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Application Landscape
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Large-Scale Nonlinear Problems, Often Many
Scenarios

* Hardware Manufacturers Focusing on Multi-
core Architectures

B |

° Need for Parallel Tools to Solve Stochastic NLPs ‘
!

i * Challenges for the Application Developer:

— Lack of Support for Effective Modeling and
Parallel Model Evaluation in Modeling Tools

5 — Lack of Off-the-shelf Algorithms
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Parallel Solution of Stochastic NLP Problems
-

* PYOMO: Python Modeling Language for Optimization
— Rich Environment for Tailored Modeling Extensions
— Effective Development of Decomposition/Hybrid Algorithms

* PySP
— Provides Modeling Extension to Represent Stochastic Programming
Problems

— Provides Decomposition Approaches for Efficient Parallel Solution of
Stochastic Programming Problems
* Progressive Hedging, Experimental Bender’s

* Internal Linear Decomposition
— Interior-Point Method (IPOPT)
— Problem Tailored Linear Algebra (Decomposition of KKT System)
— Schur-complement Decomposition
— PCG/BFGS: Iterative Solution of SchurComplement

Artie McFerrin Department of
4
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PYOMO: PYthon Optimization Modeling Objects

S PYOMO

An Open-Source Optimization Modeling Tool

Comput
nwec Cloud :cz
DECISION NEOS clusters

Lun

ZPYOMO)

Gi pp. CPLEX
PICO yPves®

ngirgmming !.':Ir:g:l:ge

Modeling Capabilities

- Abstract model definition - LP and MILP models
- Manage multiple del es

- Stochastic modeling extenslons

Key Features

- Parallel solver execution - Extensible framework Coopr Resources
- Interface to many data sources - Portability - Coopr installer script - Wikl documentation
- Embedded In modern prog g languag - Examples - Trouble tickets
- Freely avallable . Unrestricted open source license - Malling lists

% UCDAVES h f TO LEARN MORE VI:;I’ >> Sandla
GRADUATE sCHOOL ttps://software.sandia.gov omo -
ps:// gov/pyom iy National

or MANAGEMENT
Ideas into Action P—
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PySP: Motivation

» Numerous stochastic programming extensions to Algebraic Modeling
Languages (AMLs) have been proposed over the last decade
— Useful and necessary, especially for creating extensive forms
* Modeling is not our objective here, but rather a necessary pre-requisite
e Our goals
1. Break down the barrier between modeling languages and solvers

2. Provide model-agnostic stochastic programming algorithms

3. Facilitate rapid prototyping, development, and extension of algorithms

Slide 6 San_dlal
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Step #1: Formulate the Deterministic Model (1)

from coopr.pyomo import =
model=Model ()

# Parameters

model .CROPS=Set ()

model . TOTAL ACREAGE=Param( within=PositiveReals)

model. PriceQuota=Param( model .CROPS, within=PositiveReals)

model. SubQuotaSellingPrice=Param( model .CROPS, within=PositiveReals)

model . SuperQuotaSellingPrice=Param( model .CROPS)

model. CattleFeedRequirement=Param ( model .CROPS, \
within=NonNegativeReals)

model . PurchasePrice=Param( model .CROPS, within=PositiveReals)

model. PlantingCostPerAcre=Param( model .CROPS, within=PositiveReals)

model. Yield=Param(model .CROPS, within=NonNegativeReals)

# Variables
model . DevotedAcreage=Var( model . CROPS, \
bounds=(0.0, model . TOTALACREAGE))

model . QuantitySubQuotaSold=Var( model .CROPS, bounds=(0.0, None))
model . QuantitySuperQuotaSold=Var( model .CROPS, bounds=(0.0, None))

model. QuantityPurchased=Var( model .CROPS, bounds=(0.0, None))

model. FirstStageCost=Var ()
model. SecondStageCost=Var ()

- ReferenceModel.py Sandia
Slide 7 . s ]
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Step #1: Formulate the Deterministic Model (2)

# Constraints
def total_acreage_rule(model):
return summation( model. DevotedAcreage) <= model . TOTALLACREAGE

model. ConstrainTotalAcreage=Constraint (rule=total_acreage_rule)

def cattle_feed_rule (i, model):
return model. CattleFeedRequirement[i] <= \
(model. Yield[i] * model. DevotedAcreage[i]) + \
model . QuantityPurchased [1] — \
model. QuantitySubQuotaSold [i] — \
model . QuantitySuperQuotaSold [1]
model. EnforceCattleFeedRequirement=Constraint ( model .CROPS, \
rule=cattle_feed_rule)

def limit_amount_sold_rule(i, model):
return model. QuantitySubQuotaSold [i] + \
model . QuantitySuperQuotaSold[i] <= \
(model. Yield[i] * model.DevotedAcreage|[i])
model . LimitAmountSold=Constraint ( model .CROPS, \

rule=limit_amount_sold_rule)

def enforce_quotas_rule(i, model):
return (0.0, model.QuantitySubQuotaSold|[i], model.PriceQuota[i])
model . EnforceQuotas=Constraint ( model .CROPS, \

rule=enforce_quotas_rule)

Slide 8 ReferenceModel.py @ m
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Step #1: Formulate the Deterministic Model (3)

# Stage—specific cost computations
def first_stage_cost_rule(model):
return model. FirstStageCost = \
summation (model. PlantingCostPerAcre, model. DevotedAcreage)
model . ComputeFirstStageCost=Constraint (rule=first_stage_cost_rule)

def second_stage_cost_rule(model):
expr=summation ( model. PurchasePrice , model. QuantityPurchased)

expr ——= summation(model. SubQuotaSellingPrice, \
model . QuantitySubQuotaSold)

expr —— summation(model. SuperQuotaSellingPrice, \
model . QuantitySuperQuotaSold)

return (model.SecondStageCost — expr) = 0.0

model . ComputeSecondStageCost=Constraint (rule=second_stage_cost_rule)

# Objective
def total_cost_rule(model):

return (model. FirstStageCost + model. SecondStageCost)
model. Total_Cost_Objective=0Objective(rule=total_cost_rule , \

sense=minimize )

ReferenceModel.
Slide 9 / Py
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» Step #2: Specify the Deterministic Model Data

set CROPS := WHEAT CORN SUGAR_BEETS ;

param TOTAL ACREAGE := 500

param PriceQuota := WHEAT 100000 CORN 100000 SUGAR_BEETS 6000
param SubQuotaSellingPrice := WHEAT 170 CORN 150 SUGARBEETS 36
param SuperQuotaSellingPrice := WHEAT 0 CORN 0 SUGAR_BEETS 10
param CattleFeedRequirement := WHEAT 200 CORN 240 SUGAR_BEETS 0
param PurchasePrice := WHEAT 238 CORN 210 SUGARBEETS 100000
param PlantingCostPerAcre := WHEAT 150 CORN 230 SUGARBEETS 260

param Yield := WHEAT 3.0 CORN 3.6 SUGAR_BEETS 24 ;

* Can initialize an instance from ReferenceModel.dat
1. An AMPL .dat file
2. Excel
siqe 19- Raw Python so

Laboratories



Step #3: Specify the Scenario Tree

set Stages = FirstStage SecondStage

set Nodes := RootNode
Below AverageNode
AverageNode
AboveAverageNode

param NodeStage ::=— RootNode FirstStage
BelowAverageNode SecondStage
AverageNode SecondStage
AboveAverageNode SecondStage ;

set Children [ RootNode] := BelowAverageNode
AverageNode
AboveAverageNode

param ConditionalProbability := RootNode 1.0
Below AverageNode 0.33333333
AverageNode 0.33333334
AboveAverageNode JloEEaEEEE s

set Scenarios = Below AverageScenario
AverageScenario
AboveAverageScenario

param ScenariolLeafNode ::= BelowAverageScenario BelowAverageNode
AverageScenario AverageNode
AboveAverageScenario AboveAverageNode ;

set StageVariables[FirstStage] := Devoted Acreage [ *]

set StageVariables |[SecondStage] := QuantltySubQuotaSold [*]
QuantitySuperQuotaSold [ =]
QuantityPurchased [*] :

param StageCostVariable := FirstStage FirstStageCost
SecondStage SecondStageCost

Slide 11 ScenarioStructure.dat @ Sandia
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Step #4: Specity the Scenario Instance Data

» Two methods are available to specify scenario-specific data

— Scenario-based
— Node-based

* In the scenario-based approach, a single and complete .dat file 1s
specified for each individual scenario

— Redundant, but straightforward if computer-generated

* In the node-based approach, a single .dat file 1s specified for each
node in the scenario tree

— Maximally compact, but requires some book-keeping

Slide 12 Sandia
Laboratones



\

‘/%'iting and Solving the Extensive Form (1)

* Now that you have a stochastic programming model in PySP...
» Step #1: Write the extensive form and pray that CPLEX can solve it
— Fantastic 1f 1t works

— But often it doesn’ t

 In PySP, the runef script is provided to both write and solve the

extensive form of a stochastic programming model

e The basic command-line:

runef —model-directory=models \\
—instance—directory=scenariodata \\
—solve

Slide 13 Sandia
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Writing and Solving the Extensive Form (2)

 After solution, you get (in addition to other information):
Tree Nodes:

Name=RootNode

Stage=FirstStage

Variables:
DevotedAcreage [CORN]=80.0
DevotedAcreage [SUGAR BEETS]=250.0
DevotedAcreage [WHEAT]|=170.0

Name=A boveAverageNode

Stage=SecondStage

Variables:
QuantitySubQuotaSold [CORN]|=48.0
QuantitySubQuotaSold [SUGAR BEETS]|=6000.0
QuantitySubQuotaSold [WHEAT]=310.0

Name=AverageNode

Stage=SecondStage

Variables:
QuantitySubQuotaSold [SUGAR_BEETS]|=5000.0
QuantitySubQuotaSold [WHEAT]=225.0

Name=BelowAverageNode
Stage=SecondStage
Variables:

QuantitySubQuotaSold [SUGAR_ BEETS]|=4000.0

Slide 14 Sandia



What Happens if the Extensive Form is Too Difficult?

* We use decomposition!

Slide 15

Sandia
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Progressive Hedging: A Review and/or Introduction

1. £:=0

2. For all s € S, ;zrff)) = argmin_(c-z + f.-y.) : (z,y,) € Q,

3. 7 = (30 s s d.zM)/ D ees Psds

4. For all s € S, usg") 1= p(;l:ﬁk) — z(R)

5. k:=k+1

6. For all s € S. 2 = argmin, (¢ - x + wi Ve + p/2 ||;1’ — g1 H2 + fs - Us)

D (,ys) € Qs

8.

9.

10.

TP = (30 s Ps ds;z:ff'))/ D e Ps ds

For all s € S, w = w1V ¢ P (;szf) — ;f(]"))

(k) .__ (1—a)[S|
g . ZseS Ps ds ZSES

|2 — 70|

If ¢'*) < €, then go to step 5. Otherwise, terminate.

Slide 16 Rockafellar and Wets (1991)
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PySP: Generic Progressive Hedging (1)

e If you don’ t care about the value of the penalty parameter p, you are

willing to take chances, and/or you have time to kill:

runph —model—directory=models —instance—directory=scenariodata

* If you think a global value of the penalty parameter will work:
— Add the argument “--default-rho=your-favorite-value”
» More likely, you want to implement variable-specific strategies:

— Add the argument “--rho-cfgfile=myrhostrategy.cfg”
myrhostrategy.cfg:

model_instance = self._model_instance # syntatic sugar

for i in model_instance.ProductSizes:

self.setRhoAllScenarios (model_instance. ProduceSizeFirstStage [i
model_instance.SetupCosts[i] = 0.001)

self .setRhoAllScenarios (model_instance. NumProducedFirstStage [ i A\
model_instance. UnitProductionCosts[i] = 0.001)

for j in model_instance.ProductSizes:

if j <= i:
self.setRhoAllScenarios (model_instance. NumUnitsCutFirstStage[i,j]., \\
model_instance . UnitReductionCost = 0.001)

1

v\
\ \

Slide 17 ml
Laboratones



N

é
=

PySP, Distributed Computation, and Progressive Hedging

* Decomposition algorithms for solving multi-stage stochastic mixed-
integer programs are naturally” parallelizable

— L-shaped method and Progressive Hedging are particularly
amenable

* PySP supports simple master-slave parallelism
— Python pickle module for serialization
— PYRO: Python Remote Objects

* Scalability to O(1000) scenarios and processors
— Academics don’ t have commercial solver license issues!

— For non-academics, prototype EC2/Gurobi deployment

Slide 18
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i Mean versus Risk? A Matter of Taste!

Worst-Case
-
-
(]
0
c
g (1 -0) Percentile
A
<
I |
Mean Cost / T
Conditional Value-at-Risk Value at Risk Tail-Conditional
(CVaR) is a linear (VaR) Expectation (TCE)
approximation of TCE
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Progressive Hedging and Conditional Value-at-Risk

 Scenario-based decomposition of Conditional Value-at-Risk models is
conceptually straightforward (Schultz and Tiedemann 2006)

Proposition 5.1. Assume that (v is discrete with finitely many scenarios h

..... hy and
corresponding probabilities 1, . .

. my. Let a € (0, 1). Then the stochastic program
min{Qcvar,(x) : x € X} (11)
can be equivalently restated as
J

, 1
min n + E wivi © Wy;+ W’_\'; = hj—Tkx,
x,v.,y,v,ng

| —a 4
j=1

vi=c x4q yi+q V- (12)

) . m
xeX, nelR, y; eZ,

)‘}ER{Z’. vj € Ry, j=l....../}.
* But
Sli deEOComputational issues are largely unexplored Sanda

Laboratories
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PySP: For More Information...!

Hedging Against Uncertainty:
A Modeling Language and Solver Library

You Plan QB Stuff Happens You Adjust More Stuff Happens

.'l'/

j{pYDMo PySP: Stochastic Programming in Python “cooPR

Multi-Stage Planning for What We Do How We Do It:

Uncertain Environments - Mixed decisior variables
- o . Continuous
- Explicitly capture recourse - Integer/Binary

- Uncertainty modeling framework - General multi-stage i
- Integrated solver strategies - Stochastic programming - SMP and cluster parallelism
« Expected value - Integrated high-level language support
« Conditional Value-at\RIsk - Multl-platform, unrestrictive license
« Scenarlo selection - Open source, actively supported by Sandia
- Cost confidence injgervals - Co-Managed by Sandla and COIN-OR
UCDAVIS

gi'f:?'fa"'ﬁ“ TO LEARN mR@/soﬂware sandia.gov/trac/coopr/wiki/PySP>\ @ P onal




Extension to Nonlinear Stochastic Programs
e

* PYOMO and PySP Provide an Effective Modeling
Environment

* Nonlinear Extensions to Pyomo
— NL Writer — Interfaced to all AMPL Solvers (IPOPT,
COUENNE)
— AMPL Solver Library (ASL) provides derivatives
* Nonlinear Progressive Hedging Implemented

* |Interface to Internal Decomposition Algorithm
in Progress

Artie McFerrin Department of 22
AI M Chemical Engineering
Texas A&M University



Internal Decomposition with Interior-Point Methods

/ m;cin f(x) min f(m)—u-Zln(wi) \

X

s.t. c(z)=0

{ Wy, + g+ 0wl Ve(zy) ] ( Az ) _ [ Vou(zy) + Ve(zy) My ]
Ve(z) ! —dc1 AN c(xy,)

\(Wk = V5L = Vi, f () + Vo%wc(a:k))q (0w, dc > 0) (Zk — Zkal)/

Dominant Computational Expense: Solution of Linear System at Each Iteration

Artie McFerrin Department of 23
AI M Chemical Engineering
Texas A&M University



Internal Decomposition with Interior-Point Methods

s.t. c¢(x)=0 >

s.t. c(z)=0

( Ax ) _ [ Vou(zg) + Velzg) Ay ]
AN c(xy,)

\(Wk V2L = V2, f(xr) + Vae(zp))) (u, be > 0) (S = 24X, )/

N 2l

Wi + X+ 0wl Ve(zy)
VC(:Ek)T —0cl

Dominant Computational Expense: Solution of Linear System at Each Iteration
Structure in the Problem Definition Induces Structure in the Linear System
e All Scale-Dependent Linear Operations Should be Parallelized

Artie McFerrin Department of

AlM Chemlcal Englneerlng

as A&M U
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Explicit Schur-Complement Approach
-
35 A (5] (@
s.t. cq(zq) =0

dy < dg(zg) < dY : | =

L U
T, <z4=< 1z, Vg € QO
= K, ][AnQ] An, Tng
Liz,—LYy =0
(D AT Al [r
T p—1 T p—1 1 1 1 1
D, ZAK Aqlay =1y ZAqKq Tq )
9€Q 9€Q K Az Ay T
Kong =14 — AgAy =
Kyn,” Ang Ap, Tn,
AT AT AT D, ’@ & v
A|[M Chemical Engineering 25
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Internal Decomposition: Implementation

IPOPT Algorithm Linear Algebra
Interface Code Interface

(min Y f,(xz) N

Y ietin Specialized:
s.t. Ci(2)) =0 e R Linear Solver for KKT
dL < d;(z;) < P Matrix-Vector Operat!ons
o e = Vector-Vector Operations
Ty < 3; < T

\ Liz; — Qig=0 / 0 /

CPU=1 CPU=2 CPU=4 KT | oeeeemeeees 4 A R
(o e ) . 1 M| o |
NLP Object NLP Object NLP Object S ¢ EXTTRTRTN I A, R
min fl(:vl) min f2(£L'2) min fy(z4) . :

s.t. ¢1(z1)= 8.b. co(2g)= s.t. cq(z4)=0

) : S "
NL NL A IAf ceee| AT || D, A, R,
Model Model L J =1 L=
—

Artie McFerrin Department of

A|M Chemical Engineering

Texas A&M University
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Parameter Estimation of LDPE Plant (MIMD Cluster)

35 T T T T T T T T T T T T T T T T T T T T T
Il Time/lter Serial
[ Time/lter Parallel
[ Time/Fact Parallel
12,000 ]
Variables 400,000
25 Variables
§
= 15 h
=
10 N
sk--- @ 8- -0 B BR-B B -- - - - - _ __ _____]
0 pEERRRELLRE

0o 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32
Number of Data Sets

Zavala, V.M., Laird, C.D., Biegler, L.T. “Interior-Point Decomposition Approaches for Parallel Solution of Large-Scale
Nonlinear Parameter Estimation Problems”, Chemical Engineering Science, 63 (19), pp. 4834-4845, 2008.

Artie McFerrin Department of

A|M Chemical Engineering

Texas A&M University
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Parallel Solution: Water Network Inversion
1

1400 11.5e+06
o Execution Time
31200— X Problem Size OOOOOOQQOOOOOOOO
2 . )
Q 10001 T — %
O ) l1es
= 800 0000000000°° xxx _g
CIE) 000 xxx 5
= x 2
600+ x 5
O 400! 158405 E
;" Z
200+ X
° ' ' ' ' —0

4 8 12 16 20 24 28 32
Number of Scenarios/Processors

C. D. Laird and L. T. Biegler, "Large-Scale Nonlinear Programming for Multi-scenario
Optimization," pp. 323-336, in Modeling, Simulation and Optimization of Complex
Processes, H. G. Bock, E. Kostina, H-X Phu, R. Ranacher (eds.), Springer (2008)
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Texas A&M University
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Optimal Operation of Air Sep. Process
oo

450

B Serial IPOPT
400 -| I Schur IPOPT -

350 -

(4]
o
o

Wall Clock Time (s)

# CPUs and # of blocks

Artie McFerrin Department of

A|M Chemical Engineering

Texas A&M University
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Dynamic Optimization Under Uncertainty

30
DOSerial
25 Bparallel (SMP)
OParallel (Dist.)

—
(/2]
~
—
2 2
—
i B
(a
(0]
E 15
I—
XX
[&]
O
O
g

0 : ’ ’

2 3 4 5 6 7 8
# CPU's/Blocks
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Stochastic Nonlinear Programming with Pyomo
e

* Hardware Manufacturers Focusing on Multi-core Architectures
* Problems are Increasing in Size & Complexity (Stoch. Prog.)
* Effective Parallel Solution of Large-Scale Problems Requires:

— Modeling Environments that Support Parallel Execution
— Efficient Parallel Algorithms

* PYOMO and PySP Extension Provide Modeling
* PySp: Progressive Hedging

— Provides Problem-Level Decomposition Approach

e Parallel Solution of Structured KKT: Interior-Point Methods

— Explicit Schur-Complement Techniques :Excellent Scalability for Large-Scale Problems
with Limited Coupling (100’s)

— PCG/BFGS Schur-Complement Approach: 10X Improvement: Allows for Substantial
Coupling (1000’s)

*  Framework Provides Environment

— Application Development
— Hybrid Algorithm Prototyping

Artie McFerrin Department of

A|M Chemical Engineering

Texas A&M Universi ty
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Explicit Schur-Complement Approach
D SE—————

N: Number of Blocks, M: Number of Coupling Variables

Form the Schur-Complement =
14 N Factorizations of K-blocks
N N*M+M Backsolves of K-blocks Paw = Fy — E AqKq_qu

qeR
Solve the Schur-Complement
for Step in Common Variables [SC] A _
Yy=rsc
- Single Dense Linear Solve of M*M Matrix
Solve Remaining K-blocks for Step in other Variables
K,an, =1, — A,AyY

v N Backsolves of K-blocks =4 d g
AlM /éiilhzhmnilg:;rtgr;Ofgineering 33

Texas A&M University



Changing Hardware Landscape
oo

100000 7
Multi-core 448‘ ®» s
10000 y el

emory Pipeline ©0gee ® ® S

= ®

1000 Emerging Parallel /.
Arch. (GPU/XMT) @ ’ ¢ 4
\ / s ®
100 °o® ¢ |
o

o ¢ 128 |:

to Tackle Large-Scale Problems (~1,000,000)
1 I | | | | | 0

1980 1985 1990 1995 2000 2005 2010

10
\[ Need for Parallel Nonlinear Programming Techniques ] 1

Artie McFerrin Department of 34
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Parallel Solution of NLP Problems

* Shift in Hardware Focus Requires Parallel
Algorithms

* Desire to Increase Problem Size Requires
Parallel Tools

— Stochastic Programming

* Challenges for Application Developers
— Absence of Off-The-Shelf Solvers

— Lack of Support in Modeling tools

* Require: Parallel Evaluation of Functions and Gradients

Artie McFerrin Department of
A | M Chemical Engineering
Texas A&M University



Parallel NLP Techniques
in Rapid Therapeutics
Manufacturing

NSF CAREER

Parameter Estimation
in Signal Transduction
Across Populations

NSF CDI-

Inversion and Model
Calibration for LNG
Dispersion

MKOPSC

Real-time Response
Management for WDS

PUB Singapore/Sandia

Risk Management and
Planning in Complex
Networks

DOE ASCR/Sandia

Optimization of
Complex Processes
Under Uncertainty

TAMU




Parallel NLP Techniques
in Rapid Therapeutics

Manufacturing

NSF CAREER

Parameter Estimation
in Signal Transduction
Across Populations

NSF CDI-I

Inversion and Model
Calibration for LNG

Dispersion

MKOPSC

Large-Scale NLP Problems

Millions of variables
Sparse, Usually Structured
Not Solvable off-the-shelf

Real-time Response
Management for WDS

PUB Singapore/Sandia

Risk Management and
Planning in Complex

Networks

DOE ASCR/Sandia

Optimization of
Complex Processes
Under Uncertainty

TAMU




Parallel Solution on MIMD
e

Large-Scale Parameter Estimation

Multi-scenario Optimization Under Uncertainty

Spatial Decomposition

\ 7

* Excellent Scalability for Problems with Few Common
Variables (hundred)

* BFGS Based Preconditioned CG Removes Forming of
Schur-Complement (Current Research)

[ Other Parallel Architectures? (GPU, Cray XMT) ]

Artie McFerrin Department of

A|M Chemical Engineering

Texas A&M University
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Structure of the GPU
.

* NVidia Tesla C870 (2 Gen. Old) Device
— 16 Multiprocessors Multiprocessor N
— 8 Stream Processor :
— 128 Cores Multiprocessor 2

e SIMD Architecture Multiprocessor 1

Complex Memory Structure
— Global Memory (High Latency)

— Shared Memory (Fast, Small) Inst
nstruction
Unit

— Constant Memory (Read-Only)

Geﬁne Input Data on Hosm (

Allocate Memory on Device

Processor 2

Processor M

i i

Processor 1

Upload Input Data to Device

Upload Kernel to Device

Execute Kernel on Device
(as individual threads)

AN

Download Results
from Device

KI




Opportunities for Parallel NLP on GPU
e

Opportunities for Direct Decomposition?

Opportunities for use of Parallel Iterative Linear Solvers?

 GPU is a (hybrid) SIMD Architecture
— Each Stream Processor Running the Same Instruction

— Cannot Simply Run Separate Linear Solvers on Different
Blocks (Execution Flow Differs)

* Fixed-Pivot Strategies for Direct Decomposition (Code Generation)
— Very Appropriate for Simple Linear Algebra Operations
(Matrix-Vector, Vector-Vector)
* |terative Techniques

Artie McFerrin Department of

A|M Chemical Engineering

Texas A&M University
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Direct Decomposition on the GPU
e

Fixed-Pivot Strategy — i.e. Code Generation

* Preprocessing
— Solve a Single Representative K-block
— Write Fixed-Pivot Factorization Kernel (CUDA)
— Write Backsolve Kernel (CUDA)

* During Solve, GPU Uses Fixed-Pivot Strategy
* Limitations:
— No Active Pivot Selection

— Possible Numerical Stability Issues
— Each Block Must be the Same Structure

Artie McFerrin Department of a1
AI M Chemical Engineering
Texas A&M University



Speedup: Forming Schur-Complement
o

40 16

35 = CPU 14 @ CPU
§ % B GPU 12
S 5 G P
& 25 8 10
[ 20 a 8
3 =
S 15 e
= Q.
g (7]

10 4

> 2 ”

0 - V4

512 1024 2560 5120 12800 25600 51200 0 ' ' ' ' '
0 10000 20000 30000 40000 50000
# Backsolves
# Backsolves

* |nitial Implementation: Speedup of ~3
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Speedup: Forming Schur-Complement
oo

40 16

35 B CPU 14
§ 30 12
S GPU-Const GPU-Const
& 25 510
CI; o
E 5 <
F 28
E =
o =)
o 36
g a

(7]

10 4

5 , W=

0 __—-_'_-_'_.- l. l'/

512 1024 2560 5120 12800 25600 51200 0 ' ' ' ' '
0 10000 20000 30000 40000 50000
# Backsolves
# Backsolves

* Tune Parameters for Problem Structure/GPU Architecture
— Different Memory Classes (Constant, Shared)
— Speedup: Order of Magnitude

* Emerging SIMD Architectures Ideal for Simple Linear Operations
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Iterative Techniques for KKT Systems

e Iterative Techniques (PCG, GMRES)
— Matrix-Vector Products

— Requires
— PCG Req

e  KKT Systems
— lll-conditi
— Requires
— Linear Sys

e Dollar et al.

— Constrai
— Require

* Forsgren, Gill

— Doubly Augmented System
— Positive Definite if Inertia is Correct (PCG)

min
i

[ St

f(z)

o

) =0

Methods for Iterative Solution of the KKT System
Exists for Interior-Point Methods

Rely on Matrix-Vector Products
(Appropriate for SIMD)

Nvidia C2050: 440 Cores, 3 GB RAM
Speedup Factor of 60 Times

P

|

M +2ATD-1A AT |

— Allows Detection of Incorrect Inertia A

— Allows Approximate solution

— Effective Preconditioners? M
—A
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Off-the-Shelf Advances in Nonlinear Programming
e

* Modeling Tools:

— Provide Algebraic / Object-Oriented Modeling Environments
(AMPL, GAMS, GPROMS, Jmodelica, PYOMO, etc.)

— Often Provide Fast First and Second Derivative Information with AD

* Efficient Off-the-shelf Algorithms & Software for Large-Scale
Problems. Examples:
— Real-time Response Planning for Water Distribution Systems
* 2.6 Million Variables 2 Few Minutes (QP)
— Dynamic Parameter Estimation for Infectious Disease Models
e 20,000 Variables = Under 30 Seconds
— Design Under Uncertainty (Complex Air Separation Process)

* 8000 Variables = Under 15 Seconds
* 675,000 Variables = ~20 Minutes
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Temporal Decomposition in Dynamic Optimization

* JModelica/JOptimica
— Developed at Lund University
by Johan Akesson

— DAE Modeled Using Modelica
— Object-Oriented Language

— Simultaneous Approach

— IPOPT (NLP Solver)

* Different Structure ]
— Coupling Constraints ©

— Not Coupling Variables
Ping )

— Size of Schur-Complement Not @]
Only Dependent on # Variables

O
— Size of Schur-Complement CC]]
Dependent on # Processors )
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Explicit Schur-Complement: Temporal

30

W 3 States, 97 Alg.

25
M 5 States, 95 Alg.

10 States, 90 Alg.

20

15

10

2 4 8 16 32 64 128
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Efficient Parallel Optimization on Emerging
Architectures

Carl Laird, Assistant Professor

Jia Kang, Ph.D. Candidate (NSF CDI Type II) .
Artie McFerrin Department of Chemical Engineering A M :
Texas A&M University, College Station, TX =

Johan Akesson, Assistant Professor

Department of Automatic Control
Lund University, Lund, Sweden
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Parallel Nonlinear Programming

Architecture Structure Algorithm
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Intel: CPU Clock Rate
T

100000

10000

1000 7

100

10 ¢

1 | | | | |
1980 1985 1990 1995 2000 2005 2010

Artie McFerrin Department of 50
A | M Chemical Engineering
Texas A&M University



Intel: Number of Cores
o
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Nvidia GPU: Number of Cores
T

100000 7
Multi-core 448‘% ;
10000 M .
emory Pipeline P
= o
1000 Emerging Parallel /.

Arch. (GPU/XMT) & r 4 ¢ 4

L J ' ® A
100 o' 3

o

® PY o ’A 128 2

10
Need for Parallel Nonlinear Programming Techniques 1
to Tackle Large-Scale Problems (~1,000,000)
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Challenges with Explicit Schur-Complement

N: Number of Blocks, M: Number of Coupling Variables
_ T 7.-—1
SC =[Dy,— Y ATK; A

Form the Schur-Complement =

14 N Factorizations of K-blocks
N ) » 1
) .\I@/I)Backsolves of K-blocks Fse =Ty E AqKq Ty

qeQ

Solve the Schur-Complement

for Step in Common Variables [SC] Ay = rgc

- Single Dense Linear Solve o@/\atrix

Solve Remaining K-blocks for Step in other Variables

K,a, =1, — A,AyY
- N'Backsolves of K-blocks R g :
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Challenges with Explicit Schur-Complement

(%))
o

I Parallel
M Serial

(Dual P4 Xeon (3.0GHz) |

2 3 4 5 6 7 8 9 10 11 12

Number of Scenarios/Blocks

D
(8]

D
o

W
wn

w
o

Wall Time per Iteration (seconds)

(8]
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PCG/BFGS Schur-Complement Approach
e

Dominant Cost of Explicit Schur-Complement Approach
— Forming the Schur-Complement (Increasing M)

* Never Explicitly Form the Schur-Complement
* Solve the Schur-Complement using PCG

— 1 Backsolve of K-blocks for right hand side

— 1 Backsolve of K-blocks per PCG lteration
* BFGS Update for Inverse Preconditioner

— Initial Preconditioner Calculated Explicitly

* PCG/BFGS Compared Against Explicit Schur-Complement
— Number of Backsolves as M increases
— Randomly Generated Parameter Estimation Problems
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Explicit-SC vs PCG/BFGS
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PCG/BFGS: Sensitivity to PCG Tolerance
T
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Parallel Architectures
e

Classified by Flynn’s Taxonomy

Emerging Architectures (SIMD/Hybrid)

Graphics Processing Unit (GPU)
* Affordable, 1000’s of Processors

Multiple

Data

Single

Instruction sl

SIMD

VELEEE s MIMD
Instruction
A
Beowulf Cluster (MIMD) Desktop Multi-core (MIMD)
* Scalable Distributed Computing o Affordable Hardware
100s of Processors Low Number of Processors
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