical analysis to be meaningful. However, after
computing a number of a posteriori estimations of reduction
efficiency with both order and contingency statistics engines,
we can conclude that it does not take values much smaller
than 1 to result in poor parallel scaling: combining the
numbers of Table III with those of Figures 7 and 8 (and
their counterparts for contingency statistics in [10]), we
can see that reductions smaller than 95% to 98% result
in less than optimal scalability. Note that the values of
o translate differently in terms of the diffuseness of the
random inputs for the two engines as one is univariate and
the other is bivariate. Further study is required to determine
an application-independent threshold. Moreover, when con-
sidering trade-offs between architectures and programming
models, it may be more relevant to consider

(1)

where C' is a measure of the communication cost for an
all-reduce of the model. For instance with a tree-based all-
reduce of the model on a fat-tree network with bandwidth



B, one can express C' as follows:

Ny logng
—5

A key problem with both reduction efficiency estimators is
that they require that global aggregation take place before the
estimators themselves can actually be calculated. Thus, they
can be used for the a posteriori evaluation of algorithmic
properties. In future work it is important to explore of
alternate a priori (i.e., prior to global aggregation) efficiency
estimators. For instance, under reasonable statistical assump-
tions one might consider min; & (i), where & () is computed
locally on each process i: this global-local estimator can be
computed prior to global aggregation and henceforth be used
as an objective function to govern a priori quantization.
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