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•  Large-­‐Scale	
  Nonlinear	
  Problems,	
  OTen	
  Many	
  
Scenarios	
  

•  Hardware	
  Manufacturers	
  Focusing	
  on	
  Mul?-­‐
core	
  Architectures	
  

•  Need	
  for	
  Parallel	
  Tools	
  to	
  Solve	
  Stochas?c	
  NLPs	
  

•  Challenges	
  for	
  the	
  Applica?on	
  Developer:	
  
–  Lack	
  of	
  Support	
  for	
  Effec?ve	
  Modeling	
  and	
  
Parallel	
  Model	
  Evalua?on	
  in	
  Modeling	
  Tools	
  

–  Lack	
  of	
  Off-­‐the-­‐shelf	
  Algorithms	
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Parallel	
  Solu?on	
  of	
  Stochas?c	
  NLP	
  Problems	
  

4	
  

•  PYOMO:	
  Python	
  Modeling	
  Language	
  for	
  Op?miza?on	
  
–  Rich	
  Environment	
  for	
  Tailored	
  Modeling	
  Extensions	
  
–  Effec?ve	
  Development	
  of	
  Decomposi?on/Hybrid	
  Algorithms	
  

•  PySP	
  
–  Provides	
  Modeling	
  Extension	
  to	
  Represent	
  Stochas?c	
  Programming	
  

Problems	
  
–  Provides	
  Decomposi?on	
  Approaches	
  for	
  Efficient	
  Parallel	
  Solu?on	
  of	
  

Stochas?c	
  Programming	
  Problems	
  
•  Progressive	
  Hedging,	
  Experimental	
  Bender’s	
  

•  Internal	
  Linear	
  Decomposi?on	
  
–  Interior-­‐Point	
  Method	
  (IPOPT)	
  
–  Problem	
  Tailored	
  Linear	
  Algebra	
  (Decomposi?on	
  of	
  KKT	
  System)	
  
–  Schur-­‐complement	
  Decomposi?on	
  
–  PCG/BFGS:	
  Itera?ve	
  Solu?on	
  of	
  SchurComplement	
  

	
  



PYOMO: PYthon Optimization Modeling Objects 

Slide 5	





PySP: Motivation 

• Numerous stochastic programming extensions to Algebraic Modeling 
Languages (AMLs) have been proposed over the last decade 

– Useful and necessary, especially for creating extensive forms 

• Modeling is not our objective here, but rather a necessary pre-requisite 

• Our goals 

1.  Break down the barrier between modeling languages and solvers 

2.  Provide model-agnostic stochastic programming algorithms 

3.  Facilitate rapid prototyping, development, and extension of algorithms 
Slide 6	





Step #1: Formulate the Deterministic Model (1) 

Slide 7	

 Birge and Louveaux’s (1997) Farmer 
Example 

ReferenceModel.py 



Step #1: Formulate the Deterministic Model (2) 
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 ReferenceModel.py 



Step #1: Formulate the Deterministic Model (3) 

Slide 9	


ReferenceModel.py 



Step #2: Specify the Deterministic Model Data  

Slide 10	



•  Can initialize an instance from 
1.  An AMPL .dat file 
2.  Excel 
3.  Raw Python 

ReferenceModel.dat 



Step #3: Specify the Scenario Tree 

Slide 11	

 ScenarioStructure.dat 



Step #4: Specify the Scenario Instance Data 

•  Two methods are available to specify scenario-specific data 
–  Scenario-based 
– Node-based 

•  In the scenario-based approach, a single and complete .dat file is 
specified for each individual scenario 

–  Redundant, but straightforward if computer-generated 

•  In the node-based approach, a single .dat file is specified for each 
node in the scenario tree 

– Maximally compact, but requires some book-keeping 

Slide 12	





Writing and Solving the Extensive Form (1) 
• Now that you have a stochastic programming model in PySP… 

•  Step #1: Write the extensive form and pray that CPLEX can solve it 
–  Fantastic if it works 
–  But often it doesn’t 

•  In PySP, the runef script is provided to both write and solve the 
extensive form of a stochastic programming model 

•  The basic command-line: 

Slide 13	





• After solution, you get (in addition to other information): 

Slide 14	



Writing and Solving the Extensive Form (2) 



What Happens if the Extensive Form is Too Difficult? 

• We use decomposition! 

Slide 15	
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Progressive Hedging: A Review and/or Introduction 

Rockafellar and Wets (1991) 



PySP: Generic Progressive Hedging (1) 

•  If you don’t care about the value of the penalty parameter ρ, you are 
willing to take chances, and/or you have time to kill: 

 
•  If you think a global value of the penalty parameter will work: 

– Add the argument  “--default-rho=your-favorite-value” 
• More likely, you want to implement variable-specific strategies: 

– Add the argument “--rho-cfgfile=myrhostrategy.cfg” 

Slide 17	



myrhostrategy.cfg: 



PySP, Distributed Computation, and Progressive Hedging 

• Decomposition algorithms for solving multi-stage stochastic mixed-
integer programs are “naturally” parallelizable 

– L-shaped method and Progressive Hedging are particularly 
amenable 

•  PySP supports simple master-slave parallelism 
–  Python pickle module for serialization 
–  PYRO: Python Remote Objects 

•  Scalability to O(1000) scenarios and processors 
– Academics don’t have commercial solver license issues! 
–  For non-academics, prototype EC2/Gurobi deployment  

Slide 18	





Mean versus Risk? A Matter of Taste! 

Slide 19	



Conditional Value-at-Risk 
(CVaR) is a linear 
approximation of TCE 

Cost 



Progressive Hedging and Conditional Value-at-Risk 

•  Scenario-based decomposition of Conditional Value-at-Risk models is 
conceptually straightforward (Schultz and Tiedemann 2006) 

•  But 
–  Computational issues are largely unexplored Slide 20	





PySP: For More Information…! 

Slide 21	
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Extension	
  to	
  Nonlinear	
  Stochas?c	
  Programs	
  

•  PYOMO	
  and	
  PySP	
  Provide	
  an	
  Effec?ve	
  Modeling	
  
Environment	
  

•  Nonlinear	
  Extensions	
  to	
  Pyomo	
  
–  NL	
  Writer	
  –	
  Interfaced	
  to	
  all	
  AMPL	
  Solvers	
  (IPOPT,	
  
COUENNE)	
  

–  AMPL	
  Solver	
  Library	
  (ASL)	
  provides	
  deriva?ves	
  

•  Nonlinear	
  Progressive	
  Hedging	
  Implemented	
  

•  Interface	
  to	
  Internal	
  Decomposi?on	
  Algorithm	
  	
  
in	
  Progress	
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Internal	
  Decomposi?on	
  with	
  Interior-­‐Point	
  Methods	
  

•  Dominant	
  Computa?onal	
  Expense:	
  Solu?on	
  of	
  Linear	
  System	
  at	
  Each	
  Itera?on	
  

23	
  



Artie McFerrin Department of  

Chemical Engineering  
Texas A&M University 

Internal	
  Decomposi?on	
  with	
  Interior-­‐Point	
  Methods	
  

•  Dominant	
  Computa?onal	
  Expense:	
  Solu?on	
  of	
  Linear	
  System	
  at	
  Each	
  Itera?on	
  
•  Structure	
  in	
  the	
  Problem	
  Defini?on	
  Induces	
  Structure	
  in	
  the	
  Linear	
  System	
  
•  All	
  Scale-­‐Dependent	
  Linear	
  Opera?ons	
  Should	
  be	
  Parallelized	
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Explicit	
  Schur-­‐Complement	
  Approach	
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Internal	
  Decomposi?on:	
  Implementa?on	
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Parameter	
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Figure 2: Scaleup results of a parallel internal decomposition approach on a large-scale
nonlinear parameter estimation problem[51]

common variables alone is not stable. A decomposition that considers complicating con-

straints along with complicating variables can be used to develop a stable decomposition.

Based on the successful interior-point solver Ipopt, this research will develop a new algo-

rithm that considers complicating constraints and allows for efficient solution of dynamic

optimization problems in parallel.

The proposed host solver, Ipopt, has proven to be efficient and reliable on large-scale

problems[49, 9, 47, 6] and is used in many different research areas[31, 32, 50, 30, 1]. The PI

of this proposal has been actively involved in the development of Ipopt and specifically de-

12
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Zavala,	
  V.M.,	
  Laird,	
  C.D.,	
  Biegler,	
  L.T.	
  “Interior-­‐Point	
  Decomposi?on	
  Approaches	
  for	
  Parallel	
  Solu?on	
  of	
  Large-­‐Scale	
  
Nonlinear	
  Parameter	
  Es?ma?on	
  Problems”,	
  Chemical	
  Engineering	
  Science,	
  63	
  (19),	
  pp.	
  4834-­‐4845,	
  2008.	
  

12,000	
  
Variables	
   400,000	
  

Variables	
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Parallel	
  Solu?on:	
  Water	
  Network	
  Inversion	
  
12 C. D. Laird and L. T. Biegler

Fig. 2. Timing Results for the Multi-Scenario Problem with 600 Common Variables:
This figure shows the scalability results of the parallel interior-point implementation
on the multi-scenario problem. The number of processors used was equal to the
number of scenarios in the formulation. The total number of variables in the problem
are shown with the secondary axis.

6 Conclusions

This study deals with the formulation and efficient solution of multi-scenario
optimization problems that often arise in the optimal design of systems with
unknown information. Discretizing the uncertainty sets leads to large multi-
scenario optimization problems, often with few common variables. For the
solution of these problems we consider the barrier NLP algorithm, IPOPT, and
have developed an efficient parallel Schur complement approach that exploits
the block bordered structure of the KKT matrix.

The formulation and implementation is demonstrated on a large-scale mul-
tiscenario problem with over 30000 variables in each block and 600 common
variables linking the blocks. Testing up to 32 scenarios, we observe nearly
perfect scaleup with additional scenarios using a distributed Beowulf cluster.

Furthermore, this implementation is easily facilitated by the software
structure of the redesigned IPOPT code, because of the separation of the
fundamental algorithm code and the linear algebra code. The MPI implemen-
tation of the parallel Schur complement solver and the parallel vector and
matrix classes are possible without any changes to the fundamental algorithm
code.
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C.	
  D.	
  Laird	
  and	
  L.	
  T.	
  Biegler,	
  "Large-­‐Scale	
  Nonlinear	
  Programming	
  for	
  Mul?-­‐scenario	
  
Op?miza?on,"	
  pp.	
  323-­‐336,	
  in	
  Modeling,	
  Simula?on	
  and	
  Op?miza?on	
  of	
  Complex	
  
Processes,	
  H.	
  G.	
  Bock,	
  E.	
  Kos?na,	
  H-­‐X	
  Phu,	
  R.	
  Ranacher	
  (eds.),	
  Springer	
  (2008)	
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Op?mal	
  Opera?on	
  of	
  Air	
  Sep.	
  Process	
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Dynamic	
  Op?miza?on	
  Under	
  Uncertainty	
  

30	
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Stochas?c	
  Nonlinear	
  Programming	
  with	
  Pyomo	
  

•  Hardware	
  Manufacturers	
  Focusing	
  on	
  Mul?-­‐core	
  Architectures	
  
•  Problems	
  are	
  Increasing	
  in	
  Size	
  &	
  Complexity	
  (Stoch.	
  Prog.)	
  
•  Effec?ve	
  Parallel	
  Solu?on	
  of	
  Large-­‐Scale	
  Problems	
  Requires:	
  

–  Modeling	
  Environments	
  that	
  Support	
  Parallel	
  Execu?on	
  
–  Efficient	
  Parallel	
  Algorithms	
  

•  PYOMO	
  and	
  PySP	
  Extension	
  Provide	
  Modeling	
  
•  PySp:	
  Progressive	
  Hedging	
  

–  Provides	
  Problem-­‐Level	
  Decomposi?on	
  Approach	
  
•  Parallel	
  Solu?on	
  of	
  Structured	
  KKT:	
  Interior-­‐Point	
  Methods	
  

–  Explicit	
  Schur-­‐Complement	
  Techniques	
  :Excellent	
  Scalability	
  for	
  Large-­‐Scale	
  Problems	
  
with	
  Limited	
  Coupling	
  (100’s)	
  

–  PCG/BFGS	
  Schur-­‐Complement	
  Approach:	
  10X	
  Improvement:	
  Allows	
  for	
  Substan?al	
  
Coupling	
  (1000’s)	
  

•  Framework	
  Provides	
  Environment	
  
–  Applica?on	
  Development	
  
–  Hybrid	
  Algorithm	
  Prototyping	
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Explicit	
  Schur-­‐Complement	
  Approach	
  

33	
  

Form	
  the	
  Schur-­‐Complement	
  
-­‐	
  N	
  Factoriza?ons	
  of	
  K-­‐blocks	
  
-­‐	
  N*M+M	
  Backsolves	
  of	
  K-­‐blocks	
  

Solve	
  the	
  Schur-­‐Complement	
  
for	
  Step	
  in	
  Common	
  Variables	
  
	
  
-­‐	
  Single	
  Dense	
  Linear	
  Solve	
  of	
  M*M	
  Matrix	
  

Solve	
  Remaining	
  K-­‐blocks	
  for	
  Step	
  in	
  other	
  Variables	
  
	
  
-­‐	
  N	
  Backsolves	
  of	
  K-­‐blocks	
  

1
1

1

N:	
  Number	
  of	
  Blocks,	
  	
  	
  M:	
  Number	
  of	
  Coupling	
  Variables	
  



Artie McFerrin Department of  

Chemical Engineering  
Texas A&M University 

Changing	
  Hardware	
  Landscape	
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Mul?-­‐core	
  

Memory	
  Pipeline	
  

Emerging	
  Parallel	
  
Arch.	
  (GPU/XMT)	
  

Need	
  for	
  Parallel	
  Nonlinear	
  Programming	
  Techniques	
  
to	
  Tackle	
  Large-­‐Scale	
  Problems	
  (~1,000,000)	
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Parallel	
  Solu?on	
  of	
  NLP	
  Problems	
  

•  ShiT	
  in	
  Hardware	
  Focus	
  Requires	
  Parallel	
  
Algorithms	
  

•  Desire	
  to	
  Increase	
  Problem	
  Size	
  Requires	
  
Parallel	
  Tools	
  
– Stochas?c	
  Programming	
  

•  Challenges	
  for	
  Applica?on	
  Developers	
  
– Absence	
  of	
  Off-­‐The-­‐Shelf	
  Solvers	
  
– Lack	
  of	
  Support	
  in	
  Modeling	
  tools	
  
•  Require:	
  Parallel	
  Evalua?on	
  of	
  Func?ons	
  and	
  Gradients	
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Parameter	
  Es?ma?on	
  
in	
  Signal	
  Transduc?on	
  
Across	
  Popula?ons	
  

NSF	
  CDI-­‐II	
  

Inversion	
  and	
  Model	
  
Calibra?on	
  for	
  LNG	
  

Dispersion	
  

MKOPSC	
  Parallel	
  NLP	
  Techniques	
  
in	
  Rapid	
  Therapeu?cs	
  

Manufacturing	
  

NSF	
  CAREER	
  

Risk	
  Management	
  and	
  
Planning	
  in	
  Complex	
  

Networks	
  

DOE	
  ASCR/Sandia	
  

Real-­‐?me	
  Response	
  
Management	
  for	
  WDS	
  

PUB	
  Singapore/Sandia	
  

Op?miza?on	
  of	
  
Complex	
  Processes	
  
Under	
  Uncertainty	
  

TAMU	
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Parameter	
  Es?ma?on	
  
in	
  Signal	
  Transduc?on	
  
Across	
  Popula?ons	
  

NSF	
  CDI-­‐II	
  

Inversion	
  and	
  Model	
  
Calibra?on	
  for	
  LNG	
  

Dispersion	
  

MKOPSC	
  Parallel	
  NLP	
  Techniques	
  
in	
  Rapid	
  Therapeu?cs	
  

Manufacturing	
  

NSF	
  CAREER	
  

Risk	
  Management	
  and	
  
Planning	
  in	
  Complex	
  

Networks	
  

DOE	
  ASCR/Sandia	
  

Real-­‐?me	
  Response	
  
Management	
  for	
  WDS	
  

PUB	
  Singapore/Sandia	
  

Op?miza?on	
  of	
  
Complex	
  Processes	
  
Under	
  Uncertainty	
  

TAMU	
  

•  Large-­‐Scale	
  NLP	
  Problems	
  
•  Millions	
  of	
  variables	
  
•  Sparse,	
  Usually	
  Structured	
  
•  Not	
  Solvable	
  off-­‐the-­‐shelf	
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Parallel	
  Solu?on	
  on	
  MIMD	
  

•  Excellent	
  Scalability	
  for	
  Problems	
  with	
  Few	
  Common	
  
Variables	
  (hundred)	
  

•  BFGS	
  Based	
  Precondi?oned	
  CG	
  Removes	
  Forming	
  of	
  
Schur-­‐Complement	
  (Current	
  Research)	
  

38	
  

Large-­‐Scale	
  Parameter	
  Es?ma?on	
  

Mul?-­‐scenario	
  Op?miza?on	
  Under	
  Uncertainty	
  

Spa?al	
  Decomposi?on	
  

Other	
  Parallel	
  Architectures?	
  (GPU,	
  Cray	
  XMT)	
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Structure	
  of	
  the	
  GPU	
  

•  NVidia	
  Tesla	
  C870	
  (2	
  Gen.	
  Old)	
  
–  16	
  Mul?processors	
  
–  8	
  Stream	
  Processor	
  
–  128	
  Cores	
  

•  SIMD	
  Architecture	
  
•  Complex	
  Memory	
  Structure	
  

–  Global	
  Memory	
  (High	
  Latency)	
  
–  Shared	
  Memory	
  (Fast,	
  Small)	
  
–  Constant	
  Memory	
  (Read-­‐Only)	
  

39	
  

Define	
  Input	
  Data	
  on	
  Host	
  
	
  
Allocate	
  Memory	
  on	
  Device	
  
	
  
Upload	
  Input	
  Data	
  to	
  Device	
  
	
  
Upload	
  Kernel	
  to	
  Device	
  
	
  
	
  

	
  
Download	
  Results	
  	
  
from	
  Device	
  

	
  

	
  
	
  
	
  
	
  
	
  
Execute	
  Kernel	
  on	
  Device	
  
(as	
  individual	
  threads)	
  

	
  
	
  



Artie McFerrin Department of  

Chemical Engineering  
Texas A&M University 

Opportuni?es	
  for	
  Parallel	
  NLP	
  on	
  GPU	
  

•  GPU	
  is	
  a	
  (hybrid)	
  SIMD	
  Architecture	
  
–  Each	
  Stream	
  Processor	
  Running	
  the	
  Same	
  Instruc?on	
  
–  Cannot	
  Simply	
  Run	
  Separate	
  Linear	
  Solvers	
  on	
  Different	
  
Blocks	
  (Execu?on	
  Flow	
  Differs)	
  
•  Fixed-­‐Pivot	
  Strategies	
  for	
  Direct	
  Decomposi?on	
  (Code	
  Genera?on)	
  

–  Very	
  Appropriate	
  for	
  Simple	
  Linear	
  Algebra	
  Opera?ons	
  
(Matrix-­‐Vector,	
  Vector-­‐Vector)	
  
•  Itera?ve	
  Techniques	
  

40	
  

Opportuni?es	
  for	
  Direct	
  Decomposi?on?	
  

Opportuni?es	
  for	
  use	
  of	
  Parallel	
  Itera?ve	
  Linear	
  Solvers?	
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Direct	
  Decomposi?on	
  on	
  the	
  GPU	
  

Fixed-­‐Pivot	
  Strategy	
  –	
  i.e.	
  Code	
  Genera(on	
  
•  Preprocessing	
  
–  Solve	
  a	
  Single	
  Representa?ve	
  K-­‐block	
  
– Write	
  Fixed-­‐Pivot	
  Factoriza?on	
  Kernel	
  (CUDA)	
  
– Write	
  Backsolve	
  Kernel	
  (CUDA)	
  

•  During	
  Solve,	
  GPU	
  Uses	
  Fixed-­‐Pivot	
  Strategy	
  
•  Limita?ons:	
  
– No	
  Ac?ve	
  Pivot	
  Selec?on	
  
–  Possible	
  Numerical	
  Stability	
  Issues	
  
–  Each	
  Block	
  Must	
  be	
  the	
  Same	
  Structure	
  

41	
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Speedup:	
  Forming	
  Schur-­‐Complement	
  

•  Ini?al	
  Implementa?on:	
  Speedup	
  of	
  ~3	
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Speedup:	
  Forming	
  Schur-­‐Complement	
  

•  Tune	
  Parameters	
  for	
  Problem	
  Structure/GPU	
  Architecture	
  
–  Different	
  Memory	
  Classes	
  (Constant,	
  Shared)	
  
–  Speedup:	
  Order	
  of	
  Magnitude	
  

•  Emerging	
  SIMD	
  Architectures	
  Ideal	
  for	
  Simple	
  Linear	
  Opera?ons	
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Itera?ve	
  Techniques	
  for	
  KKT	
  Systems	
  
•  Itera?ve	
  Techniques	
  (PCG,	
  GMRES)	
  

–  Matrix-­‐Vector	
  Products	
  
–  Requires	
  Precondi?oner	
  
–  PCG	
  Requires	
  Posi?ve	
  Definite	
  System	
  

•  KKT	
  Systems	
  from	
  Interior-­‐Point	
  Methods	
  
–  Ill-­‐condi?oning	
  as	
  Op?miza?on	
  Proceeds	
  
–  Requires	
  Detec?on	
  of	
  Incorrect	
  Iner?a	
  
–  Linear	
  Systems	
  NOT	
  Posi?ve	
  Definite	
  

44	
  

•  Forsgren,	
  Gill,	
  Griffin	
  (2008)	
  
–  Doubly	
  Augmented	
  System	
  
–  Posi?ve	
  Definite	
  if	
  Iner?a	
  is	
  Correct	
  (PCG)	
  
–  Allows	
  Detec?on	
  of	
  Incorrect	
  Iner?a	
  
–  Allows	
  Approximate	
  solu?on	
  
–  Effec?ve	
  Precondi?oners?	
  

•  Dollar	
  et	
  al.	
  (2007)	
  
–  Constraint	
  Precondi?oner	
  Approach	
  
–  Requires	
  Exact	
  Solu?on	
  of	
  Linear	
  System	
  

Methods	
  for	
  Itera?ve	
  Solu?on	
  of	
  the	
  KKT	
  System	
  	
  
Exists	
  for	
  Interior-­‐Point	
  Methods	
  

	
  
Rely	
  on	
  Matrix-­‐Vector	
  Products	
  	
  

(Appropriate	
  for	
  SIMD)	
  
	
  

Nvidia	
  C2050:	
  440	
  Cores,	
  3	
  GB	
  RAM	
  
Speedup	
  Factor	
  of	
  60	
  Times	
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Off-­‐the-­‐Shelf	
  Advances	
  in	
  Nonlinear	
  Programming	
  

•  Modeling	
  Tools:	
  
–  Provide	
  Algebraic	
  /	
  Object-­‐Oriented	
  Modeling	
  Environments	
  	
  

(AMPL,	
  GAMS,	
  GPROMS,	
  Jmodelica,	
  PYOMO,	
  etc.)	
  
–  OTen	
  Provide	
  Fast	
  First	
  and	
  Second	
  Deriva?ve	
  Informa?on	
  with	
  AD	
  

•  Efficient	
  Off-­‐the-­‐shelf	
  Algorithms	
  &	
  SoTware	
  for	
  Large-­‐Scale	
  
Problems.	
  Examples:	
  
–  Real-­‐?me	
  Response	
  Planning	
  for	
  Water	
  Distribu?on	
  Systems	
  

•  2.6	
  Million	
  Variables	
  à	
  Few	
  Minutes	
  (QP)	
  
–  Dynamic	
  Parameter	
  Es?ma?on	
  for	
  Infec?ous	
  Disease	
  Models	
  

•  20,000	
  Variables	
  à	
  Under	
  30	
  Seconds	
  
–  Design	
  Under	
  Uncertainty	
  (Complex	
  Air	
  Separa?on	
  Process)	
  

•  8000	
  Variables	
  à	
  Under	
  15	
  Seconds	
  
•  675,000	
  Variables	
  à	
  ~20	
  Minutes	
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Temporal	
  Decomposi?on	
  in	
  Dynamic	
  Op?miza?on	
  

•  JModelica/JOp?mica	
  
–  Developed	
  at	
  Lund	
  University	
  

by	
  Johan	
  Akesson	
  
–  DAE	
  Modeled	
  Using	
  Modelica	
  
–  Object-­‐Oriented	
  Language	
  
–  Simultaneous	
  Approach	
  
–  IPOPT	
  (NLP	
  Solver)	
  

•  Different	
  Structure	
  
–  Coupling	
  Constraints	
  
–  Not	
  Coupling	
  Variables	
  
–  Size	
  of	
  Schur-­‐Complement	
  Not	
  

Only	
  Dependent	
  on	
  #	
  Variables	
  
–  Size	
  of	
  Schur-­‐Complement	
  

Dependent	
  on	
  #	
  Processors	
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Explicit	
  Schur-­‐Complement:	
  Temporal	
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  Parallel	
  Op(miza(on	
  on	
  Emerging	
  
Architectures	
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Parallel	
  Nonlinear	
  Programming	
  

49	
  

	
  
Problem	
  Structure	
  

Determines	
  
Opportuni?es	
  for	
  

Parallelism	
  
	
  
• 	
  Block	
  Structure	
  from	
  
Problem	
  Class	
  
(scenario,	
  temporal,	
  
etc.)	
  
	
  
• 	
  Element	
  Level	
  

Structure	
  

	
  
All	
  Parallel	
  

Architectures	
  are	
  
Not	
  Created	
  Equal	
  

	
  

• 	
  Distributed	
  Cluster	
  

• 	
  Mul?-­‐core	
  Desktop	
  

• 	
  Streaming	
  Cores	
  (GPU)	
  

Architecture	
  

	
  
Algorithm	
  Dictates	
  
Possibili?es	
  for	
  
Parallelism	
  

	
  
	
  	
  
• 	
  Problem	
  Decomp.	
  (PH)	
  

• 	
  Internal	
  Decomp.	
  

• 	
  Itera?ve	
  Linear	
  Alg.	
  

Algorithm	
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Intel:	
  CPU	
  Clock	
  Rate	
  

1	
  

10	
  

100	
  

1000	
  

10000	
  

100000	
  

1980	
   1985	
   1990	
   1995	
   2000	
   2005	
   2010	
  

50	
  



Artie McFerrin Department of  

Chemical Engineering  
Texas A&M University 

Intel:	
  Number	
  of	
  Cores	
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Nvidia	
  GPU:	
  Number	
  of	
  Cores	
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Mul?-­‐core	
  

Memory	
  Pipeline	
  

Emerging	
  Parallel	
  
Arch.	
  (GPU/XMT)	
  

Need	
  for	
  Parallel	
  Nonlinear	
  Programming	
  Techniques	
  
to	
  Tackle	
  Large-­‐Scale	
  Problems	
  (~1,000,000)	
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Challenges	
  with	
  Explicit	
  Schur-­‐Complement	
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Form	
  the	
  Schur-­‐Complement	
  
-­‐	
  N	
  Factoriza?ons	
  of	
  K-­‐blocks	
  
-­‐	
  N*M+M	
  Backsolves	
  of	
  K-­‐blocks	
  

Solve	
  the	
  Schur-­‐Complement	
  
for	
  Step	
  in	
  Common	
  Variables	
  
	
  
-­‐	
  Single	
  Dense	
  Linear	
  Solve	
  of	
  M*M	
  Matrix	
  

Solve	
  Remaining	
  K-­‐blocks	
  for	
  Step	
  in	
  other	
  Variables	
  
	
  
-­‐	
  N	
  Backsolves	
  of	
  K-­‐blocks	
  

1
1

1

N:	
  Number	
  of	
  Blocks,	
  	
  	
  M:	
  Number	
  of	
  Coupling	
  Variables	
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Challenges	
  with	
  Explicit	
  Schur-­‐Complement	
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PCG/BFGS	
  Schur-­‐Complement	
  Approach	
  

•  Dominant	
  Cost	
  of	
  Explicit	
  Schur-­‐Complement	
  Approach	
  
–  Forming	
  the	
  Schur-­‐Complement	
  (Increasing	
  M)	
  

•  Never	
  Explicitly	
  Form	
  the	
  Schur-­‐Complement	
  
•  Solve	
  the	
  Schur-­‐Complement	
  using	
  PCG	
  

–  1	
  Backsolve	
  of	
  K-­‐blocks	
  for	
  right	
  hand	
  side	
  
–  1	
  Backsolve	
  of	
  K-­‐blocks	
  per	
  PCG	
  Itera?on	
  

•  BFGS	
  Update	
  for	
  Inverse	
  Precondi?oner	
  
–  Ini?al	
  Precondi?oner	
  Calculated	
  Explicitly	
  

•  PCG/BFGS	
  Compared	
  Against	
  Explicit	
  Schur-­‐Complement	
  
–  Number	
  of	
  Backsolves	
  as	
  M	
  increases	
  
–  Randomly	
  Generated	
  Parameter	
  Es?ma?on	
  Problems	
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Explicit-­‐SC	
  vs	
  PCG/BFGS	
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PCG/BFGS:	
  Sensi?vity	
  to	
  PCG	
  Tolerance	
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Parallel	
  Architectures	
  

Single	
  
Data	
  

Mul(ple	
  
Data	
  

Single	
  
Instruc(on	
   SISD	
   SIMD	
  

Mul(ple	
  
Instruc(on	
   MISD	
   MIMD	
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Classified	
  by	
  Flynn’s	
  Taxonomy	
  

Beowulf	
  Cluster	
  (MIMD)	
  
•  Scalable	
  Distributed	
  Compu?ng	
  

100s	
  of	
  Processors	
  
•  Standard	
  Compilers	
  (MPI)	
  
•  Network	
  Communica?on	
  (Ethernet)	
  
•  Communica?on	
  Boxleneck	
  

Desktop	
  Mul(-­‐core	
  (MIMD)	
  
•  Affordable	
  Hardware 	
  	
  

Low	
  Number	
  of	
  Processors	
  
•  Standard	
  Compilers	
  (Threads,	
  OpenMP)	
  
•  Fast	
  Communica?on	
  (No	
  Network)	
  
•  Memory	
  Access/#	
  CPU	
  Boxleneck	
  

Emerging	
  Architectures	
  (SIMD/Hybrid)	
  
Graphics	
  Processing	
  Unit	
  (GPU)	
  
•  Affordable,	
  1000’s	
  of	
  Processors	
  
•  Specialized	
  Compilers/Languages	
  

•  CUDA,	
  Brook++,	
  OpenCL	
  
•  Several	
  Complexi?es	
  &	
  Limita?ons	
  


