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- Overview & Motivation
- Why does standard SA-AMG fail & how to fix it
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+ Conclusion
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%‘ eXtended Finite Element Method (XFEM)

e allows to treat problems with singularities or discontinuities that are
‘impractical’ to be resolved by h-adaptivity. (adapted from Wikipedia)

e does so by extending the approximation space with known analytic
solutions — similar to p-adaptivity, but not the same.

e has been applied to 3d
— Crack propagation
— Fluid-structure interaction
— Multi-material problems and multi-phase flow

e could be termed: ‘fixed-grid method’, ‘embedded discontinuity
method’, ‘partition of unity method’, ...
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Fracture of ice

Objective: Employ parallel computers to better understand how fracture of

land ice affects the global climate. Fracture happens e.g. during
the collapse of ice shelves,

the calving of large icebergs, and
the role of fracture in the delivery of water to the bed of ice sheets.

Ice shelves in Antarctica: Macro scale - rifts will be

represented by cracks (XFEM)
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Other example: Wilkins ice shelf 2008

Glacial hydrology
(Source: http://www.sale.scar.org)
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Computational Modeling of Fracture

Classical FEM approach to fracture mechanics
« Mesh conforms to crack boundaries
« Crack propagation - remeshing at each step
 Requires fine mesh for tip singularities
« Mesh smoothing for ‘ugly’ elements
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eXtended Finite Element Method (XFEM)*
« Base mesh independent of crack geometry

« Crack propagation - adding “enriched” DOF
with special basis functions to existing nodes

« Number of DOFs change, mesh does not
 Crack geometry defined through levelsets
 Enrichments have local support

* Belytschko & Black (1999), Moes et al. (1999)
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XFEM Formulation for Cracks

Displacement approximation (shifted basis form.)
5% s
u”(x) Z Ni(x)up 8
s+ >N (x) (H(x) - H (x1,))ar,
i=1
LS g
u +Z*Nfﬁ(le Z (F_;r{}{]l — Fy (x;ij) bf-;i
i=1 J=1
= Jump Enrichment = Tip Enrichment (brittle crack)
J=1 J' 2 J 3 J 4
0.5 inQ* - 0\ A
H(:c) = { 05 . Fj(r,0) = /T sin ( ) VT cos (2) VT sin ( ) sin(#), VT cos ( ) sin(#)
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- Bubnov-Galerkin method: use identical approximation for test function dd(x)

Global system
A=Y, [, BICB.dx

f= Zefpe Nghdw+Zeer NS pdx

Au= 1
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' Multigrid principles

* Oscillatory components of error are
reduced effectively by smoothing, but
smooth components attenuate slower @ O o
N /

« Key idea - capture error at multiple
resolutions using grid transfer operators

k k :
RIkI and PLKI ‘ﬂzh &.?o‘ﬂgh
- In AMG, transfer operators are obtained R O
from graph information of A ‘%3\ @0/
0
« Interpolation complements relaxation % <
2 ‘ﬂ:lh ' 4k
- a1 n < %
// Solve AlFlylk]l = plk] \‘\\\\ /,//\
procedure multilevel(blF] wlF] k) N, A
ulk] = RIFI(AF] plk] 4 [K]). '~‘<'
if (k#£1Y) OH
ikl = plkl — ALkl R Direct solve at the
ulk+1 — 0. coarsest level
w1 =multilevel (( PN T plk] g lk+1] k41):
-u[’l‘:] = -u,[k] + P[k] u[k+l];
ulkl = RIEI (ALKl plE] 4 lED.
"
Recursive multigrid V Cycle consisting of / cycles to @ ﬁg’ltlioﬁal
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‘Standard’ SA-AMG for fracture problems

1-level, A

—4&— SA-AMG, A

relative residual

nDOF

T
o

= 5552
i | nnz = 101004
10 0 5IO 1(I)0 1_;)0 2(IJO 2’:I'>0 300
iteration number
e Aggregation
- Aggregates should not cross crack
e Nullspace

- Elasticity: 3 ZEMs
- Uncoupled domains: 6 ZEMs or more?

e Assumption of 2 unknowns per node fails

- 2,4, or 10 DOFs per node
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XFEM: modified shifted enrichment
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' Aggregation for phantom nodes: 1D
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Aggregates seemingly overlap, but are not connected on any level!
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Transformation

Do XFEM developers have to use the phantom node approach? No!

For each node I with jump DOFs: o1 — 1 = dq

~
|
Q

Phantom node approach

GT - A-G-G ' u=G"T-f

« is extremely sparse,

 is simple to produce,

« transformations are processor-local, -

« applies only to jump DOFs G =

« exists for higher order Lagrange Polynomials and
multiple dimensions
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Aggregation for phantom nodes: 2D

//
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Mesh + Enrichment Standard DOFs only Standard + Jump DOFs
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Modified shifted enrichment GY' - A-G-G ' u=GT-f Phantom node approach
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4 ' Prelim. results for jump enrichments only

Case Ne X Mg Keond. Miter
_ _ A GT-A-G
A Shifted enrichment 1L ML 1L ML
GY.A-G Phantom node 30 x 30 3e+03 32 9 32 9

60 x60 1e+04 63 10 63 10
90x90 3e+04 93 11 93 11
120 x 120 5e+04 123 11 123 11

30 x30 2e+06 59 40 53 | 12
60 x 60 1le+06 109 58 104 | 13
90 x 90 2e+06 159 65 156 | 14
120 x 120 1e+07 - 81 - | 15

30 30 1e+04 46 25 42 11
60 x 60 5e+04 86 33 83 13
90 x 90 1e+05 127 40 127 | 15
120 x 120 2e+05 170 44 167 | 15

[T
If one wants to use the

standard graph-based 3030 le+05 54 16 54 | 11
- - | 60 x 60 4e+05 106 21 105 | 14
aggregation, then using _ T la 90 x 90 1le+06 157 24 157 | 16
Phantom node setup is crucial! i 120x 120 2e+06 - 2 - | 16
30x30 2e+07 78 38 76 | 16

. 60 x 60 7e+07 150 53 146 | 17

i c 90 x 90 le+08 - 63 - | 18

120 x 120 2e+08 - 73 - | 21

SA-OC: 1.28-1.40
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NullSpace for Jump & Tip Enrichments

2D Elasticity problem has 3 zero energy modes 1 2 3

Nullspace for phantom node setup  eeere -

|
e Standard DOFs are treated as usual 91
e Phantom DOFs are treated like Standard DOFs
- Put ‘1’ into x- and y- displacement col. e
— Put coordinate into the rotation column PP SO !
e Consider extra tip DOFs as fine-scale features + 5999406004
- They don’t contribute to the rigid body motion : __________
|

) © 0 00000 .
e put O into their respectiverows o =

— = no coarse level contribution in prolongation & restriction

- = smoothing only on finest level

J=1 J=2 J

o,

L L

+§‘Mf¢(x)2(FJ(X)—FJ (Xfi))bft.; Fy(r.0) = V’Fsm( ) fcos( ) rbm(

J=1

b gl
ro] o g

3 J
) sin(8), V7 cos (
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Smoothing

e Finest Level: Combine standard (Block-) Gauss-Seidel smoothing
with special tip smoother D%P
— Tip smoother: let 7 contain all extra enriched tip DOFs. Then

ti
D7 = Arr
D’ =0ifi¢TorjgT Reason for special smoothing:
_ « dense blocks (40x40 for quad4)

— Pre-smoother: i - high condition number

u < GaussSeidel(u, A, b

u«—u+D"P.(b—A-u
— Post-smoother

u«—u+D"P.(b—A-u)

u < GaussSeidel(u, [\, b) Pre-Post-smoother symmetry is important

e All coarser levels: standard GaussSeidel
e Coarsest Level: Direct solve
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Numerical Results...

» Both edge cracks and interior cracks considered
» CG preconditioned with AMG

« VBIk AMG: block form of standard AMG with 1 pre + 1 post block
sym(GS)
« Hybrid Standard AMG: P(A,., A,. ) with 1 pre + 1 post sym(GS) on 2x2 system
* Quasi-AMG: P(A,,, /\rr) with 1 pre + 1 post sym(GS) on 2x2 system
Single Propagating Crack Two Cracks
(a) Case 1a (b) Case 1b (c) Case 1c (d) Case 2a (e) Case 2b
Six Cracks Inclined Cracks

(f) Case 3a (g) Case 3b (h) Case 4 (i) Case 5a (j) Case 5b ;



Without cracks

# of
level

2
3
3
4

A

full (1,1)
complexity complexity

1.673

1.815
1.65

1.699

1.607
1.716
1.583
1.621

Numerical Results for full XFEM system

Case Me % Ne Hiter Keond,
1L ML ML, MS ML, NS ML, MS, NS
SA° EM SA EM SA EM [SA EM
A x30 33 o] o] 8 8 ] ] 8 8 3e+03
I 60 %60 64 10 11 10 11 10 11 |10 11 le+04
90 =90 94 11 12 11 12 11 12 |11 12 3e+04
30x30 160 138 130 25 29 111 112 |19 21 3e+407
I 60 x 60 - - - 3 38 191 180 |24 26 2e+09
G0 » 90 - - 1 42 - Al 31 Ye+09
120 x 120 - - - 144 - - - |28 40 TFe+10
30x30 116 88 7B 021 19 79 70 |18 14 3e+407
1 60 » 60 - 120 99 24 23 102 g6 |20 17 He+08
S0 w90 - 148 138 27 27 115 102 |22 20 le+10
120 = 120 - 162 153 29 27 120 107 |24 21 4e+10
30x30 666 31 30 16 15 31 29 |16 15 6e+05
1 60 =60 117 31 30 18 17 31 30 |18 16  3e+06
a 90«90 165 33 29 20 16 33 30 |20 16 le+07
120 x 120 - 32 31 19 17 32 31 |19 16 2e+407
A0x30 8 M4 37 21 24 34 37 |20 23 le+08
1 60 »x 60 157 35 41 23 28 35 40 |23 28 T7e+08
< S0 » 90 - 35 41 24 29 35 42 |24 29  2e+09
120 = 120 - 537 4 26 31 37 44 |26 31 3e+09
SA-OC: 1.28-1.40
EM-OC: 1.13-1.17
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Case

Without cracks

# of
level

S

2
3
3
4

Todo:

1.815
1.65
1.699

full (1,1)
complexity complexity

1.673

1.607
1.716
1.583
1.621

Numerical Results for full XFEM system

Remove emin,

Show conditioning?
Pictures of test cases?

He ¥ He Hiter Keond.
1L ML ML, M5 ML, NS ML, M5, N5
sA°EM SA EM S5A EM [BA EM
30 =30 33 8 8 8 8 8 8 8 8 3e403
I 60 x 60 64 10 11 10 11 10 11 |10 11 le+04
90 x990 o4 11 12 11 12 11 12 (11 12 3e+04
30«30 160 138 130 25 29 111 112 |19 21 3e407
I 60 = 60 - - - 31 38 191 180 |24 26 2e+09
a0 = 90 - - - 31 42 - - 21 31 Ye49
120 = 120 - - - 144 - - - |28 40 Fe+10
30 =30 116 B8 75 21 19 79 70 |18 14 3e+07
I 60 = 60 - 120 99 24 23 102 86 |20 17 8e408
G0 = 90 - 148 138 27 27 115 102 |22 20 le+10
120 = 120 - 162 153 29 27 120 107 |24 21 4e+10
30«30 66 31 30 16 15 31 29 |16 15 6Ge45
1 60 = 60 117 31 30 18 17 31 30 (18 16  3e+0b
a 90 = 90 165 33 29 20 16 33 30 |20 16 le+07
120 = 120 - 32 31 19 17 3z 31 (19 16 2e+07
30 =30 B6 3 7 21 24 34 37 (20 23 le+08
1 60 x 60 157 35 11 23 28 35 40 |23 28 Te408
< S0 = 90 - 35 41 24 29 35 42 |24 29 Z2e+09
120 = 120 - 37 4 26 31 37 44 |26 31 3e+09
SA-OC: 1.28-1.40
remove OC (make it a comment below) EM-OC: 1.13-1.17
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‘ Concluding Remarks

Standard SA-AMG methods can be used, if proper input is provided!

e Key components:

- System matrix must be in phantom-node form
e Either you already have it, (voids, fluid-structure interaction, ...) , or
e do a simple transformation G' - A-G-G ' u=G"-f

— Adapt nullspace with zero entries for extra tip DOFs

— Two-step smoothing on finest level

Future Directions

e 3d implementation

e What happens to tiny element fractions (conditioning)?
e Can we get even closer to pure FEM?
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Backup slides
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XFEM flow and fluid-structure interaction

A. Gerstenberger, "An XFEM based fixed-grid approach to fluid-structure interaction”, PhD thesis, 2010
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Larsen ‘B’ shelf, 1998-2002
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Wilkins ice shelf, 2008

_I"n.r"larch 6, 2008 y 28, 2008
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Antarctica

February 29, 2008

Wilkins Ice Shelf
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A
4 omputational Modeling of Fracture

XFEM mesh
lassical FEM approach to fracture mechanics
« Mesh conforms to crack boundaries % e
 Crack propagation - remeshing at each step o

 Requires double-nodes for crack opening
and fine mesh for tip singularities

eXtended Finite Element Method (XFEM)*
« Base mesh independent of crack geometry

 Crack propagation - adding “enriched” DOF
with special basis functions to existing nodes

 Crack geometry defined through levelsets

« Discontinuities and singularities captured
through special basis functions

(enrichments) Ty
« Enrichments have local support
* Belytschko & Black (1999), Moes et al. (1999) Sandia
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XFEM Linear system

Strain-displtiaiindisplaicasent relation: XFEM mesh

Be = vsymNgny

enT

« Symmetric gradient operator
applied to enriched basis-function

matrix
lWeak form

Stiffness matrix:

A= [o (Be, )" DBe_ dQ,

enr

« Numerical quadrature for stiffness
matrix

Assembl
Y Sparsity pattern of A Sparsity pattern of A,,

XFEM Linear System:

J4‘]"":"‘ A?‘E‘ u'i"' f]"‘

« Enriched DOF grouped together at the L
end in u, ;%
-

« A, small compared to A, for relatively | ______________ -
small number of cracks N, N

p— '] T - -




3 ‘ ‘Standard’ SA-AMG for elastic problems

XFEM Linear System: 10 Tlovel A
B 2 —A— SA-AMG, A
Arr ATI U, fr 10° B at —&— SA-AMG, PAT A P, MS, NSmod

T ©
! =
| ‘0
! o
| o N
I =
' T
I ©
| —
I -
|
|
l
L
l

_______________ §.S__ |L.: 10'10 1 1 1 1 1

0 50 100 150 200 250 300
iteration number
nDOF = 5552
nnz = 101004

Standard SA-AMG for elastic problems performs poorly!
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