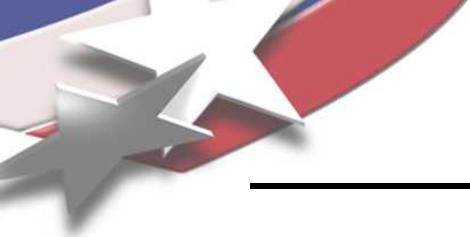


A Performance Assessment Model for Generic Repository in Salt Formation

J.H. Lee*, M. Siegel, C. Jove-Colon, Y. Wang
Sandia National Laboratories
Albuquerque, NM

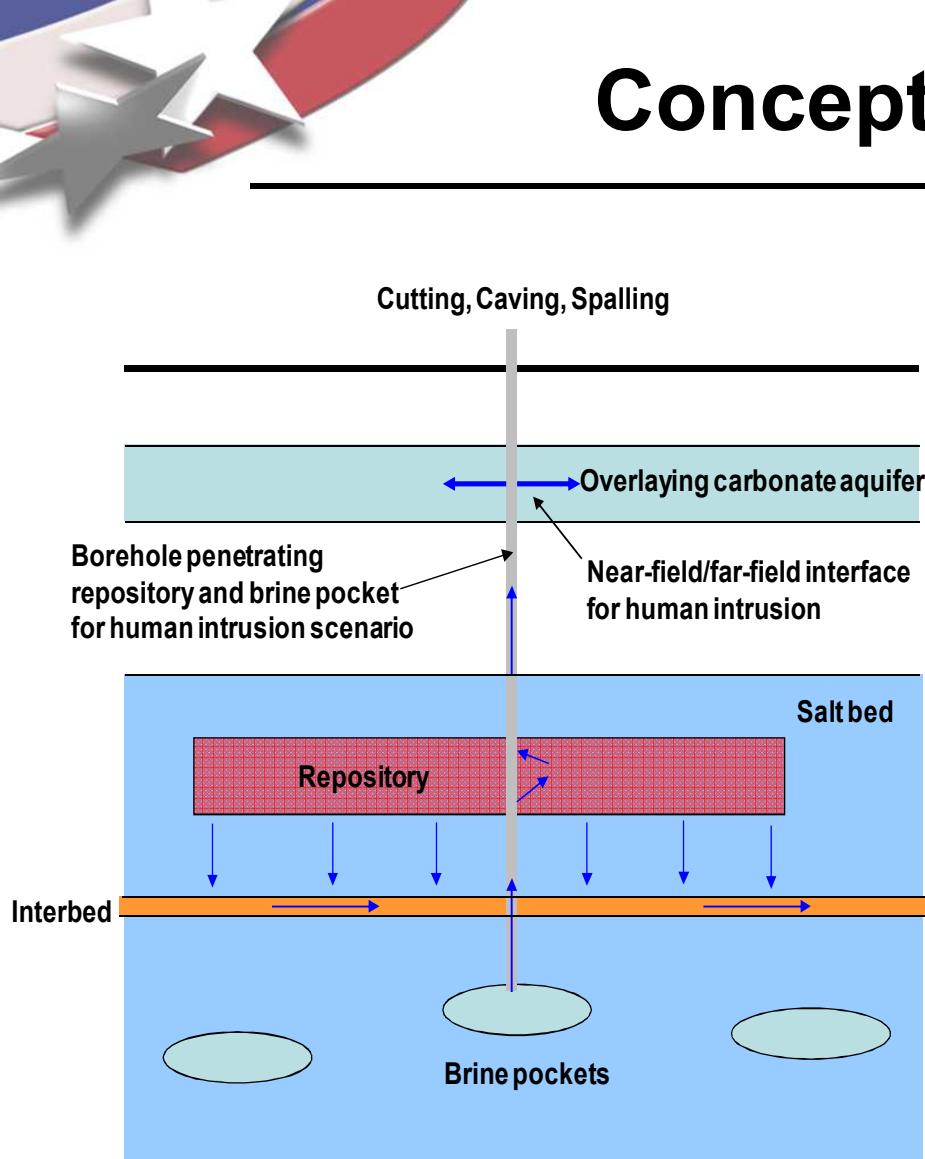

International High-Level Radioactive Waste Management Conference
Albuquerque, NM
April 11, 2011

*** Corresponding Author**
Email: jlee@sandia.gov, Phone: (505) 284-1865
(SAND Number: 2011-2364C)

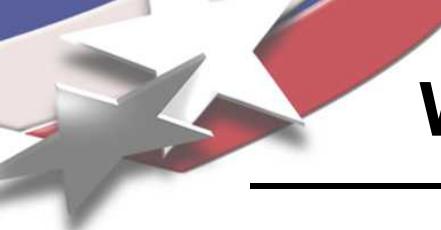
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- **Introduction**
- **Conceptual model**
- **Waste inventories and scenarios**
- **Radionuclide (RN) mobilization and transport**
- **Model results**
- **Summary and conclusions**
- **Future work**

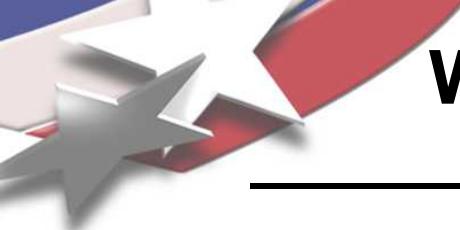


Introduction



- Salt repository is one of four generic disposal system environment (GDSE) options currently under study by U.S. DOE
 - Stable geology
 - Chemically reducing condition
 - Self-healing by creep deformation
 - Limited water availability and movement
- The salt GDSE study is to support the development of a long-term strategy for geologic disposal of high-level radioactive waste in a salt formation
- The immediate goal is to develop the necessary modeling tools to evaluate and improve understanding on the repository system response and relevant processes

Conceptual Model

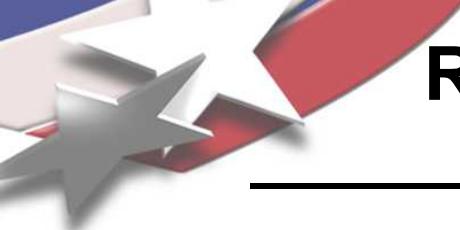

- **Saturated, reducing condition**
 - Assume repository in a bedded salt formation below a carbonate aquifer
- **Isothermal condition at ambient temperature**
- **Undisturbed Scenario**
 - RNs released into and transported in an interbed (1 m thick) below repository
- **Disturbed Scenario**
 - “stylized” human intrusion scenario
 - A single borehole penetration at 1,000 years
 - Sample the number of affected waste packages (WPs) (between 1 and 5)
 - RNs from affected WPs released directly to overlying aquifer by pressurized brines with steady-state flow rates
 - Not consider potential dose impacts of waste brought up by drilling activities

Waste Inventories and Scenarios

- **Waste types**
 - Commercial used nuclear fuel (UNF) (140,000 MTU)
 - Convert the total inventory to equivalent pressurized water reactor (PWR) inventory for simplification
 - 32,154 UNF WPs (10 assemblies per WP)
 - Isotope inventory based on the PWR UNF
 - 60 GWd/MTHM burn-up
 - 4.73% enrichment
 - 30 yrs after discharge from reactor
 - Vitrified existing DOE high-level radioactive waste (HLW)
 - 5,003 WPs (5 canisters per WP)
 - Vitrified “hypothetical” reprocessing HLW of commercial UNF
 - 99% recovery of U and Pu from commercial UNF
 - Assume all others remain in the waste stream
 - Assume the same RN mass and isotope inventory per canister as DOE HLW
 - 4,055 WPs (5 canisters per WP)

Waste Inventories and Scenarios

(continued)


- **Assume a square repository footprint**
 - Spacing between emplacement tunnels: 25 m
 - Spacing between WPs: 6 m
- **Waste inventory cases for Undisturbed Scenario**
 - Case 1: UNF plus DOE HLW
 - A square repository footprint with a side of 3,270 m
 - Case 2: DOE HLW plus reprocessing HLW
 - A square repository footprint with a side of 1,615 m
- **Waste inventory cases for Disturbed Scenario**
 - Case 1: assume only UNF WPs affected
 - Case 2: assume only DOE HLW WPs affected

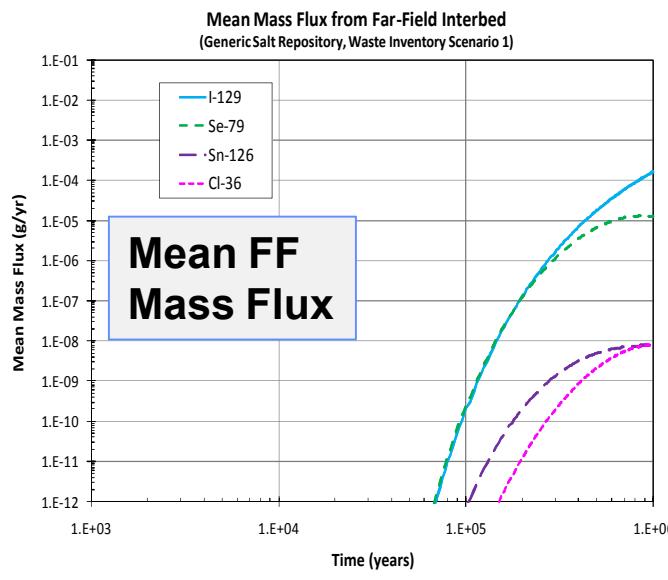
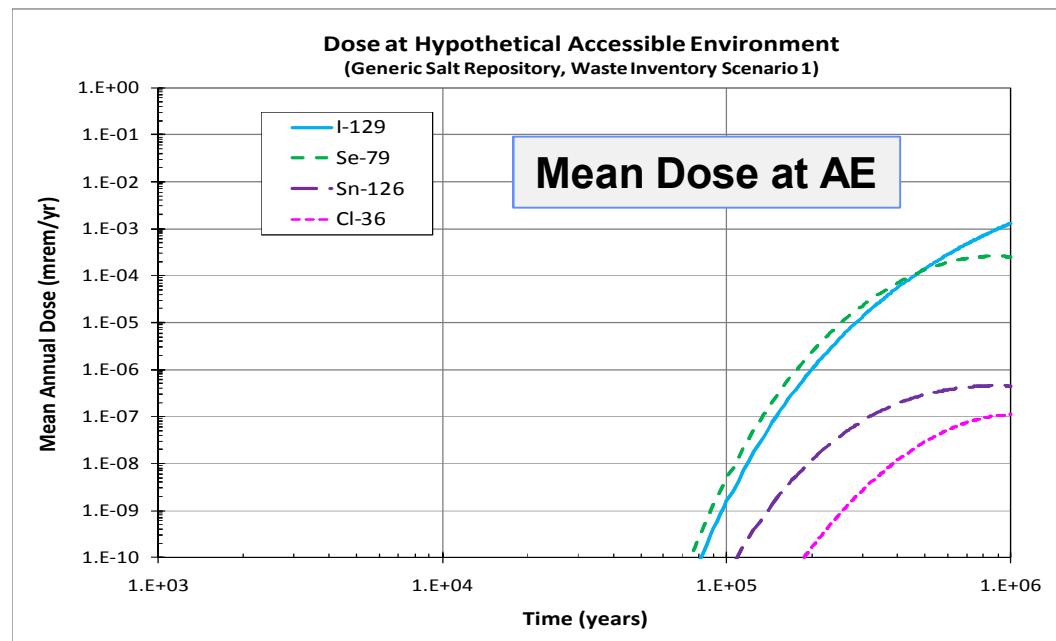
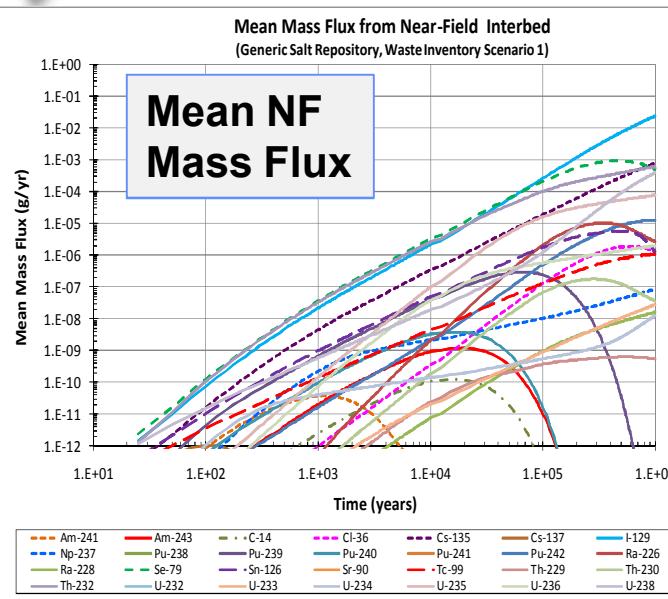
Radionuclide Mobilization and Transport

- Not consider WP containment barrier performance
 - Waste form degradation and RN release at the beginning of simulation
 - Treat the WP interior as porous medium of corrosion products of WP, internal components and waste form
- Fractional degradation rate model for waste form degradation
 - Commercial UNF: log-triangular: min = $10^{-8}/\text{yr}$, mode = $10^{-7}/\text{yr}$, max = $10^{-6}/\text{yr}$
 - Glass waste form: log-uniform: min = $3.4 \times 10^{-6}/\text{yr}$, max = $3.4 \times 10^{-3}/\text{yr}$
- Model the near-field as a large mixing cell
 - Not consider RN sorption on corrosion products and geologic materials
- Radio-element solubility for two redox conditions
 - Near-field brines (reducing condition)
 - Far-field brines (less reducing or slightly oxidizing condition)

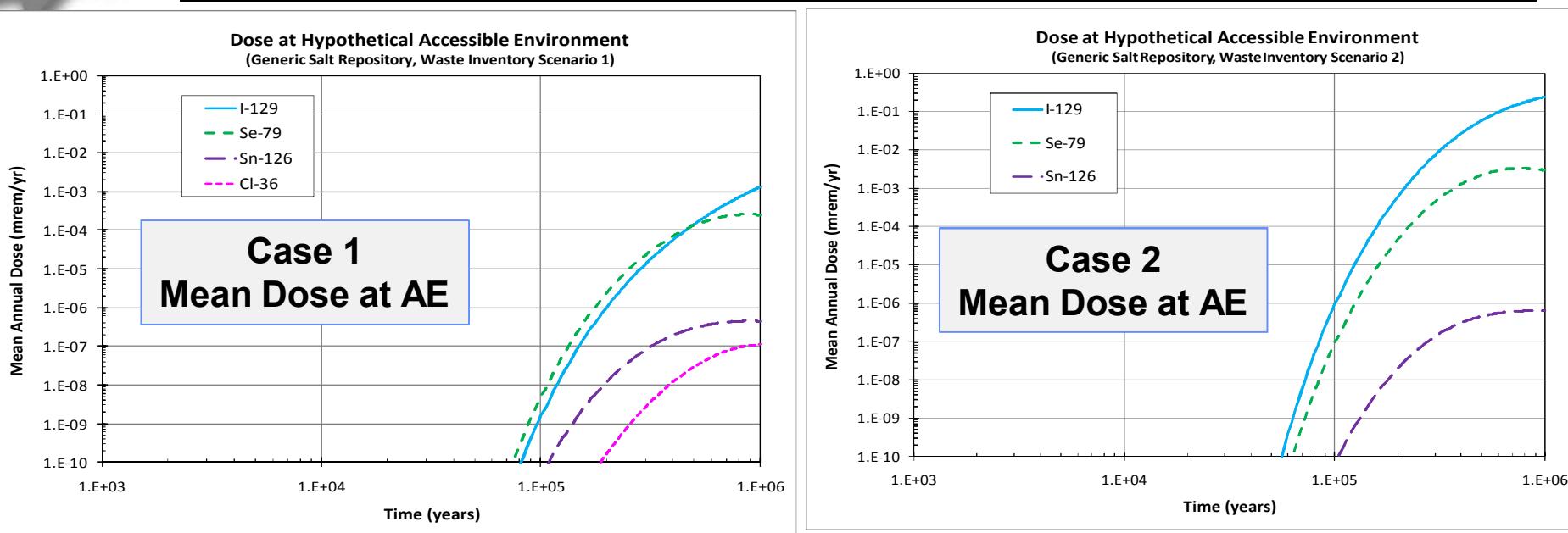
Radionuclide Mobilization and Transport

(continued)

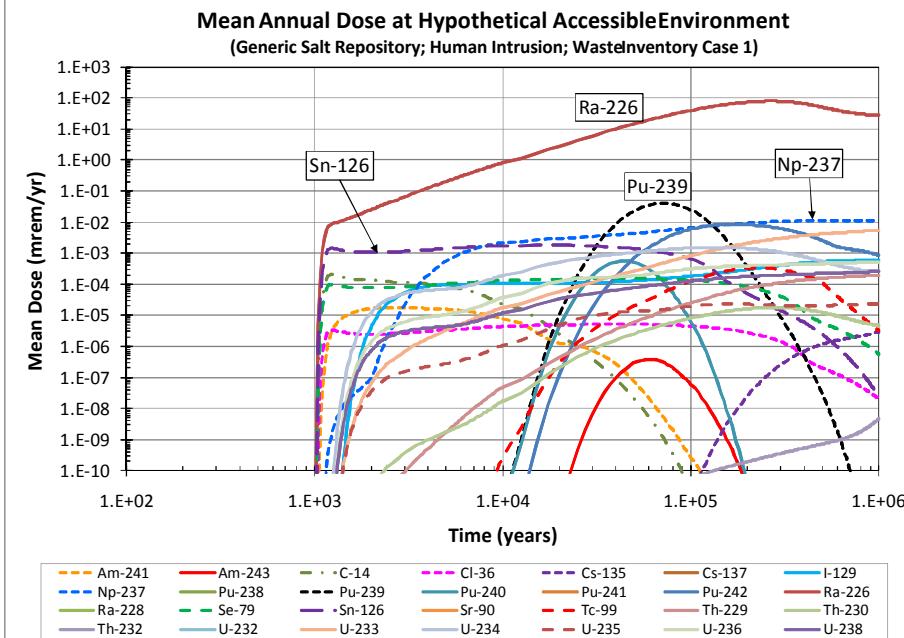
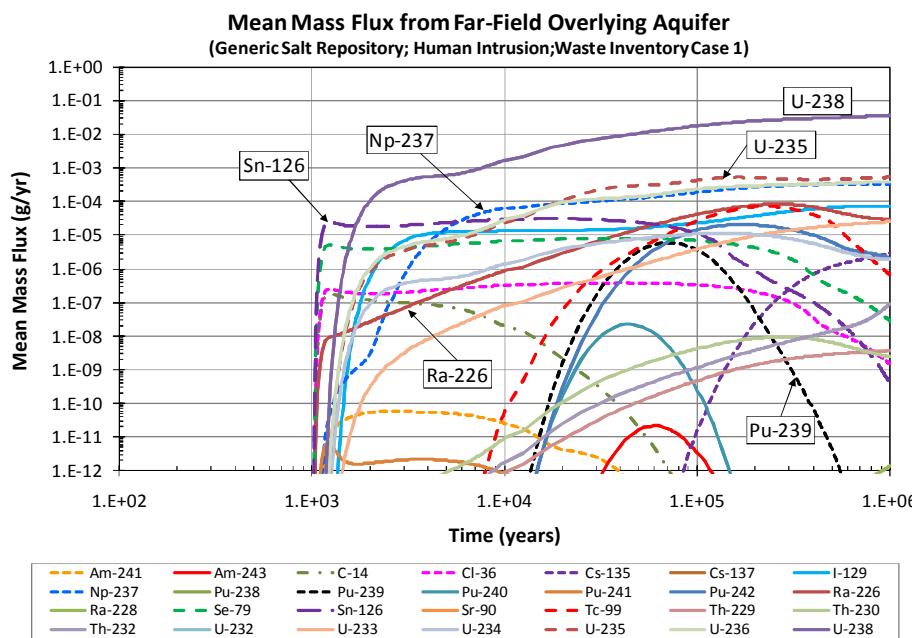
- RN sorption in the near-field and far-field transport
 - Linear equilibrium sorption (K_d) models for interbed and overlying carbonate aquifer
- Pore flow velocity in interbed
 - Log-uniform (10^{-8} m/yr, 2×10^{-2} m/yr)
- Pore flow velocity in overlying aquifer
 - Log-uniform (3.1×10^{-3} m/yr, 31 m/yr)
- Performance measure matrix
 - RN mass flux from major system components (e.g., near-field and far-field boundaries)
 - Mean dose at “hypothetical” accessible environment (AE)
 - 5 km down-gradient from the edge of repository
 - IAEA BIOMASS Example Reference Biosphere 1B (ERB1B) dose model
 - Dilution rate of 1×10^4 m³/yr in aquifer
 - Individual water consumption rate of 1.2 m³/yr

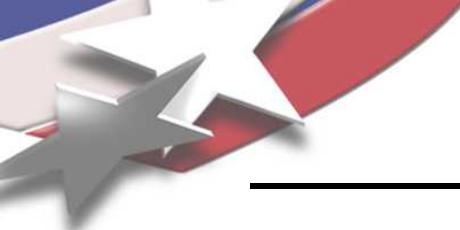
Major Conservative Bounding Assumptions


- Not consider RN release delays during initial dry-out period around the waste disposal area due to waste decay heat
 - Dry-out period depending on repository thermal loading, WP heat output characteristics, repository thermal-hydrologic response
- No containment barrier performance of waste package
- No RN sorption on corrosion products in the near-field mixing cell
- Continuous brine flow from waste disposal area to underlying interbed for the entire simulation period for Undisturbed Scenario
- Continuous steady-state upward brine flows through the borehole for the entire simulation period for Disturbed Scenario

Undisturbed Scenario: Waste Inventory Case 1



- RN transport greatly retarded in the far-field interbed by sorption
- Non-sorbing or weakly sorbing RNs (I-129, Se-79, Cl-36) with a significant inventory are released from the far-field interbed at noticeable rates
- I-129 is the dominant long-term dose contributor
 - unconstrained solubility
 - Extremely long half-life (~16 M yrs)
 - Significant inventory in the waste

Undisturbed Scenario: Waste Inventory Case 1 vs. Case 2

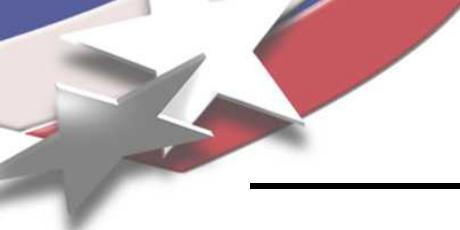


- Higher mean peak dose for Waste Inventory Case 2
 - Higher fission products inventory on a per-WP basis for Waste Inventory Case 2
 - Assumptions on the reprocessing HLW inventory
 - Degradation rate of the glass waste form (DOE HLW and reprocessing HLW) 2 to 3 orders of magnitude higher than the UNF degradation rate
 - Higher concentrations of soluble RNs (I-129, Se-79) in the near-field water for Waste Inventory Case 2
 - A smaller near-field water volume

Disturbed Scenario: Waste Inventory Case 1

- **Different mass release rate and dose histories from Undisturbed Scenario**
 - RNs transported advectively at much higher rates in the overlying aquifer than the interbed
- **Ra-226 is the dominant dose contributor**
 - Assume unconstrained solubility and non-sorbing behavior for Ra
 - Ra known to readily sorb on geologic materials and not mobile in groundwater
- **Higher doses for the actinides due to direct release into the overlying aquifer with higher water flow rates**

Summary and Conclusions


- Soluble, non-sorbing fission products (I-129, Se-79) are the major dose contributors
 - Uncertain solubility and sorption behavior of Se in chemically reducing geologic environments
- RN release pathways and scenarios are important to the response of a generic salt repository
 - Improved conceptual models that are more representative of a salt repository
- Need to evaluate impact of the conceptual model simplification and bounding conservative assumptions
 - Brine movement under thermal perturbation
 - WP performance
 - Geologic behaviors of key RNs (I, Se and Ra)

Future Work

- Develop thermal analysis tools for thermal loading and thermo-hydrologic response in generic salt repository, incorporating associated processes
 - Salt creep deformation and consolidation
 - Brine movement
- Improve near-field chemistry for generic salt repository environment
 - High ionic strength, elevated temperature, reducing condition
 - Solubility and sorption of RNs in near-field environments
- Flow and RN transport in generic interbed
- Degradation of WP, candidate waste forms and other EBS components in generic salt repository environment
 - Characterization and quantification of gases generated from corrosion in concentrated brine under reducing condition

Backup Slides

Near-Field and Far-Field Radionuclide Elemental Solubility

Near-field Radionuclide Elemental Solubility

Element	Distribution Type	Solubility (molal)
U	Triangular	4.89E-08 (min); 1.12E-07 (mode); 2.57E-07 (max)
Pu	Triangular	1.40E-06 (min); 4.62E-06 (mode); 1.53E-05 (max)
Am	Triangular	1.85E-07 (min); 5.85E-07 (mode); 1.85E-06 (max)
Np	Triangular	4.79E-10 (min); 1.51E-09 (mode); 4.79E-09 (max)
Th	Triangular	2.00E-03 (min); 4.00E-03 (mode); 7.97E-03 (max)
Tc	Log-Triangular	4.56E-10 (min); 1.33E-08 (mode); 3.91E-07 (max)
Sn	Triangular	9.87E-09 (min); 2.66E-08 (mode); 7.15E-08 (max)
C, Cl, Cs, I, Se, Sr	n/a	Unlimited solubility

Note: Source: Ref. 3.

- Chemically reducing conditions.
- Elements Ac, Cm, Nb, Pa, Pd, Ra, Sb, Zr are known to be solubility-limited, but are implemented as unlimited solubility in the near- and far-field model because their solubility calculations have not been completed.

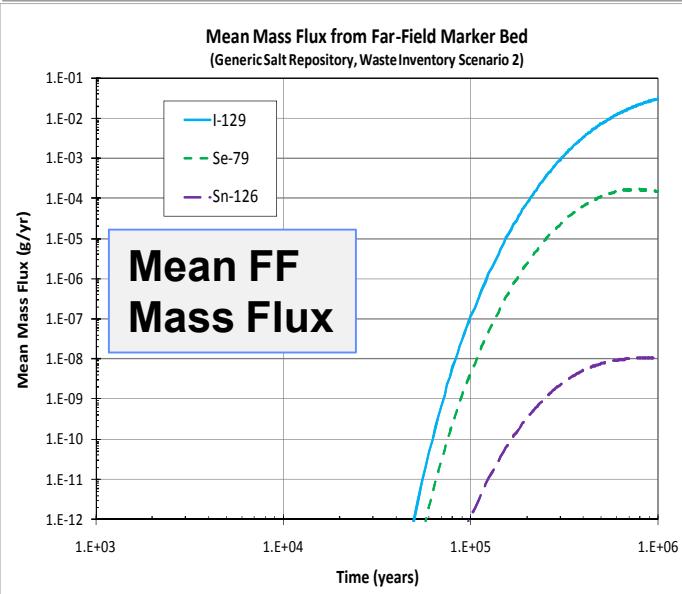
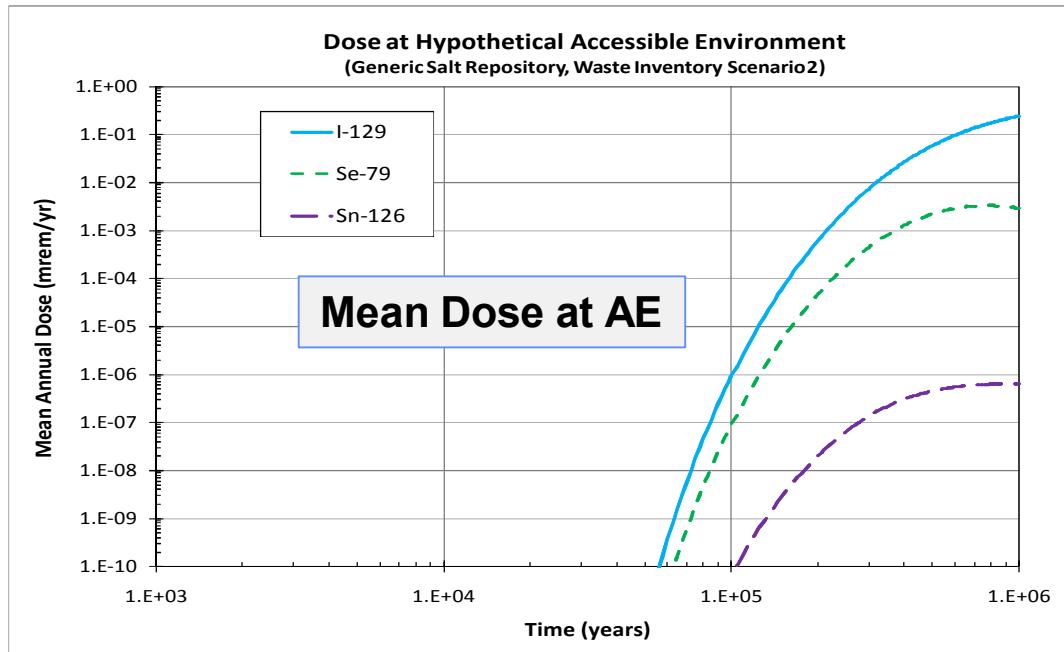
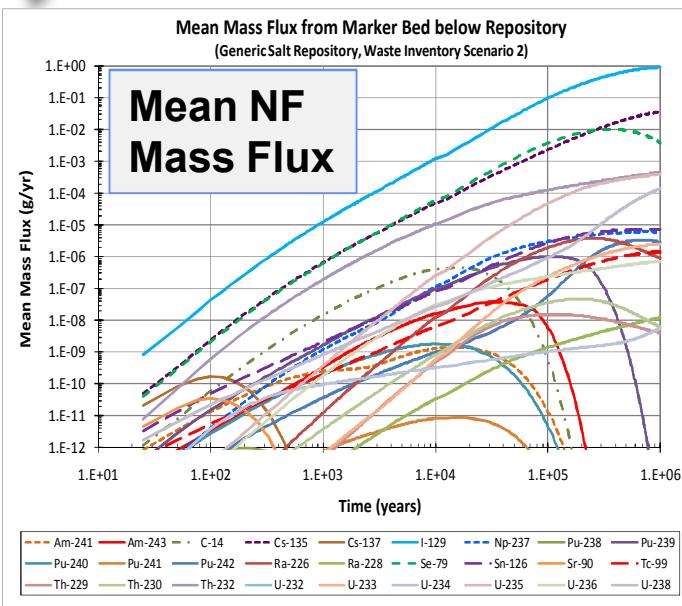
Far-field Radionuclide Elemental Solubility

Element	Distribution Type	Solubility (molal)
U	Triangular	9.16E-05 (min); 2.64E-04 (mode); 7.62E-04 (max)
Pu	Triangular	7.80E-07 (min); 2.58E-06 (mode); 8.55E-06 (max)
Am	Triangular	3.34E-07 (min); 1.06E-06 (mode); 3.34E-06 (max)
Np	Log-triangular	1.11E-06 (min); 1.11E-05 (mode); 1.11E-04 (max)
Th	Triangular	8.84E-06 (min); 1.76E-05 (mode); 3.52E-05 (max)
Sn	Triangular	1.78E-08 (min); 4.80E-08 (mode); 1.29E-07 (max)
C, Cl, Cs, I, Se, Sr, Tc	n/a	Unlimited solubility

Note: Source: Ref. 3.

- Chemically less reducing conditions than the near-field concentrated brines.
- Elements Ac, Cm, Nb, Pa, Pd, Ra, Sb, Zr are known to be solubility-limited, but are implemented as unlimited solubility in the near- and far-field model because their solubility calculations have not been completed.

Radionuclide Transport Parameters




Interbed Transport Parameters

Parameter	Distribution Type	Parameter Value
Aquifer thickness	Constant	4 m
Matrix porosity	Uniform	0.07 (min); 0.3 (max)
Bulk density	Constant	2800 kg/m ³
Matrix Tortuosity	Uniform	0.03 (min); 0.5 (max)
Brine flow rate upward through borehole (m ³ /yr)	Uniform	0.1 (min); 5.0 (max)
Aquifer water flow rate (m/yr)	Log-uniform	3.15E-03 (min); 3.15E+01 (max)
Longitudinal Dispersivity	Constant	10% of flow conduit length
Kd for Radioelements (ml/g):		
Uranium	Uniform	0.03 (min); 20 (max)
Plutonium	Log-uniform	20 (min); 1.0E+04 (max)
Neptunium	Log-uniform	1 (min); 200 (max)
Americium	Uniform	20 (min); 400 (max)
Thorium	Log-uniform	7.0E+02 (min); 1.0E+04 (max)
Technetium	Triangular	0 (min); 50 (mode); 100 (max)
Cesium	Triangular	40 (min); 500 (mode); 3000 (max)
Strontium	Triangular	5 (min); 13 (mode); 4.0E+04 (max)
Iodine	Uniform	0.01 (min); 100 (max)
Carbon, chlorine, Selenium & Tin	Constant	0 (no sorption)

Carbonate Aquifer Transport Parameters

Parameter	Distribution Type	Parameter Value
Thickness	Constant	1 m
Porosity	Constant	0.01
Density	Constant	2500 kg/m ³
Brine flow rate below repository (m/yr)	Log-uniform	1.0E-08 (min); 3.0E-02 (max)
Brine flow rate away from repository (m/yr)	Log-uniform	1.0E-08 (min); 2.0E-02 (max)
Longitudinal Dispersivity	Constant	10% of flow conduit length
Kd for Radioelements (ml/g):		
Uranium	Uniform	0.2 (min); 1 (max)
Plutonium	Uniform	70 (min); 100 (max)
Neptunium	Uniform	1 (min); 10 (max)
Americium	Uniform	25 (min); 100 (max)
Thorium	Uniform	100 (min); 1000 (max)
Technetium	Uniform	0 (min); 2 (max)
Cesium	Uniform	1 (min); 20 (max)
Strontium	Uniform	1 (min); 80 (max)
Carbon, chlorine, Selenium & Tin	Constant	0 (no sorption)

Undisturbed Scenario: Waste Inventory Case 2

