
Stochas(c	
 Nonlinear	
 Programming	
 with	

Pyomo	
 and	
 PySP	

Carl	
 D.	
 Laird,	
 Assistant	
 Professor	
 &	

William	
 and	
 Ruth	
 Neely	
 Faculty	
 Fellow	

Ar?e	
 McFerrin	
 Department	
 of	
 Chemical	
 Engineering	

Texas	
 A&M	
 University,	
 College	
 Sta?on,	
 TX	

	

	

Jean-­‐Paul	
 Watson	

Principal	
 Member	
 of	
 Technical	
 Staff	

Discrete	
 Math	
 and	
 Complex	
 Systems	
 Department	

Sandia	
 Na?onal	
 Laboratories,	
 Albuquerque,	
 NM	

	

This	
 work	
 was	
 funded	
 by	
 the	
 DOE-­‐Office	
 of	
 Science	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

SAND2011-2648C

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Applica?on	
 Landscape	

2	
 48 50 52 54 56 58 60 62 64 66
0

2000

4000

6000

8000

10000

12000

Years

R
e

p
o

rt
e

d
 C

a
s
e

s

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Applica?on	
 Landscape	

3	
 48 50 52 54 56 58 60 62 64 66
0

2000

4000

6000

8000

10000

12000

Years

R
e

p
o

rt
e

d
 C

a
s
e

s

•  Large-­‐Scale	
 Nonlinear	
 Problems,	
 OTen	
 Many	

Scenarios	

•  Hardware	
 Manufacturers	
 Focusing	
 on	
 Mul?-­‐
core	
 Architectures	

•  Need	
 for	
 Parallel	
 Tools	
 to	
 Solve	
 Stochas?c	
 NLPs	

•  Challenges	
 for	
 the	
 Applica?on	
 Developer:	

–  Lack	
 of	
 Support	
 for	
 Effec?ve	
 Modeling	
 and	

Parallel	
 Model	
 Evalua?on	
 in	
 Modeling	
 Tools	

–  Lack	
 of	
 Off-­‐the-­‐shelf	
 Algorithms	
 	

	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

	

	

Parallel	
 Solu?on	
 of	
 Stochas?c	
 NLP	
 Problems	

4	

•  PYOMO:	
 Python	
 Modeling	
 Language	
 for	
 Op?miza?on	

–  Rich	
 Environment	
 for	
 Tailored	
 Modeling	
 Extensions	

–  Effec?ve	
 Development	
 of	
 Decomposi?on/Hybrid	
 Algorithms	

•  PySP	

–  Provides	
 Modeling	
 Extension	
 to	
 Represent	
 Stochas?c	
 Programming	

Problems	

–  Provides	
 Decomposi?on	
 Approaches	
 for	
 Efficient	
 Parallel	
 Solu?on	
 of	

Stochas?c	
 Programming	
 Problems	

•  Progressive	
 Hedging,	
 Experimental	
 Bender’s	

•  Internal	
 Linear	
 Decomposi?on	

–  Interior-­‐Point	
 Method	
 (IPOPT)	

–  Problem	
 Tailored	
 Linear	
 Algebra	
 (Decomposi?on	
 of	
 KKT	
 System)	

–  Schur-­‐complement	
 Decomposi?on	

–  PCG/BFGS:	
 Itera?ve	
 Solu?on	
 of	
 SchurComplement	

	

PYOMO: PYthon Optimization Modeling Objects

Slide 5	

PySP: Motivation

• Numerous stochastic programming extensions to Algebraic Modeling
Languages (AMLs) have been proposed over the last decade

– Useful and necessary, especially for creating extensive forms

• Modeling is not our objective here, but rather a necessary pre-requisite

• Our goals

1.  Break down the barrier between modeling languages and solvers

2.  Provide model-agnostic stochastic programming algorithms

3.  Facilitate rapid prototyping, development, and extension of algorithms
Slide 6	

Step #1: Formulate the Deterministic Model (1)

Slide 7	

 Birge and Louveaux’s (1997) Farmer
Example

ReferenceModel.py

Step #1: Formulate the Deterministic Model (2)

Slide 8	

 ReferenceModel.py

Step #1: Formulate the Deterministic Model (3)

Slide 9	

ReferenceModel.py

Step #2: Specify the Deterministic Model Data

Slide 10	

•  Can initialize an instance from
1.  An AMPL .dat file
2.  Excel
3.  Raw Python

ReferenceModel.dat

Step #3: Specify the Scenario Tree

Slide 11	

 ScenarioStructure.dat

Step #4: Specify the Scenario Instance Data

•  Two methods are available to specify scenario-specific data
–  Scenario-based
– Node-based

•  In the scenario-based approach, a single and complete .dat file is
specified for each individual scenario

–  Redundant, but straightforward if computer-generated

•  In the node-based approach, a single .dat file is specified for each
node in the scenario tree

– Maximally compact, but requires some book-keeping

Slide 12	

Writing and Solving the Extensive Form (1)
• Now that you have a stochastic programming model in PySP…

•  Step #1: Write the extensive form and pray that CPLEX can solve it
–  Fantastic if it works
–  But often it doesn’t

•  In PySP, the runef script is provided to both write and solve the
extensive form of a stochastic programming model

•  The basic command-line:

Slide 13	

• After solution, you get (in addition to other information):

Slide 14	

Writing and Solving the Extensive Form (2)

What Happens if the Extensive Form is Too Difficult?

• We use decomposition!

Slide 15	

Slide 16	

Progressive Hedging: A Review and/or Introduction

Rockafellar and Wets (1991)

PySP: Generic Progressive Hedging (1)

•  If you don’t care about the value of the penalty parameter ρ, you are
willing to take chances, and/or you have time to kill:

•  If you think a global value of the penalty parameter will work:

– Add the argument “--default-rho=your-favorite-value”
• More likely, you want to implement variable-specific strategies:

– Add the argument “--rho-cfgfile=myrhostrategy.cfg”

Slide 17	

myrhostrategy.cfg:

PySP, Distributed Computation, and Progressive Hedging

• Decomposition algorithms for solving multi-stage stochastic mixed-
integer programs are “naturally” parallelizable

– L-shaped method and Progressive Hedging are particularly
amenable

•  PySP supports simple master-slave parallelism
–  Python pickle module for serialization
–  PYRO: Python Remote Objects

•  Scalability to O(1000) scenarios and processors
– Academics don’t have commercial solver license issues!
–  For non-academics, prototype EC2/Gurobi deployment

Slide 18	

Mean versus Risk? A Matter of Taste!

Slide 19	

Conditional Value-at-Risk
(CVaR) is a linear
approximation of TCE

Cost

Progressive Hedging and Conditional Value-at-Risk

•  Scenario-based decomposition of Conditional Value-at-Risk models is
conceptually straightforward (Schultz and Tiedemann 2006)

•  But
–  Computational issues are largely unexplored Slide 20	

PySP: For More Information…!

Slide 21	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Extension	
 to	
 Nonlinear	
 Stochas?c	
 Programs	

•  PYOMO	
 and	
 PySP	
 Provide	
 an	
 Effec?ve	
 Modeling	

Environment	

•  Nonlinear	
 Extensions	
 to	
 Pyomo	

–  NL	
 Writer	
 –	
 Interfaced	
 to	
 all	
 AMPL	
 Solvers	
 (IPOPT,	

COUENNE)	

–  AMPL	
 Solver	
 Library	
 (ASL)	
 provides	
 deriva?ves	

•  Nonlinear	
 Progressive	
 Hedging	
 Implemented	

•  Interface	
 to	
 Internal	
 Decomposi?on	
 Algorithm	
 	

in	
 Progress	

22	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Internal	
 Decomposi?on	
 with	
 Interior-­‐Point	
 Methods	

•  Dominant	
 Computa?onal	
 Expense:	
 Solu?on	
 of	
 Linear	
 System	
 at	
 Each	
 Itera?on	

23	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Internal	
 Decomposi?on	
 with	
 Interior-­‐Point	
 Methods	

•  Dominant	
 Computa?onal	
 Expense:	
 Solu?on	
 of	
 Linear	
 System	
 at	
 Each	
 Itera?on	

•  Structure	
 in	
 the	
 Problem	
 Defini?on	
 Induces	
 Structure	
 in	
 the	
 Linear	
 System	

•  All	
 Scale-­‐Dependent	
 Linear	
 Opera?ons	
 Should	
 be	
 Parallelized	

24	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Explicit	
 Schur-­‐Complement	
 Approach	

25	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Internal	
 Decomposi?on:	
 Implementa?on	

26	

NLP	

Interface	

IPOPT	
 Algorithm	

Code	

Linear	
 Algebra	

Interface	

Specialized:	

Linear	
 Solver	
 for	
 KKT	

Matrix-­‐Vector	
 Opera?ons	

Vector-­‐Vector	
 Opera?ons	

	

!"

#$%&"
$'()*"

#$%&"
#$%&"
$'()*"

#$%&" !"#$%&"
$'()*"

#$%&"
$'()*"

+&%",-.)/0" +&%",-.)/0" +&%",-.)/0" +&%",-.)/0"

1%234" 1%235" 1%236" 1%237"

NL	

Model	

NL	

Model	

…	

NL	

Model	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Parameter	
 Es?ma?on	
 of	
 LDPE	
 Plant	
 (MIMD	
 Cluster)	

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

25

30

35

Number of Data Sets

W
a
ll

C
lo

c
k
 T

im
e
 [
s
]

Time/Iter Serial
Time/Iter Parallel
Time/Fact Parallel

Figure 2: Scaleup results of a parallel internal decomposition approach on a large-scale
nonlinear parameter estimation problem[51]

common variables alone is not stable. A decomposition that considers complicating con-

straints along with complicating variables can be used to develop a stable decomposition.

Based on the successful interior-point solver Ipopt, this research will develop a new algo-

rithm that considers complicating constraints and allows for efficient solution of dynamic

optimization problems in parallel.

The proposed host solver, Ipopt, has proven to be efficient and reliable on large-scale

problems[49, 9, 47, 6] and is used in many different research areas[31, 32, 50, 30, 1]. The PI

of this proposal has been actively involved in the development of Ipopt and specifically de-

12

27	

Zavala,	
 V.M.,	
 Laird,	
 C.D.,	
 Biegler,	
 L.T.	
 “Interior-­‐Point	
 Decomposi?on	
 Approaches	
 for	
 Parallel	
 Solu?on	
 of	
 Large-­‐Scale	

Nonlinear	
 Parameter	
 Es?ma?on	
 Problems”,	
 Chemical	
 Engineering	
 Science,	
 63	
 (19),	
 pp.	
 4834-­‐4845,	
 2008.	

12,000	

Variables	
 400,000	

Variables	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Parallel	
 Solu?on:	
 Water	
 Network	
 Inversion	

12 C. D. Laird and L. T. Biegler

Fig. 2. Timing Results for the Multi-Scenario Problem with 600 Common Variables:
This figure shows the scalability results of the parallel interior-point implementation
on the multi-scenario problem. The number of processors used was equal to the
number of scenarios in the formulation. The total number of variables in the problem
are shown with the secondary axis.

6 Conclusions

This study deals with the formulation and efficient solution of multi-scenario
optimization problems that often arise in the optimal design of systems with
unknown information. Discretizing the uncertainty sets leads to large multi-
scenario optimization problems, often with few common variables. For the
solution of these problems we consider the barrier NLP algorithm, IPOPT, and
have developed an efficient parallel Schur complement approach that exploits
the block bordered structure of the KKT matrix.

The formulation and implementation is demonstrated on a large-scale mul-
tiscenario problem with over 30000 variables in each block and 600 common
variables linking the blocks. Testing up to 32 scenarios, we observe nearly
perfect scaleup with additional scenarios using a distributed Beowulf cluster.

Furthermore, this implementation is easily facilitated by the software
structure of the redesigned IPOPT code, because of the separation of the
fundamental algorithm code and the linear algebra code. The MPI implemen-
tation of the parallel Schur complement solver and the parallel vector and
matrix classes are possible without any changes to the fundamental algorithm
code.

28	

C.	
 D.	
 Laird	
 and	
 L.	
 T.	
 Biegler,	
 "Large-­‐Scale	
 Nonlinear	
 Programming	
 for	
 Mul?-­‐scenario	

Op?miza?on,"	
 pp.	
 323-­‐336,	
 in	
 Modeling,	
 Simula?on	
 and	
 Op?miza?on	
 of	
 Complex	

Processes,	
 H.	
 G.	
 Bock,	
 E.	
 Kos?na,	
 H-­‐X	
 Phu,	
 R.	
 Ranacher	
 (eds.),	
 Springer	
 (2008)	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Op?mal	
 Opera?on	
 of	
 Air	
 Sep.	
 Process	

29	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Dynamic	
 Op?miza?on	
 Under	
 Uncertainty	

30	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Stochas?c	
 Nonlinear	
 Programming	
 with	
 Pyomo	

•  Hardware	
 Manufacturers	
 Focusing	
 on	
 Mul?-­‐core	
 Architectures	

•  Problems	
 are	
 Increasing	
 in	
 Size	
 &	
 Complexity	
 (Stoch.	
 Prog.)	

•  Effec?ve	
 Parallel	
 Solu?on	
 of	
 Large-­‐Scale	
 Problems	
 Requires:	

–  Modeling	
 Environments	
 that	
 Support	
 Parallel	
 Execu?on	

–  Efficient	
 Parallel	
 Algorithms	

•  PYOMO	
 and	
 PySP	
 Extension	
 Provide	
 Modeling	

•  PySp:	
 Progressive	
 Hedging	

–  Provides	
 Problem-­‐Level	
 Decomposi?on	
 Approach	

•  Parallel	
 Solu?on	
 of	
 Structured	
 KKT:	
 Interior-­‐Point	
 Methods	

–  Explicit	
 Schur-­‐Complement	
 Techniques	
 :Excellent	
 Scalability	
 for	
 Large-­‐Scale	
 Problems	

with	
 Limited	
 Coupling	
 (100’s)	

–  PCG/BFGS	
 Schur-­‐Complement	
 Approach:	
 10X	
 Improvement:	
 Allows	
 for	
 Substan?al	

Coupling	
 (1000’s)	

•  Framework	
 Provides	
 Environment	

–  Applica?on	
 Development	

–  Hybrid	
 Algorithm	
 Prototyping	
 	

31	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Acknowledgements	
 /	
 Support	

32	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Explicit	
 Schur-­‐Complement	
 Approach	

33	

Form	
 the	
 Schur-­‐Complement	

-­‐	
 N	
 Factoriza?ons	
 of	
 K-­‐blocks	

-­‐	
 N*M+M	
 Backsolves	
 of	
 K-­‐blocks	

Solve	
 the	
 Schur-­‐Complement	

for	
 Step	
 in	
 Common	
 Variables	

	

-­‐	
 Single	
 Dense	
 Linear	
 Solve	
 of	
 M*M	
 Matrix	

Solve	
 Remaining	
 K-­‐blocks	
 for	
 Step	
 in	
 other	
 Variables	

	

-­‐	
 N	
 Backsolves	
 of	
 K-­‐blocks	

1
1

1

N:	
 Number	
 of	
 Blocks,	
 	
 	
 M:	
 Number	
 of	
 Coupling	
 Variables	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Changing	
 Hardware	
 Landscape	

0	

1	

2	

3	

4	

5	

6	

7	

1	

10	

100	

1000	

10000	

100000	

1980	
 1985	
 1990	
 1995	
 2000	
 2005	
 2010	

448	

128	

34	

Mul?-­‐core	

Memory	
 Pipeline	

Emerging	
 Parallel	

Arch.	
 (GPU/XMT)	

Need	
 for	
 Parallel	
 Nonlinear	
 Programming	
 Techniques	

to	
 Tackle	
 Large-­‐Scale	
 Problems	
 (~1,000,000)	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Parallel	
 Solu?on	
 of	
 NLP	
 Problems	

•  ShiT	
 in	
 Hardware	
 Focus	
 Requires	
 Parallel	

Algorithms	

•  Desire	
 to	
 Increase	
 Problem	
 Size	
 Requires	

Parallel	
 Tools	

– Stochas?c	
 Programming	

•  Challenges	
 for	
 Applica?on	
 Developers	

– Absence	
 of	
 Off-­‐The-­‐Shelf	
 Solvers	

– Lack	
 of	
 Support	
 in	
 Modeling	
 tools	

•  Require:	
 Parallel	
 Evalua?on	
 of	
 Func?ons	
 and	
 Gradients	

36	

Parameter	
 Es?ma?on	

in	
 Signal	
 Transduc?on	

Across	
 Popula?ons	

NSF	
 CDI-­‐II	

Inversion	
 and	
 Model	

Calibra?on	
 for	
 LNG	

Dispersion	

MKOPSC	
 Parallel	
 NLP	
 Techniques	

in	
 Rapid	
 Therapeu?cs	

Manufacturing	

NSF	
 CAREER	

Risk	
 Management	
 and	

Planning	
 in	
 Complex	

Networks	

DOE	
 ASCR/Sandia	

Real-­‐?me	
 Response	

Management	
 for	
 WDS	

PUB	
 Singapore/Sandia	

Op?miza?on	
 of	

Complex	
 Processes	

Under	
 Uncertainty	

TAMU	

37	

Parameter	
 Es?ma?on	

in	
 Signal	
 Transduc?on	

Across	
 Popula?ons	

NSF	
 CDI-­‐II	

Inversion	
 and	
 Model	

Calibra?on	
 for	
 LNG	

Dispersion	

MKOPSC	
 Parallel	
 NLP	
 Techniques	

in	
 Rapid	
 Therapeu?cs	

Manufacturing	

NSF	
 CAREER	

Risk	
 Management	
 and	

Planning	
 in	
 Complex	

Networks	

DOE	
 ASCR/Sandia	

Real-­‐?me	
 Response	

Management	
 for	
 WDS	

PUB	
 Singapore/Sandia	

Op?miza?on	
 of	

Complex	
 Processes	

Under	
 Uncertainty	

TAMU	

•  Large-­‐Scale	
 NLP	
 Problems	

•  Millions	
 of	
 variables	

•  Sparse,	
 Usually	
 Structured	

•  Not	
 Solvable	
 off-­‐the-­‐shelf	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Parallel	
 Solu?on	
 on	
 MIMD	

•  Excellent	
 Scalability	
 for	
 Problems	
 with	
 Few	
 Common	

Variables	
 (hundred)	

•  BFGS	
 Based	
 Precondi?oned	
 CG	
 Removes	
 Forming	
 of	

Schur-­‐Complement	
 (Current	
 Research)	

38	

Large-­‐Scale	
 Parameter	
 Es?ma?on	

Mul?-­‐scenario	
 Op?miza?on	
 Under	
 Uncertainty	

Spa?al	
 Decomposi?on	

Other	
 Parallel	
 Architectures?	
 (GPU,	
 Cray	
 XMT)	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Structure	
 of	
 the	
 GPU	

•  NVidia	
 Tesla	
 C870	
 (2	
 Gen.	
 Old)	

–  16	
 Mul?processors	

–  8	
 Stream	
 Processor	

–  128	
 Cores	

•  SIMD	
 Architecture	

•  Complex	
 Memory	
 Structure	

–  Global	
 Memory	
 (High	
 Latency)	

–  Shared	
 Memory	
 (Fast,	
 Small)	

–  Constant	
 Memory	
 (Read-­‐Only)	

39	

Define	
 Input	
 Data	
 on	
 Host	

	

Allocate	
 Memory	
 on	
 Device	

	

Upload	
 Input	
 Data	
 to	
 Device	

	

Upload	
 Kernel	
 to	
 Device	

	

	

	

Download	
 Results	
 	

from	
 Device	

	

	

	

	

	

	

Execute	
 Kernel	
 on	
 Device	

(as	
 individual	
 threads)	

	

	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Opportuni?es	
 for	
 Parallel	
 NLP	
 on	
 GPU	

•  GPU	
 is	
 a	
 (hybrid)	
 SIMD	
 Architecture	

–  Each	
 Stream	
 Processor	
 Running	
 the	
 Same	
 Instruc?on	

–  Cannot	
 Simply	
 Run	
 Separate	
 Linear	
 Solvers	
 on	
 Different	

Blocks	
 (Execu?on	
 Flow	
 Differs)	

•  Fixed-­‐Pivot	
 Strategies	
 for	
 Direct	
 Decomposi?on	
 (Code	
 Genera?on)	

–  Very	
 Appropriate	
 for	
 Simple	
 Linear	
 Algebra	
 Opera?ons	

(Matrix-­‐Vector,	
 Vector-­‐Vector)	

•  Itera?ve	
 Techniques	

40	

Opportuni?es	
 for	
 Direct	
 Decomposi?on?	

Opportuni?es	
 for	
 use	
 of	
 Parallel	
 Itera?ve	
 Linear	
 Solvers?	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Direct	
 Decomposi?on	
 on	
 the	
 GPU	

Fixed-­‐Pivot	
 Strategy	
 –	
 i.e.	
 Code	
 Genera(on	

•  Preprocessing	

–  Solve	
 a	
 Single	
 Representa?ve	
 K-­‐block	

– Write	
 Fixed-­‐Pivot	
 Factoriza?on	
 Kernel	
 (CUDA)	

– Write	
 Backsolve	
 Kernel	
 (CUDA)	

•  During	
 Solve,	
 GPU	
 Uses	
 Fixed-­‐Pivot	
 Strategy	

•  Limita?ons:	

– No	
 Ac?ve	
 Pivot	
 Selec?on	

–  Possible	
 Numerical	
 Stability	
 Issues	

–  Each	
 Block	
 Must	
 be	
 the	
 Same	
 Structure	

41	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Speedup:	
 Forming	
 Schur-­‐Complement	

•  Ini?al	
 Implementa?on:	
 Speedup	
 of	
 ~3	

42	

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	
 10000	
 20000	
 30000	
 40000	
 50000	

Sp
ee
d	

U
p	

(v
s.
	
 C
PU

)	

#	
 Backsolves	

CPU	

GPU	

0	

5	

10	

15	

20	

25	

30	

35	

40	

512	
 1024	
 2560	
 5120	
 12800	
 25600	
 51200	

W
al
l	
 C
lo
ck
	
 T
im

e,
	
 S
ec
on

ds
	

#	
 Backsolves	

CPU	

GPU	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Speedup:	
 Forming	
 Schur-­‐Complement	

•  Tune	
 Parameters	
 for	
 Problem	
 Structure/GPU	
 Architecture	

–  Different	
 Memory	
 Classes	
 (Constant,	
 Shared)	

–  Speedup:	
 Order	
 of	
 Magnitude	

•  Emerging	
 SIMD	
 Architectures	
 Ideal	
 for	
 Simple	
 Linear	
 Opera?ons	

43	

0	

5	

10	

15	

20	

25	

30	

35	

40	

512	
 1024	
 2560	
 5120	
 12800	
 25600	
 51200	

W
al
l	
 C
lo
ck
	
 T
im

e,
	
 S
ec
on

ds
	

#	
 Backsolves	

CPU	

GPU	

GPU-­‐Const	

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	
 10000	
 20000	
 30000	
 40000	
 50000	

Sp
ee
d	

U
p	

(v
s.
	
 C
PU

)	

#	
 Backsolves	

CPU	

GPU	

GPU-­‐Const	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Itera?ve	
 Techniques	
 for	
 KKT	
 Systems	

•  Itera?ve	
 Techniques	
 (PCG,	
 GMRES)	

–  Matrix-­‐Vector	
 Products	

–  Requires	
 Precondi?oner	

–  PCG	
 Requires	
 Posi?ve	
 Definite	
 System	

•  KKT	
 Systems	
 from	
 Interior-­‐Point	
 Methods	

–  Ill-­‐condi?oning	
 as	
 Op?miza?on	
 Proceeds	

–  Requires	
 Detec?on	
 of	
 Incorrect	
 Iner?a	

–  Linear	
 Systems	
 NOT	
 Posi?ve	
 Definite	

44	

•  Forsgren,	
 Gill,	
 Griffin	
 (2008)	

–  Doubly	
 Augmented	
 System	

–  Posi?ve	
 Definite	
 if	
 Iner?a	
 is	
 Correct	
 (PCG)	

–  Allows	
 Detec?on	
 of	
 Incorrect	
 Iner?a	

–  Allows	
 Approximate	
 solu?on	

–  Effec?ve	
 Precondi?oners?	

•  Dollar	
 et	
 al.	
 (2007)	

–  Constraint	
 Precondi?oner	
 Approach	

–  Requires	
 Exact	
 Solu?on	
 of	
 Linear	
 System	

Methods	
 for	
 Itera?ve	
 Solu?on	
 of	
 the	
 KKT	
 System	
 	

Exists	
 for	
 Interior-­‐Point	
 Methods	

	

Rely	
 on	
 Matrix-­‐Vector	
 Products	
 	

(Appropriate	
 for	
 SIMD)	

	

Nvidia	
 C2050:	
 440	
 Cores,	
 3	
 GB	
 RAM	

Speedup	
 Factor	
 of	
 60	
 Times	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Off-­‐the-­‐Shelf	
 Advances	
 in	
 Nonlinear	
 Programming	

•  Modeling	
 Tools:	

–  Provide	
 Algebraic	
 /	
 Object-­‐Oriented	
 Modeling	
 Environments	
 	

(AMPL,	
 GAMS,	
 GPROMS,	
 Jmodelica,	
 PYOMO,	
 etc.)	

–  OTen	
 Provide	
 Fast	
 First	
 and	
 Second	
 Deriva?ve	
 Informa?on	
 with	
 AD	

•  Efficient	
 Off-­‐the-­‐shelf	
 Algorithms	
 &	
 SoTware	
 for	
 Large-­‐Scale	

Problems.	
 Examples:	

–  Real-­‐?me	
 Response	
 Planning	
 for	
 Water	
 Distribu?on	
 Systems	

•  2.6	
 Million	
 Variables	
 à	
 Few	
 Minutes	
 (QP)	

–  Dynamic	
 Parameter	
 Es?ma?on	
 for	
 Infec?ous	
 Disease	
 Models	

•  20,000	
 Variables	
 à	
 Under	
 30	
 Seconds	

–  Design	
 Under	
 Uncertainty	
 (Complex	
 Air	
 Separa?on	
 Process)	

•  8000	
 Variables	
 à	
 Under	
 15	
 Seconds	

•  675,000	
 Variables	
 à	
 ~20	
 Minutes	

	

45	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Temporal	
 Decomposi?on	
 in	
 Dynamic	
 Op?miza?on	

•  JModelica/JOp?mica	

–  Developed	
 at	
 Lund	
 University	

by	
 Johan	
 Akesson	

–  DAE	
 Modeled	
 Using	
 Modelica	

–  Object-­‐Oriented	
 Language	

–  Simultaneous	
 Approach	

–  IPOPT	
 (NLP	
 Solver)	

•  Different	
 Structure	

–  Coupling	
 Constraints	

–  Not	
 Coupling	
 Variables	

–  Size	
 of	
 Schur-­‐Complement	
 Not	

Only	
 Dependent	
 on	
 #	
 Variables	

–  Size	
 of	
 Schur-­‐Complement	

Dependent	
 on	
 #	
 Processors	

46	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Explicit	
 Schur-­‐Complement:	
 Temporal	

47	

0	

5	

10	

15	

20	

25	

30	

2	
 4	
 8	
 16	
 32	
 64	
 128	

3	
 States,	
 97	
 Alg.	

5	
 States,	
 95	
 Alg.	

10	
 States,	
 90	
 Alg.	

Efficient	
 Parallel	
 Op(miza(on	
 on	
 Emerging	

Architectures	

Carl	
 Laird,	
 Assistant	
 Professor	

Jia	
 Kang,	
 Ph.D.	
 Candidate	
 (NSF	
 CDI	
 Type	
 II)	

	

Ar?e	
 McFerrin	
 Department	
 of	
 Chemical	
 Engineering	

Texas	
 A&M	
 University,	
 College	
 Sta?on,	
 TX	

	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Johan	
 Akesson,	
 Assistant	
 Professor	

	

Department	
 of	
 Automa?c	
 Control	

Lund	
 University,	
 Lund,	
 Sweden	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Parallel	
 Nonlinear	
 Programming	

49	

	

Problem	
 Structure	

Determines	

Opportuni?es	
 for	

Parallelism	

	

• 	
 Block	
 Structure	
 from	

Problem	
 Class	

(scenario,	
 temporal,	

etc.)	

	

• 	
 Element	
 Level	

Structure	

	

All	
 Parallel	

Architectures	
 are	

Not	
 Created	
 Equal	

	

• 	
 Distributed	
 Cluster	

• 	
 Mul?-­‐core	
 Desktop	

• 	
 Streaming	
 Cores	
 (GPU)	

Architecture	

	

Algorithm	
 Dictates	

Possibili?es	
 for	

Parallelism	

	

	
 	

• 	
 Problem	
 Decomp.	
 (PH)	

• 	
 Internal	
 Decomp.	

• 	
 Itera?ve	
 Linear	
 Alg.	

Algorithm	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Intel:	
 CPU	
 Clock	
 Rate	

1	

10	

100	

1000	

10000	

100000	

1980	
 1985	
 1990	
 1995	
 2000	
 2005	
 2010	

50	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Intel:	
 Number	
 of	
 Cores	

0	

1	

2	

3	

4	

5	

6	

7	

1	

10	

100	

1000	

10000	

100000	

1980	
 1985	
 1990	
 1995	
 2000	
 2005	
 2010	

51	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Nvidia	
 GPU:	
 Number	
 of	
 Cores	

0	

1	

2	

3	

4	

5	

6	

7	

1	

10	

100	

1000	

10000	

100000	

1980	
 1985	
 1990	
 1995	
 2000	
 2005	
 2010	

448	

128	

52	

Mul?-­‐core	

Memory	
 Pipeline	

Emerging	
 Parallel	

Arch.	
 (GPU/XMT)	

Need	
 for	
 Parallel	
 Nonlinear	
 Programming	
 Techniques	

to	
 Tackle	
 Large-­‐Scale	
 Problems	
 (~1,000,000)	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Challenges	
 with	
 Explicit	
 Schur-­‐Complement	

53	

Form	
 the	
 Schur-­‐Complement	

-­‐	
 N	
 Factoriza?ons	
 of	
 K-­‐blocks	

-­‐	
 N*M+M	
 Backsolves	
 of	
 K-­‐blocks	

Solve	
 the	
 Schur-­‐Complement	

for	
 Step	
 in	
 Common	
 Variables	

	

-­‐	
 Single	
 Dense	
 Linear	
 Solve	
 of	
 M*M	
 Matrix	

Solve	
 Remaining	
 K-­‐blocks	
 for	
 Step	
 in	
 other	
 Variables	

	

-­‐	
 N	
 Backsolves	
 of	
 K-­‐blocks	

1
1

1

N:	
 Number	
 of	
 Blocks,	
 	
 	
 M:	
 Number	
 of	
 Coupling	
 Variables	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Challenges	
 with	
 Explicit	
 Schur-­‐Complement	

54	

Number	
 of	
 Scenarios/Blocks	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

PCG/BFGS	
 Schur-­‐Complement	
 Approach	

•  Dominant	
 Cost	
 of	
 Explicit	
 Schur-­‐Complement	
 Approach	

–  Forming	
 the	
 Schur-­‐Complement	
 (Increasing	
 M)	

•  Never	
 Explicitly	
 Form	
 the	
 Schur-­‐Complement	

•  Solve	
 the	
 Schur-­‐Complement	
 using	
 PCG	

–  1	
 Backsolve	
 of	
 K-­‐blocks	
 for	
 right	
 hand	
 side	

–  1	
 Backsolve	
 of	
 K-­‐blocks	
 per	
 PCG	
 Itera?on	

•  BFGS	
 Update	
 for	
 Inverse	
 Precondi?oner	

–  Ini?al	
 Precondi?oner	
 Calculated	
 Explicitly	

•  PCG/BFGS	
 Compared	
 Against	
 Explicit	
 Schur-­‐Complement	

–  Number	
 of	
 Backsolves	
 as	
 M	
 increases	

–  Randomly	
 Generated	
 Parameter	
 Es?ma?on	
 Problems	

55	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Explicit-­‐SC	
 vs	
 PCG/BFGS	

56	

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

Number of common variables

of

 b
ac

ks
ol

ve
s

Full-schur method
Pcg method

0 50 100 150 200 250 300
2

4

6

8

10

12

Number of common variables

R
at

io

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

PCG/BFGS:	
 Sensi?vity	
 to	
 PCG	
 Tolerance	

57	

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
0

2

4

6

8

10

12

Tolerance of pcg

R
at

io

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
0

10

20

30

40

Tolerance of pcg

of

 in
ne

r i
te

ra
tio

ns

Full-schur method
Pcg method

#	

O
ut
er
	
 It
er
a?

on
s	

Artie McFerrin Department of

Chemical Engineering
Texas A&M University

Parallel	
 Architectures	

Single	

Data	

Mul(ple	

Data	

Single	

Instruc(on	
 SISD	
 SIMD	

Mul(ple	

Instruc(on	
 MISD	
 MIMD	

58	

Classified	
 by	
 Flynn’s	
 Taxonomy	

Beowulf	
 Cluster	
 (MIMD)	

•  Scalable	
 Distributed	
 Compu?ng	

100s	
 of	
 Processors	

•  Standard	
 Compilers	
 (MPI)	

•  Network	
 Communica?on	
 (Ethernet)	

•  Communica?on	
 Boxleneck	

Desktop	
 Mul(-­‐core	
 (MIMD)	

•  Affordable	
 Hardware 	
 	

Low	
 Number	
 of	
 Processors	

•  Standard	
 Compilers	
 (Threads,	
 OpenMP)	

•  Fast	
 Communica?on	
 (No	
 Network)	

•  Memory	
 Access/#	
 CPU	
 Boxleneck	

Emerging	
 Architectures	
 (SIMD/Hybrid)	

Graphics	
 Processing	
 Unit	
 (GPU)	

•  Affordable,	
 1000’s	
 of	
 Processors	

•  Specialized	
 Compilers/Languages	

•  CUDA,	
 Brook++,	
 OpenCL	

•  Several	
 Complexi?es	
 &	
 Limita?ons	

