SAND2011-2039C

High Performance Descriptive Semantic
Analysis of Semantic Graph Databases*

Cliff Joslyn!, Bob Adolf!, Sinan al-Saffar!, John Feo!,
Eric Goodman?, David Haglin!, Greg Mackey?, and David Mizell®

! Pacific Northwest National Laboratory
2 Sandia National Laboratories
% Cray Inc.

Abstract. As semantic graph database technology grows to address
components ranging from extant large triple stores to SPARQL end-
points over SQL-structured relational databases, it will become increas-
ingly important to be able to understand their inherent semantic struc-
ture, whether codified in explicit ontologies or not. Our group is re-
searching novel methods for what we call descriptive semantic analysis
of RDF triplestores, to serve purposes of analysis, interpretation, visual-
ization, and optimization. But data size and computational complexity
makes it increasingly necessary to bring high performance computational
resources to bear on this task. Our research group built a high perfor-
mance hybrid system comprising computational capability for semantic
graph database processing utilizing the multi-threaded architecture of
the Cray XMT platform, conventional servers, and large data stores. In
this paper we describe that architecture and our methods, and present
the results of our analyses of basic properties, connected components,
namespace interaction, and typed paths of the Billion Triple Challenge
2010 dataset.

Keywords: Semantic graph databases, high performance computing,
semantic networks.

1 Introduction

As semantic graph database (SGDB) technology grows to address components
ranging from extant large triple stores to SPARQL endpoints over SQL-structured
relational databases, it will become increasingly important to be able to un-
derstand their inherent semantic structure, whether codified in explicit ontolo-
gies or not, for tasks ranging from analysis, interpretation, and visualization to
optimization. But the ability to understand the semantic structure of a vast
SGDB awaits both the development of a coherent methodology and the high-
performance computational platforms within which to exercise such methods.
A number of factors make SGDB problems different from other large network
science problems, perhaps most prominently their formal nature as structures
which are not only large, but have high data complexity in that they are typed

* Corresponding author: CIliff Joslyn, Pacific Northwest National Laboratory,
cjoslyn@pnl.gov, 206-552-0351.

and directed networks: types on nodes and links carry the specifically seman-
tic information of their assertions, while the directionality of the links indicates
the argument structure of the links, seen as predicates. But standard methods
in network science (e.g. connected components, minimum path, centrality, etc.)
have generally been developed for networks of large size but low data type com-
plexity, that is for untyped, and undirected graphs. Where such methods ignore
semantics in order to reduce complexity, it is becoming increasingly important
to develop methods that tackle high data complexity directly.

To address these issues, our research group built a novel high performance
hybrid system comprising computational capability for semantic graph database
processing utilizing high capacity standard servers together with the multi-
threaded architecture of the Cray XMT platform. We have brought these ca-
pabilities to bear on the 2010 Billion Triple Challenge* dataset (BTC10) [5].

In this paper we describe these systems and our work to interrogate BT C10
with respect to its large-scale semantic structure. We first describe our hybrid
computational platform and the Cray XMT machine at its core. We then provide
base statistics on BTC10 node and link types and namespaces, including factor-
ing the ontological semantic meta-data from the rdf, rdfs, and owl namespaces.
We then consider interaction among namespaces in BT'C10, and analyze the con-
nected component structure of BTC10, with and without semantic filtering. We
then perform semantic analysis over classes and predicates, building up a sta-
tistical ontological map. Finally we factor BTC10 according to network motifs
which are short, typed paths, specifically link type bigrams and trigrams. This
analysis reveals the inherent semantic structure of BT C10 is revealed to users.

2 High-Performance Computational Architecture

Our high-performance computing platform includes a Cray XMT and a high-end
server. We use the high-end server—with 48 GBs of memory and two quad-core
2.96 GHz Intel Xeon CPUs—to perform initial investigations into the BTC10
using both leading commercial triple store software and custom software to per-
form scans of the data with regular memory accesses.

But for problems, such as graph problems, which are dominated by unpre-
dictable memory references, that is, with almost no locality, the Cray XMT
can significantly outperform distributed-memory parallel architectures based on
commodity processors. The XMT also has a significant amount of shared mem-
ory (1024 GBs) so that the entire graph can fit into memory at once, obviating
the usual requirement of paging data into limited RAM.

Our Cray XMT has 128 custom Threadstorm processors, each of which sup-
ports 128 hardware thread contexts, so that each Threadstorm can be viewed
as a 128-way hyperthreaded processor. For unpredictable memory reference pat-
terns, cache memory is ineffective. To overcome the latency of memory references
with no cache hits, programs are designed and written for high amounts of con-
currency. Thus at any time, each of the Threadstorms is likely to have at least
one of its 128 threads ready to compute while other threads await arrival of data

4 http://www.cs.vu.nl/ pmika/swc/submissions.htm]

from memory. This architecture is designed for running programs with large
memory footprints and 12,000 threads in a single program. With 1TB of shared
memory, we were not memory-constrained in our processing of the BTC10 data.

The amount of parallelism in applications running on the XMT can only be
supported by fine-grain synchronization support in the hardware and runtime
systems. It is commonly understood that fundamental data structures need to
be specialized to run on a system with this much concurrency. Members of our
team have recently developed hashing data structures that are used extensively
in our BTC10 work [4].

Our productivity in exploring BTC10 on the Cray XMT was facilitated by
two open source libraries that specifically target the Cray XMT: the Multi-
Threaded Graph Library (MTGL)% and the Semantic Processing Executed Ef-
ficiently and Dynamically (SPEED-MT) library. The first is a set of graph
algorithms and data structures designed to run scalably on shared-memory plat-
forms such as the XMT. The second is a novel scalable Semantic Web processing
capability being developed for the XMT.

We used a character string tokenization package from the SPEED-MT li-
brary to translate the verbose BT C10 data into 64-bit integers, to increase com-
putational efficiency and reduce the memory footprint. The XMT’s large global
memory allowed us to hash each URI, blank node, or literal into a shared hash
table and assign each a unique integer identifier. The process of translating from
strings to integers took a total of 1h 35m, with 75% of the time being file I/O.

3 First-Pass Semantic Data Analysis

We acquired BTC10 and verified it as an RDF graph with 3.2B (s, p, 0, ¢) quads,
which we projected to 1.4B unique (s, p, o) triples, ignoring the quad field (useful
for provenance and other operations but not for analyzing the main content).

We identified duplicates by hashing the triples, now of integers, into a shared
hash table in 10 min. 37 s. A parallel for loop iterated over the triples, inserting
them into a hash table class that is part of MTGL. The hash table class im-
plements a thread synchronization method described in more detail in [4] that
scales effectively for both uniform and power law distributions. The entire pro-
cess of converting the data from string to integers, removing the quad field, and
deduplicating compressed BTC10 from 624 GBs to 32 GBs.

Some of the namespace abbreviations used below are shown in Table 1. Com-
plete documentation of all the abbreviations used is too cumbersome for publica-
tion, but are straightforward and should be able to be determined from context.

We measured BTC10’s very low graph density of 1.8 x107% links/node?.
The left of Table 2 shows the distribution of the top 20 of the 58.6M non-blank
subjects present, comprising only 0.085% of all 960.7M non-blank subjects; the
right shows the distribution of the top 20 of the 95.5M non-blank, non-literal
objects present, comprising 29.3% of all 429.5M non-blank, non-literal objects.

® https:/ /software.sandia.gov/trac/mtgl
6 https://software.sandia.gov/trac/MapReduceXMT

Abbreviation |Prefix

bestbuy: http://products.semweb.bestbuy.com/company.rdf
dgtwe: http://data-gov.tw.rpi.edu/2009/data-gov-twe.rdf
fao: http://www.fao.org/aims/aos/languagecode.owl
foaf: http://xmlns.com/foaf/0.1/

freebase: http://rdf.freebase.com /ns/

geonames: |http://www.geonames.org/ontology#

geospecies: |http://rdf.geospecies.org/ont/geospecies
linkedmdb: |http://data.linkedmdb.org/resource/oddlinker/

owl: http://www.w3.0org/2002/07/owl

purl: http://purl.org/dc/elements/1.1/

rdf: http://www.w3.0org/1999/02/22-rdf-syntax-ns
rdfs: http://www.w3.0org/2000/01/rdf-schema

sioc: http://rdfs.org/sioc/ns

skos: http://www.w3.0org/2004,/02/skos/core

Table 1. Some prefix abbreviations used.

As with namespaces, URIs are also abbreviated and summarized to assist with
meaningfulness; full details are available in the BTC10 dataset.

Note that there are far fewer subjects than objects, by two orders of mag-
nitude, indicating a much larger in-degree of objects compared to out-degree
of subjects. The most prevalent subjects are “containers”, each (e.g. Best Buy)
pointing to a single category of a large number of objects (e.g. Offers in this case).
The subject list also contains web documents and blogs pointing to different ed-
itors, a dataset container pointing to all the comprising files, and an ontology
to all its edges and nodes with hasEdge and hasLink predicates. On the other
hand most prevalent objects are types, virtually all (e.g. foaf:person) due to
these types being the destination of rdf:type predicates. Another explanation
for an object having a high in-degree is that it represents a global service to
many entities. Such is the case with http://www.last.fm, an account servicing
page for nodes of type foaf:0OnlineAccount.

Subjects K[[Objects M
bestbuy:BusinessEntity_BestBuy |412.6]|foaf:Person 68.39
data-gov dataSet-91 148.0||foaf:OnlineAccount 10.15
data-gov dataSet-90 54.0 ||rdf:Statement 6.06
geonames:United Kingdom 16.1||foaf:Document 4.67
geonames:Towa 15.9 || rss:item 4.65
geonames:Wisconsin 15.8||dgtwe:DataEntry 4.00
s 15.8||demitype:Text 3.22
15.8||geospecies:Point 2.45

geonames:Michigan 15.8||opfield:Neighbour 2.36
liveJournal Entry 1 12.0|| MusicOnt:Performance 2.27
liveJournal Entry 2 11.2||timeline:Interval 2.26
liveJournal Entry 3 10.9||event:Event 2.26
SMIL Webpage 9.3||geonames:Feature 2.21
liveJournal Entry 4 9.0 || www.last.fm/ 1.67
liveJournal Entry 5 8.8 || wordnet:Person 1.66
Prefixcc Webpage 8.8 |[foaf:chatEvent 1.66
www.nettrust-site.net/fdic 8.4 [[uniprot:classified With 1.56
fao:Language Codes Ontology 1 7.8||rdfs:seeAlso 1.54
sfsu:FoodsWebs Ontology 7.7||uniprot:Domain_Assignment_Statement| 1.50
fao:Language Codes Ontology 2 7.2||goodrelations:ProductOrServiceModel | 1.46

Table 2. (Left) Top 20 subjects, count (thousands); (Right) top 20 objects, count
(millions).

Namespaces which deal with “semantic meta-data”, or ontological typing
information, are generally prominent. Specifically the rdf:, rdfs:, and owl:
namespaces comprise 20.0% of all link instances. A histogram of the top 10
is shown in Table 3. These are dominated by rdf:type, rdfs:seeAlso, and
rdfs:label, with rdf:type alone comprising 10.7%.

Reification is prominent in BTC10. There are 4.4M edges of predicate rdf : subject
between rdf : Statement and core:protein, the main source. Overall, rdf:subject,

p1 |Count (M)

rdf:type 152.8
rdfs:seeAlso 86.7
rdfs:label 10.8
rdf:subject 6.1
rdf:object 6.1
rdf:predicate 6.1
owl:sameAs 4.7
rdfs:comment 4.1
rdfs:subClassOf 1.7
rdfs:isDefined By 1.3

Table 3. Top ten semantic meta-data link types (millions).

rdf:object, and rdf : predicate each have 6.1M instances precisely, comprising
a significant fraction of BTC10 that is reified.

4 Namespace Interaction

To understand the relationships between the sources which generated the dataset,
we explore a summary metric for linkages among namespaces. Projects like the
Linking Open Data initiative” and the Comprehensive Knowledge Archive Net-
work® rely on manual attribution and curation of provenance. In BTC10 we
must use an approximation method for attributing triples to sources. While con-
ceptually URI’s and their namespaces should only serve to provide a unique
identifier, in practice namespaces can be used for clustering and developing a
basic understanding about the sources of the data.

We call triples “linked” when two or more of the subject, predicate, or ob-
ject map to different fully-qualified domain names (FQDNSs). Table 4 shows the
sources of linked data for the top 50 FQDNs as broken down by pair-wise po-
sition relationships. This data shows that a majority of triples in the BTC10
data use at least one entity created by a different organization, but most of this
interlinking stems from the reuse and sharing of predicates. This entire process,
including FQDN extraction, individual-, and pair-wise relationship counts, was

computed in just over half an hour using 64 processors on the XMT.
Relationship ||Distinct FQDNs| ||Identical FQDNs| ||Literal or Blank|

Subject-Predicate 1976.0 M[62% 464.9 M[14% 725.1 M[22%
Subject-Object 528.9 M|16% 1997.5 M[63% 620.3 M|19%
Predicate-Object 1313.5 M|41% 1776.8 M|[56% 59.5 M| 1%

Table 4. Sources of cross-linking by entity position

5 Connected Components

In the previous section we discussed how prefixes can be used to understand
the interconnectedness of the BTC10 graph. In this section we discuss a more
graph theoretic approach: connected components. This approach is used to find
the set of maximally connected subgraphs within a larger graph. For instances
where there is one large connected component that encompasses the majority of
vertices, a technique that works well is to first run breadth-first search, starting
at the node with the largest out-degree, to find a large component. We then find
the remaining components by using a “bully-strategy” [1].

" http://linkeddata.org
8 http://ckan.net

To pose the BTC10 data in terms of connected components, we treat subjects
and objects as vertices in a graph, and the predicates as edges connecting them.
However, connected components is generally only applied to undirected graphs,
so we ignore the directionality of the predicates. Running connected components
on BTC10, we find that there are 208.3K components, with a giant component
of 278.4M vertices, or 99.8% of the total.

To gain a better understanding of the structure of the graph, we experimented
by iteratively removing edge types. We first removed ontological information
by incrementally deleting the top 10 rdfs: predicates and the top seven owl:
predicates. We also examined deleting in stages the overall top 25 predicate
types. However, while we did see an increase in the number of components, a
large component continued to dominate, rarely straying below 90% of the graph.
In fact the process was more akin to shedding the leaf nodes of the graph, as the
order of the graph diminished to half of the original.

This process did illuminate several large jumps in the number of components
when certain edges were removed. Deleting only these predicate types, namely
rdf:type, rdfs:subClass0f, rdfs:definedBy, owl:imports,and foaf :knows,
we arrived at 9.0M components with the largest comprising 81.1% of the induced
graph, while only losing about 1% of the original vertices.

Finally, we performed a more extensive semantic filtering, in particular the
following five steps:

1. Retracted owl:sameAs cliques to a single new meta-node

2. Remove reification definitions, specifically triples where p = rdf : predicate,
rdf:subject, rdf:object, or rdf:Statement.

3. Remove reification itself in addition to its definition, that is, all paths reach-
ing to and from the reifying node of type rdf:Statement.

4. Removing edges where o is a literal.

5. Removing all edges where p = rdf: type.

This procedure resulted in producing 980.7K components, with the largest
component now only 111.3M nodes, or 54.95% of the total. The distribution of

the sizes of the top 10 components in shown in Table 5.
Component #|Size (M)

1 111.3
2 73.6
3 3.8
4 1.7
5 0.5
6 0.4
7 0.3
8 0.2
9 0.1
10 0.

Table 5. Sizes of the top ten components after semantic filtering.

Connected components on the XMT achieved 46x speedup from 1 to 128
processors, with the computation time for 128 processors being 10.3 seconds
(see Fig. 1).

6 Class Analysis and Extant Ontology

The semantic structure of meaningful RDF triples is illustrated in Fig. 2, where
triples t = (s,p,0) are shown as directed edges from s to o with the label p,

g:onnected Components Speedup on BTC2010

10 . .
=& (C Results
q
= |deal
@ 10° 1
(=
(=]
o
[
«
g
;
i= 10 1
10

2 4 8 16 32 64 128
Processors

Fig. 1. Scaleup of component calculations.

or s = 0. Consider a triple ¢ for which s and o are members of classes C and
C, respectively, where classes are interpreted as sets of their members. Then ¢
can be interpreted as a logical predicate of the form t = p(Cs, C,), where the
RDF predicate p is now seen as a relation p C Cs x C,. Thus a basic semantic
analysis requires looking at the distribution of the classes C' = Cs U C, (noting
that resources appear on both sides of predicates), and of the predicates p. We
will conclude by building a statistical ontological map, or an extant ontology, as
a directed graph on nodes as classes C', and edges as predicates p.

S p—»o0
I I

rdf: type rdf:type |::> Cs P >C,
C, G,

Fig. 2. The semantic structure of rdf triples.

BTC10 contains 168K different classes C' but only a small number of those
classes are widely used in the data. Fig. 3 shows that 16 of the most frequent
classes would cover 80% of the used types while we can cover 95% of the data if
we use 64 classes only. The top 16 classes are shown in Fig. 4.

Fig. 5 shows the top 16 of the 95.2K different predicates present, comprising
35% of all 1.4B link instances present as shown by the cumulative percentage
line. The cumulative predicate coverage of Fig. 5 is extended to the first 350
predicates as represented by the solid line in Fig. 6. Note that the 64 most
frequent predicates cover about 50% of the data. In a second run we removed
the edges leading to terminal nodes as those do not constitute relations between
graph nodes but are rather node properties. We then re-calculated the cumulative
predicate distribution and obtained the dashed line in Fig. 6. We discovered that

95 O

85

\ 64 most frequent types

& constitute 95% of used types
§ 7 \ 16 most frequent types
S constitute 80% of used types
g 65
o
5
a 55
4 == Cumulative Percent
35
0 10 20 30 40 50 60 70 80 90
Class Count
Fig. 3. Cumulative class distribution in BTC10.
80
70 -
16 most frequent types
Y 60 constitute 80% of used types
19
g 50
S
= 40
c
8
g 30)
& = Indicidual Classes

20 ~———Cumulative Percent

Class

Fig. 4. Top 16 classes in BTC10.

removing edges leading to literals significantly reduced graph size to 37% its
original size (from 1.4B to 530M edges).

16 most frequent predicates
cover 35% of the data

S\ most requent precicates

::::: 27% of the data

Percent Coverage

80 -

predicates: 86% coverage
256 most frequent predicates cover

91% of the data

\64 most frequent predicates cover
50% of the data

Percent Coverage
«
8

Original
= = = Literal Edges Removed

0 50 100 150 200 250 300

Predicate Count

Fig. 6. Cumulative distribution of predicates in BTC10.

Semantic graph visualization is notoriously difficult, especially when large.
However, in addition to the various statistics and figures we presented thus far,
we devised a new method to visualize the instance graph of this dataset. We
create an extant ontology as a graph G = (C, p) with nodes as classes C' and
edges as predicates p, but where each edge e = C L,C, € G is both labeled
by its predicate p, and also attributed with the count c¢(e) of the number of
occurrences of e, or with its relative frequency of occurrence.

Fig. 7 shows the extant ontology for the top 30 edge counts in BTC10. For
example we have about 70M triples with the predicate foaf :knows connecting
subject and object of class foaf:Person, the highest count. Note that many
nodes in the dataset have more than one type, so that they contribute to more
than one edge count and node label in the figure.

Effectively, Fig. 7 begins to show the statistical structure of the most sig-
nificant part of BTC10. Extending beyond the top 30 edges quickly becomes
visually difficult on paper, however we have computed the extant ontologies for
up to the top 750 edges. We are making the .pdf and .dot graph visualization
files for these bigger figures available online®.

gr:acceptedPaymentMethods 1.7M

gr:Offering gr:PaymentMethodCreditCard

uniprot:source 2.4M nipr N @

dcterms:isFormatOf 2.3M
dcterms:hasFormat 2. 30—

foaf:primaryTopic 2.8M
determs:isFormatOf 2.3M

dpterms:hasFormat 2.
determs:isFormatOf 2.3M s hasFormat 2.3M
N R — =

dcterms:hasFormat 2.3M @
dcterms:isFormatOf 2.3M
@ rdfs:seeAlso 4.3M Uniprot:Resource

foaf:isPrimaryTopicOf 1.3M

foaf:accountServiceHomepage 2.7M

foaf:holdsAccount 9.0M

foafknows 69.7

2.4M

foaf:Agent
opfuser 2.4M

foaf:knows 1.4M

lastfm:recommendation 2.3M

event:time 2.3M

thinterval

.mu.Performan(e
Fig. 7. The extant Ontology for the Top 30 Link-node-types in BTC10.
7 Path Type Analysis

We are interested in identifying the most prominent semantic structures and se-
mantic constraints present in BT'C10, not only simply to understand the BTC10,
but also for future developments to exploit this semantic structure to provide
targeted inferential support, and to optimize search and visualization methods
to the specific ontology, connectivity, and distributional statistics of datasets and
queries.

Semantic graphs are typed and directed. Where network analysis is frequently
done in terms of paths connecting nodes, here we need to deal with directed paths
which are themselves typed. Thus for a path of length n from an initial node of
class C to a terminal node of class C,, we cast its path type as the vector of the
predicates (p1,pe,...,pn) which comprise the path.

We are interested in seeking the path types of the long paths which occur with
high frequency. We hypothesize that these are the semantic structures which
carry a large portion of the semantic information in the network in terms of
interacting link types. Towards this end, we first consider the short paths which
make them up, that is the chains of two and three link types which are connected
linearly. These small, linear graph motifs are link-type n-grams for n = 2, 3. Note
that the 1-grams are just the predicates themselves, and are shown in the extant
ontology of Fig. 7.

lastfm:recommendation 2.3M

9 http://cass-mt.pnl.gov/hpcsw2011

For the bigram and trigram analysis we performed the most extensive se-
mantic filtering as was also used for component analysis in Sec. 5. Table 6 shows
the distribution of the top 20 bigrams of the 1.3M consecutive link type pairs,
comprising 53.0% of all 17.0B consecutive link pairs present; and Table 7 shows
the distribution of the top 20 trigrams of the 72.7M consecutive predicate triples,
comprising 7.54% of all 1.04T link triples.

1 pa Count (M) %
dgtwe:isPartOf dgtwe:partial_data 2,912.1[17.10%
geonames:inCountry geospeciesthasUnknownExpectationOf 1,701.8| 9.99%
geonames:inCountry freebase:type.object.key 918.0| 5.39%
foaf:depiction 905.1| 5.31%
geospeciesthasUnknownExpectationOf 516.2| 3.03%

geonames:inCountry geonames:wikipediaArticle 202.3| 1.19%
geonames:inCountry freebase:location.location.contains 178.0| 1.05%
linkedmdb:link_target geospeciesthasUnknownExpectationOf 158.0| 0.93%
foaf:maker geospeciesthasUnknownExpectationOf 144.9| 0.85%
:isExpectedIn geospecies:hasExpectationOf 142.6| 0.84%
UnknownAboutIn|geospecies:hasLowExpectationOf 139.1| 0.82%
UnexpectedIn geospeciesthasUnknownExpectationOf 139.1| 0.82%

ExpectedIn geospeciesthasUnknownExpectationOf 132.0| 0.78%
UnknownAboutIn |geospecies:hasExpectationOf 132.0| 0.78%

nCountry geospeciesthasLowExpectationOf 125.5| 0.74%
geospecies:isUnexpectedIn geospecies:thasLowExpectationOf 124.1| 0.73%
sioc:follows sioc:follows 116.9| 0.69%
inCountry freebase:location.location.people_born_here 115.8| 0.68%
UnknownAboutIn |freebase:type.object.key 115.3| 0.68%
geospecies:isUnknownAboutIn |foaf:depiction 113.5| 0.67%

Table 6. Top 20 link type bigrams (millions).

p1 po P3 Count %
(B)
sioc:follows sioc:follows sioc:follows 10.85[1.05%
owl:disjoint With owl:disjoint With owl:disjoint With 6.86(0.66%
geonames:inCountry geospecies:hasUnknownExpectationOf |foaf:isPrimaryTopicOf 6.86(0.66%
geospecies:hasUnknownExpectationOf [geospecies:isUnknownAboutIn 5.80(0.56%
freebase:location.country.admin_divisions |geospecies:hasUnknownExpectationOf|| 5.24[0.51%
geospecies:hasUnknownExpectationOf [skos:closeMatch 4.63(0.45%
purl:hasPart purl:hasPart 4.27(0.41%
freebase:location.location.contains geospecies:hasUnknownExpectationOf|| 4.09(0.40%
purl:hasPart geospeciesthasUnknownExpectationOf|| 3.54(0.34%
geonames:wikipediaArticle geospecies:hasUnknownExpectationOf|| 2.83[0.27%
geospecies:hasUnknownExpectationOf [geospecies:isExpectedIn 2.57(0.25%
freebase:location.country.admin_divisions |geospecies:hasLowExpectationOf 2.44(0.24%
factbook:landboundary geospeciesthasUnknownExpectationOf|| 2.43(0.23%
geospeciesthasUnknownExpectationOf |rdfs:seeAlso 2.36(0.23%
geonames:parentFeature geospecies:hasUnknownExpectationOf|| 2.32(0.22%
geonames:inCountry purl:hasPart geospecies:hasLowExpectationOf 2.31(0.22%
foaf:knows foaf:knows foaf:knows 2.19(0.21%
geos:isUnknownAboutln|geospeciesthasUnknownExpectationOf |geospecies:isUnknownAboutIn 2.15(0.21%
geos:hasUnknown geospecies:isUnknownAboutIn geospeciesthasUnknownExpectationOf|| 2.15[0.21%
ExpectationOf
geonames:inCountry freebase:location.location.contains geospecies:hasLowExpectationOf 2.03[0.20%

Table 7. Top 20 link type trigrams (billions).

Note the prominence of low-frequency predicates in both the bigrams and
trigrams. For example, consider the most frequent bigram (dgtwc:isPartOf,
dgtwc:partial data), with a frequency of 17.1%. The constituent predicates
have frequencies of 0.0038% and 0.027% respectively, far below the top 16 shown
in Fig. 5. If these were independent, the expected joint frequency would be
minuscule. This pattern of a vast inflation of expected probability is a general
phenomenon, indicating the powerful role that these small sequence motifs play
in the semantics of BTC10.

8 Conclusions

In this work we focused explicitly on analyzing the BTC10 data set with its
1.4 billion-edge graph. We employed the Cray XMT in most of these analyses
and in the process have made important discoveries that not only explain and

help visualize the various properties of this data, but also point out to future
directions where exploiting these properties is essential to designing even better
performing semantic databases and analyses tools. The assumed graph-nature
of the data model did suggest that HPC architectures designed for graph-like
problems may be a good match for this domain and indeed we have shown the
XMT to be an excellent platform for such tasks. However we also demonstrated
that patterns are plentiful in the data. Accordingly, heavy-tail predicate and
type distributions, prevalence of terminal edges, n-grams, and extant ontological
substructures should all be further studied in order that they may be used in
designing a hybrid semantic HPC solution. We are presently working in this
direction.

Acknowledgments

This work was funded by the Center for Adaptive Supercomputing Software —
Multithreaded Architectures (CASS-MT) at the Dept. of Energy’s Pacific North-
west National Laboratory. Pacific Northwest National Laboratory is operated by
Battelle Memorial Institute under Contract DE-ACO6-76RL01830.

The authors thank Liam McGrath (PNNL) for assistance on n-gram analysis.

References

1. Berry, J; Hendrickson, B; Kahan, S; and Konecny, P: (2006) “Graph Software
Development and Performance on the MTA-2 and Eldorado”, in: 48th Cray Users
Group Meeting

2. Chavarria-Miranda, D; Marquez, A; Nieplocha, J; Maschhoff, K; C Scherrer:
(2008) “Early Experience with Out-of-Core Applications on the Cray XMT”,
in: Proc. 22nd IEEE Int. Parallel and Distributed Processing Symp., pp. 1-8,
10.1109/IPDPS.2008.4536360

3. Feo, John; Harper, David; Kahan, Simon; and Konecny, Petr: (2005) “ELDO-
RADO”, in: CF ’05: Proceedings of the 2nd conference on Computing frontiers,
pp. 28-34, ACM, Ischia, Italy, http://doi.acm.org/10.1145/1062261.1062268

4. Goodman, E; Haglin, David J; Scherrer, Chad; Chavarria, D; Jace Mogill, John
Feo: (2010) “Hashing Strategies for the Cray XMT”, in: Proc. 24th IEEE Int.
Parallel and Distributed Processing Symp.

5. Joslyn, CIliff; Adolf, Bob; al-Saffar, Sinan; Feo, John; FEric Goodman,
David Haglin, Gregy Mackey, David Mizell: (2010) “High Performance Se-
mantic Factoring of Giga-Scale Semantic Graph Databases”, in: Seman-
tic Web Challenge 2010, Int. Semantic Web Conf., runner-up winner,
http://www.cs.vu.nl/"pmika/swc/submissions/swc2010_submission_15.pdf

