
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-

Pyomo: Modeling and Solving
Mathematical Programs in Python

William E. Hart

Sandia National Laboratories

wehart@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

-AC04-94AL85000.

Pyomo: Modeling and Solving
Mathematical Programs in Python

William E. Hart

Sandia National Laboratories

wehart@sandia.gov

SAND2011-2647C

mailto:wehart@sandia.gov

Slide 2

Why Math Modeling?

Goals:

– Provide a natural syntax to describe mathematical models

– Formulate large models with a concise syntax

– Separate modeling and data declarations

– Enable data import and export in commonly used formats

Impact:

– Robustly model large constraint matrices (e.g. for MILPs)

– Integrated support of automatic differentiation for complex
nonlinear models

Examples: AMPL, GAMS, OptimJ, AIMMS, FlopCPP, PuLP, …

Provide a natural syntax to describe mathematical models

Formulate large models with a concise syntax

Separate modeling and data declarations

Enable data import and export in commonly used formats

Robustly model large constraint matrices (e.g. for MILPs)

Integrated support of automatic differentiation for complex

AMPL, GAMS, OptimJ, AIMMS, FlopCPP, PuLP, …

Slide 3

Pyomo Features

Open Source
– Transparency and reliability
– Customizable capability
– Flexible licensing

Flexible Modeling Language
– Leverages a full-featured, modern scripting language
– Extensible library of Python modeling objects

Portability
– Linux, MS Windows, Mac OS

Solver Integration
– Tight integration: solvers linked into modeling language
– Loose integration: solver launched separately

Flexible Modeling Environment
– Support for LP, MILP and NLP models
– Symbolic/Concrete representations of objectives and constraints
– Construct models from external data sources

• Databases, spreadsheets, Pyomo data files, CSV files, etc.
– Modeling extension packages

• Generalized disjunctive programming, stochastic programming

featured, modern scripting language
Extensible library of Python modeling objects

Tight integration: solvers linked into modeling language
Loose integration: solver launched separately

Support for LP, MILP and NLP models
Symbolic/Concrete representations of objectives and constraints
Construct models from external data sources

Databases, spreadsheets, Pyomo data files, CSV files, etc.

Generalized disjunctive programming, stochastic programming

Slide 4

Why Python?

Open Source License

Features

– A clean syntax, a rich set of data types, support for object oriented
programming, namespaces, exceptions, dynamic loading, etc.

Support and Stability

– Highly stable and well-supported
Documentation

– Extensive online documentation and several excellent books
Standard Library

– Includes a large number of useful modules.
Extendability and Customization

• Simple model for loading Python code developed by a user

• Can easily integrate libraries that optimize compute kernels

• Python can dynamically integrate libraries
Portability

– Widely available on many platforms

A clean syntax, a rich set of data types, support for object oriented
programming, namespaces, exceptions, dynamic loading, etc.

supported

Extensive online documentation and several excellent books

Includes a large number of useful modules.

Simple model for loading Python code developed by a user

Can easily integrate libraries that optimize compute kernels

Python can dynamically integrate libraries

Widely available on many platforms

Why Python? More work and few expletives!

An analysis of cuss words in Git Hub software...

See http://www.andrewvos.com/ for further details...

Slide 5

Why Python? More work and few expletives!

An analysis of cuss words in Git Hub software...

for further details...

http://www.andrewvos.com/

Slide 6

Example: A Concrete Knapsack Model

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}

w = {'hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}

limit = 14

model = ConcreteModel()

model.ITEMS = Set(initialize=v.keys())

model.x = Var(model.ITEMS, within=Binary)

model.value = Objective(expr=sum(v[i]*model.x[i] for i in

model.ITEMS), sense=maximize)

model.weight = Constraint(expr=sum(w[i]*model.x[i] for i in

model.ITEMS) <= limit)

Example: A Concrete Knapsack Model

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}

w = {'hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}

model.ITEMS = Set(initialize=v.keys())

model.x = Var(model.ITEMS, within=Binary)

model.value = Objective(expr=sum(v[i]*model.x[i] for i in

model.weight = Constraint(expr=sum(w[i]*model.x[i] for i in

Using the Pyomo Command

Pyomo’s command-line script executes a common workflow

Executing ...

... generates the following:

Slide 7

$ pyomo --solver=glpk knapsack

- Setting up Pyomo environment [0.00]
- Applying Pyomo preprocessing actions [0.00]
- Creating model [0.01]
- Applying solver [0.03]
- Processing results [0.30]

Number of solutions: 1
Solution Information

Gap: 0.0
Status: optimal
Function Value: 25

Solver results file: results.yml
- Applying Pyomo postprocessing actions [0.30]
- Pyomo Finished [0.30]

Using the Pyomo Command-line Script

line script executes a common workflow

solver=glpk knapsack-concrete.py

Setting up Pyomo environment [0.00]
Applying Pyomo preprocessing actions [0.00]
Creating model [0.01]
Applying solver [0.03]
Processing results [0.30]

Applying Pyomo postprocessing actions [0.30]
Pyomo Finished [0.30]

Example: An Abstract Knapsack Model

from coopr.pyomo import *

model = AbstractModel()

model.ITEMS = Set()

model.v = Param(model.ITEMS, within=PositiveReals)

model.w = Param(model.ITEMS, within=PositiveReals)

model.limit = Param(within=PositiveReals)

model.x = Var(model.ITEMS, within=Binary)

def value_rule(model):
return sum(model.v[i]*model.x[i] for i in model.ITEMS)

model.value = Objective(sense=maximize)

def weight_rule(model):
return sum(model.w[i]*model.x[i] for i in model.ITEMS) <=

model.limit
model.weight = Constraint()

Slide 8

Example: An Abstract Knapsack Model

model.v = Param(model.ITEMS, within=PositiveReals)

model.w = Param(model.ITEMS, within=PositiveReals)

model.limit = Param(within=PositiveReals)

model.x = Var(model.ITEMS, within=Binary)

return sum(model.v[i]*model.x[i] for i in model.ITEMS)
model.value = Objective(sense=maximize)

return sum(model.w[i]*model.x[i] for i in model.ITEMS) <=

Optimizing Abstract Models

Pyomo supports the integration of data using a Pyomo data commands

– These are specified in a separate file

– Data commands are a mini-language that is closely resembles
AMPL’s data commands

Example: knapsack.dat

Slide 9

set ITEMS := hammer wrench screwdriver towel ;

param : v w :=
hammer 8 5
wrench 3 7
screwdriver 6 4
towel 11 3;

param limit := 14;

$ pyomo --solver=glpk knapsack

Optimizing Abstract Models

Pyomo supports the integration of data using a Pyomo data commands

These are specified in a separate file

language that is closely resembles

set ITEMS := hammer wrench screwdriver towel ;

solver=glpk knapsack-abstract.py knapsack.dat

Data Interfaces

Note: the ‘set’ and ‘param’ data commands allow for compatibility

with AMPL models

The ‘import’ command that can be used to load data from a variety

of external data sources:

– databases, excel spreadsheets, CSV files, tabular data, etc.

Example: diet1.db.dat

Slide 10

import "Driver={Microsoft Access Driver (*.mdb)};DBQ=diet1.mdb"
using=pyodbc
query="SELECT FOOD,cost,f_min,f_max FROM Food":

[FOOD] cost f_min f_max;

Note: the ‘set’ and ‘param’ data commands allow for compatibility

The ‘import’ command that can be used to load data from a variety

databases, excel spreadsheets, CSV files, tabular data, etc.

import "Driver={Microsoft Access Driver (*.mdb)};DBQ=diet1.mdb"

query="SELECT FOOD,cost,f_min,f_max FROM Food":

Example: Nonlinear Models

Pyomo now supports general

nonlinear expressions for

objectives and constraints

A generic ASL solver can be

used to apply any solver

that uses the AMPL Solver

Library

Example - solve this problem with ipopt from a Unix command line:

Slide 11

from coopr.pyomo import *

model = ConcreteModel()

model.x1 = Var()
model.x2 = Var(bounds=(
model.x3 = Var(bounds=(1,2))

def obj_rule(m):
return m.x1**2 + (m.x2*m.x3)**4 +

model.obj = Objective(sense=minimize)

$ pyomo --solver=asl:ipopt eg1.py

Example: Nonlinear Models

solve this problem with ipopt from a Unix command line:

from coopr.pyomo import *

model = ConcreteModel()

model.x1 = Var()
model.x2 = Var(bounds=(-1,1))
model.x3 = Var(bounds=(1,2))

def obj_rule(m):
return m.x1**2 + (m.x2*m.x3)**4 +

m.x1*m.x3 +
m.x2*sin(m.x1+m.x3) + m.x2

model.obj = Objective(sense=minimize)

solver=asl:ipopt eg1.py

Comparison with Other Python Modeling Tools

• Pyomo

– Supports concrete/abstract modeling for LP/MILP/NLP models

– Separate model objects

– Distributed package architecture is easily extensible, but complex

• PuLP

– Supports concrete modeling for LP/MILP models

– Separate model objects

– Single Python package that is easy to install

• APLEpy

– Supports concrete modeling for LP/MILP models

– Single global model object

– Single Python package that is easy to install

• PyMathProg, pyglpk, cplex, gurobi

– Python interfaces for specific solver tools

Slide 12

Comparison with Other Python Modeling Tools

Supports concrete/abstract modeling for LP/MILP/NLP models

Distributed package architecture is easily extensible, but complex

Supports concrete modeling for LP/MILP models

Single Python package that is easy to install

Supports concrete modeling for LP/MILP models

Single Python package that is easy to install

Python interfaces for specific solver tools

Slide 13

Some Noteworthy Limitations of Pyomo

• Pyomo only works with Python 2.6 and 2.7

• Pyomo object/constraint declarations are more verbose than AMLs

– Typically requires the use of a temporary function

• Pyomo does not include preprocessing of LP/MILP instances

• Instance generation can be much slower than commercial tools

– But we’re catching up...!

• Pyomo only has a simple GUI driver

• Pyomo installation requires a variety of Python packages

Some Noteworthy Limitations of Pyomo

Pyomo only works with Python 2.6 and 2.7

Pyomo object/constraint declarations are more verbose than AMLs

Typically requires the use of a temporary function

Pyomo does not include preprocessing of LP/MILP instances

Instance generation can be much slower than commercial tools

Pyomo only has a simple GUI driver

Pyomo installation requires a variety of Python packages

Coopr: A COmmon Optimization Python Repository

Coopr integrates Python packages related to

modeling and optimization

• coopr.age A GUI for formulating and solving models

• coopr.gdp Extension package for disjunctive programming

• coopr.opt Generic interfaces for optimization solvers

• coopr.pyomo A Pythonic optimization modeling tool

• coopr.pysp Pyomo stochastic programming extensions for

• coopr.neos Extension package for the

Pyomo is a keystone project within

– Pyomo is designed to facilitate extensions

– Many Coopr projects extend Pyomo’s

Slide 14

Coopr: A COmmon Optimization Python Repository

integrates Python packages related to

A GUI for formulating and solving models

Extension package for disjunctive programming

Generic interfaces for optimization solvers

optimization modeling tool

stochastic programming extensions for Pyomo

Extension package for the NEOS solvers

is a keystone project within Coopr

is designed to facilitate extensions

Pyomo’s modeling capabilities

Coopr Solvers

• asl

Shell interface to a generic optimizer that uses the AMPL Solver Library to

interface with a math programming model

• cbc

Shell interface to the CLP/CBC LP/MIP solver

• cplex

Shell interface to the CPLEX LP/MIP solver

• cplexdirect

Direct Python interface to the CPLEX LP/MIP solver

• glpk

Shell interface to the GNU Linear Programming Kit

• gurobi

Shell interface to the GUROBI LP/MIP solver

• pico

Shell interface to the PICO MIP solver

Slide 15

Shell interface to a generic optimizer that uses the AMPL Solver Library to

interface with a math programming model

Shell interface to the CLP/CBC LP/MIP solver

Shell interface to the CPLEX LP/MIP solver

Direct Python interface to the CPLEX LP/MIP solver

Shell interface to the GNU Linear Programming Kit

Shell interface to the GUROBI LP/MIP solver

Shell interface to the PICO MIP solver

Coopr Releases

Coopr 2.4

• Release on 10/29/2010 (600+ code commits)

• Lots of modeling enhancements: concrete models, nonlinear

modeling, SOS constraints, piece

• coopr.age GUI

• Data interfaces for relational databases

Coopr 2.5

• Release in early March, 2011

• Significant improvements in memory/speed

• Modeling disjunctive programs

• Simplified command-line interface

• MS Windows installer

• Bug fixes!?!

Slide 16

Release on 10/29/2010 (600+ code commits)

Lots of modeling enhancements: concrete models, nonlinear

modeling, SOS constraints, piece-wise linear components

Data interfaces for relational databases

Significant improvements in memory/speed

line interface

Coopr Developers

• Sandia National Laboratories

– William Hart [Coopr & coopr.pyomo project lead]

– Jean-Paul Watson [coopr.pysp project lead]

– John Siirola [coopr.gdp project lead]

– Tom Brounstein

• University of California, Davis

– Prof. David L. Woodruff [coopr.pysp co

– Prof. Yueyue Fan

• Texas A&M University

– Prof. Carl D. Laird [coopr.age project lead]

– Daniel Word

– James Young

– Gabe Hackebeil

• William & Mary

– Patrick Steele

• North Carolina State

– Kevin Hunter

Slide 17

[Coopr & coopr.pyomo project lead]

[coopr.pysp project lead]

[coopr.gdp project lead]

[coopr.pysp co-developer]

[coopr.age project lead]

Slide 18

Getting Started

Sandia Coopr wiki

https://software.sandia.gov/trac/coopr/

Installation Documentation

https://software.sandia.gov/trac/coopr/wiki/GettingStarted

Coopr Forum: a mailing list for help and announcements

http://groups.google.com/group/coopr

CoinBazaar: a COIN-OR project that supports Coopr extension packages

https://projects.coin-or.org/CoinBazaar

https://software.sandia.gov/trac/coopr/

https://software.sandia.gov/trac/coopr/wiki/GettingStarted

Coopr Forum: a mailing list for help and announcements

http://groups.google.com/group/coopr-forum

OR project that supports Coopr extension packages

or.org/CoinBazaar

https://projects.coin-or.org/CoinBazaar
https://projects.coin-or.org/CoinBazaar
https://projects.coin-or.org/CoinBazaar
http://groups.google.com/group/coopr-forum
http://groups.google.com/group/coopr-forum
http://groups.google.com/group/coopr-forum
https://software.sandia.gov/trac/coopr/wiki/GettingStarted
https://software.sandia.gov/trac/coopr/

The coopr.age GUI

Slide 19

PyPI Distribution

Note: Coopr is comprised of a set of distinct Python packages

– This can complicate installation...

– Coopr can be downloaded from

• The following examples work on Linux

If you have administrative privileges, then you can install

your Python installation as a site package:

1. Download and install the setuptools

– wget http://peak.telecommunity.com/dist/ez_setup.py

– python ez_setup.py

2. Run easy_install to install Coopr

– easy_install Coopr

Slide 20

is comprised of a set of distinct Python packages

This can complicate installation...

can be downloaded from PyPI to simplify installation

The following examples work on Linux

If you have administrative privileges, then you can install Coopr in

your Python installation as a site package:

setuptools package

http://peak.telecommunity.com/dist/ez_setup.py

Coopr:

http://peak.telecommunity.com/dist/ez_setup.py

PyPI Distribution

If you do not have administrative privileges, then use the

script to create a virtual Python installation:

1. Download the coopr_install script

– wget http://goo.gl/HVCVc

2. Create the virtual python installation in a specified directory

– python coopr_install coopr

The coopr/bin directory contains a python command that has

installed as a site package!

Slide 21

have administrative privileges, then use the coopr_install

script to create a virtual Python installation:

Create the virtual python installation in a specified directory

/bin directory contains a python command that has Coopr

http://goo.gl/HVCVc

