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eXtended Finite Element Method (XFEM)

• allows to treat problems with singularities or discontinuities that are 
‘impractical’ to be resolved by h-adaptivity. (adapted from Wikipedia)

• does so by extending the approximation space with known analytic 
solutions – similar to p-adaptivity, but not the same.

• has been applied to 3d

– Crack propagation

– Fluid-structure interaction

– Multi-material problems and multi-phase flow

– …

• could be termed: ‘fixed-grid method’, ‘embedded discontinuity 
method’, ‘partition of unity method’, …



Objective: Employ parallel computers to better understand how fracture of  

land ice affects the global climate. Fracture happens e.g. during

• the collapse of ice shelves,

• the calving of large icebergs, and 

• the role of fracture in the delivery of water to the bed of ice sheets. 

Ice shelves in Antarctica:

Larsen ‘B’ diminishing shelf
1998-2002
Other example: Wilkins ice shelf 2008

Macro scale - rifts will be 
represented by cracks (XFEM)

Amery ice shelf

Micro & Meso scales -
viscoelastic damage

Glacial hydrology
(Source: http://www.sale.scar.org)

Fracture of ice 



Classical FEM approach to fracture mechanics

• Mesh conforms to crack boundaries

• Crack propagation  remeshing at each step

• Requires fine mesh for tip singularities

• Mesh smoothing for ‘ugly’ elements

eXtended Finite Element Method (XFEM)*

• Base mesh independent of crack geometry

• Crack propagation  adding “enriched” DOF 
with special basis functions to existing nodes

• Number of DOFs change, mesh does not

• Crack geometry defined through levelsets

• Enrichments have local support

Computational Modeling of Fracture

* Belytschko & Black (1999), Moes et al. (1999)



Displacement approximation (shifted basis form.)

XFEM Formulation for Cracks

Jump Enrichment Tip Enrichment (brittle crack)

 Bubnov-Galerkin method: use identical approximation for test function

Global system



Direct solve at the 
coarsest level

Recursive multigrid V Cycle consisting of l cycles to 
solve Au=b

• Oscillatory components of error are 
reduced effectively by smoothing, but 
smooth components attenuate slower

• Key idea  capture error at multiple 
resolutions using grid transfer operators 
R[k] and P[k]

• In AMG, transfer operators are obtained 
from graph information of A

• Interpolation complements relaxation

Multigrid principles



‘Standard’ SA-AMG for fracture problems

nDOF = 5552
nnz = 101004

• Aggregation

– Aggregates should not cross crack 

• Nullspace

– Elasticity: 3 ZEMs

– Uncoupled domains: 6 ZEMs or more?

• Assumption of 2 unknowns per node fails

– 2, 4, or 10 DOFs per node



Distinct region representation

FEM

XFEM: modified shifted enrichment

Phantom node approach

K M

1 2 3,4 5 6

1 2,3 4,5 6

1 2,4 3,5 6

crack

(reordered for visualization)



Aggregation for phantom nodes: 1D

Level 1

Level 2, …

Aggregates seemingly overlap, but are not connected on any level!



Transformation

Do XFEM developers have to use the phantom node approach? No!

For each node I with jump DOFs:

G
• is extremely sparse,
• is simple to produce,
• transformations are processor-local,
• applies only to jump DOFs
• exists for higher order Lagrange Polynomials and

multiple dimensions

XFEM: modified shifted enrichment Phantom node approach



Aggregation for phantom nodes: 2D

Standard DOFs only Standard + Jump DOFsMesh + Enrichment

(  )*  sym. rev. Cuthill-McKee permutation

Modified shifted enrichment Phantom node approach



Prelim. results for jump enrichments only

SA-OC: 1.28-1.40

If one wants to use the 
standard graph-based 
aggregation, then using
Phantom node setup is crucial!

Shifted enrichment

Phantom node



NullSpace for Jump & Tip Enrichments

Nullspace for phantom node setup

• Standard DOFs are treated as usual

• Phantom DOFs are treated like Standard DOFs

– Put ‘1’ into x- and y- displacement col.

– Put coordinate into the rotation column

• Consider extra tip DOFs as fine-scale features

– They don’t contribute to the rigid body motion

• put 0 into their respective rows

–  no coarse level contribution in prolongation & restriction

–  smoothing only on finest level 

• Don’t transform tip dofs!

1   2    3
…

Dx_I 1   0  -y_I
Dy_I 0   1   x_I

… 

2D Elasticity problem has 3 zero energy modes



Smoothing

• Finest Level: Combine standard (Block-) Gauss-Seidel smoothing 
with special tip smoother

– Tip smoother: let contain all extra enriched tip DOFs. Then

– Pre-smoother:

– Post-smoother

• All coarser levels: standard GaussSeidel

• Coarsest Level: Direct solve

Pre-Post-smoother symmetry is important

Reason for special smoothing:
• dense blocks (40x40 for quad4)
• high condition number



Single Propagating Crack Two Cracks

Six Cracks Inclined Cracks

Test Cases:

• Both edge cracks and interior cracks considered

• CG preconditioned with AMG
• VBlk AMG:                    block form of standard AMG with 1 pre + 1 post block

sym(GS)
• Hybrid Standard AMG:   P(Arr , Arr ) with 1 pre + 1 post sym(GS) on 2x2 system
• Quasi-AMG:                  P(Arr , Ârr ) with 1 pre + 1 post sym(GS) on 2x2 system

Numerical Results…



Numerical Results for full XFEM system

Without cracks

SA-OC: 1.28-1.40
EM-OC: 1.13-1.17

# of 
level

s

full 
complexity

(1,1) 
complexity

2 1.673 1.607

3 1.815 1.716

3 1.65 1.583

4 1.699 1.621



Numerical Results for full XFEM system

Without cracks

Remove emin, 
remove OC (make it a comment below)
Show conditioning?
Pictures of test cases?
Add a convergence diagram to support table

Todo:

SA-OC: 1.28-1.40
EM-OC: 1.13-1.17

# of 
level

s

full 
complexity

(1,1) 
complexity

2 1.673 1.607

3 1.815 1.716

3 1.65 1.583

4 1.699 1.621



Concluding Remarks

Standard SA-AMG methods can be used, if proper input is provided!

• Key components:

– System matrix must be in phantom-node form 

• Either you already have it, (voids, fluid-structure interaction, …) , or

• do a simple transformation

– Adapt nullspace with zero entries for extra tip DOFs

– Two-step smoothing on finest level

Future Directions

• 3d implementation

• What happens to tiny element fractions (conditioning)?

• Can we get even closer to pure FEM?



Backup slides



XFEM flow and fluid-structure interaction

A. Gerstenberger, “An XFEM based fixed-grid approach to fluid-structure interaction”, PhD thesis, 2010



Larsen ‘B’ shelf, 1998-2002



Wilkins ice shelf, 2008



Computational Modeling of Fracture

Classical FEM approach to fracture mechanics

• Mesh conforms to crack boundaries

• Crack propagation  remeshing at each step

• Requires double-nodes for crack opening 
and fine mesh for tip singularities

eXtended Finite Element Method (XFEM)*

• Base mesh independent of crack geometry

• Crack propagation  adding “enriched” DOF 
with special basis functions to existing nodes

• Crack geometry defined through levelsets

• Discontinuities and singularities captured 
through special basis functions 
(enrichments)

• Enrichments have local support

* Belytschko & Black (1999), Moes et al. (1999)

XFEM mesh



• Enriched DOF grouped together at the 
end in ux

• Axx small compared to Arr for relatively 
small number of cracks

• Dense blocks in A correspond to tip 

Sparsity pattern of A Sparsity pattern of Axx

XFEM mesh

• Numerical quadrature for stiffness 
matrix

• Symmetric gradient operator 
applied to enriched basis-function 
matrix

Weak form

Assembly

XFEM Linear system

Strain-displacement relation:



‘Standard’ SA-AMG for elastic problems

Standard SA-AMG for elastic problems performs poorly! 

nDOF = 5552
nnz = 101004


