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'

}‘ Introduction

 Salt repository is one of four generic disposal system
environment (GDSE) options currently under study by U.S.
DOE

— Stable geology
— Chemically reducing condition
— Self-healing by creep deformation
— Limited water availability and movement
* The salt GDSE study is to support the development of a

long-term strategy for geologic disposal of high-level
radioactive waste in a salt formation

 The immediate goal is to develop the necessary modeling
tools to evaluate and improve understanding on the
repository system response and relevant processes
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y Conceptual Model

« Saturated, reducing condition
Cutting, Caving, Spalling — Assume repository in a bedded salt
formation below a carbonate aquifer
 Isothermal condition at ambient
— T»Overlaying carbonateaquifer tem peratu re
Borehole penetrating * Undisturbed Scenario

" Nearfield/farieldinterface _ i
for humanintrusion — RNs released into and transported in an

interbed (1 m thick) below repository
Satbed o Dijsturbed Scenario

— “stylized” human intrusion scenario
— A single borehole penetration at 1,000

Interbed —_— —_— years
— Sample the number of affected waste

D S packages (WPs) (between 1 and 5)
Q Brine pockets — RNs from affected WPs released directly
to overlying aquifer by pressurized
brines with steady-state flow rates

— Not consider potential dose impacts of
waste brought up by drilling activities
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*‘ Waste Inventories and Scenarios

- Waste types

— Commercial used nuclear fuel (UNF) (140,000 MTU)

« Convert the total inventory to equivalent pressurized water
reactor (PWR) inventory for simplification

* 32,154 UNF WPs (10 assemblies per WP)
* Isotope inventory based on the PWR UNF
— 60 GWd/MTHM burn-up
—4.73% enrichment
— 30 yrs after discharge from reactor

— Vitrified existing DOE high-level radioactive waste (HLW)
* 5,003 WPs (5 canisters per WP)
— Vitrified “hypothetical” reprocessing HLW of commercial UNF
* 99% recovery of U and Pu from commercial UNF
« Assume all others remain in the waste stream
« Assume the same RN mass and isotope inventory per canister as

DOE HLW
* 4,055 WPs (5 canisters per WP) Sandi
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'
— ﬂaste Inventories and Scenarios
- (continued)

« Assume a square repository footprint
— Spacing between emplacement tunnels: 25 m
— Spacing between WPs: 6 m

* Waste inventory cases for Undisturbed Scenario

— Case 1: UNF plus DOE HLW
« A square repository footprint with a side of 3,270 m

— Case 2: DOE HLW plus reprocessing HLW
« A square repository footprint with a side of 1,615 m

* Waste inventory cases for Disturbed Scenario

— Case 1: assume only UNF WPs affected
— Case 2: assume only DOE HLW WPs affected
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Radionuclide Mobilization and Transport

* Not consider WP containment barrier performance

— Waste form degradation and RN release at the beginning of
simulation

— Treat the WP interior as porous medium of corrosion products of WP,
internal components and waste form

* Fractional degradation rate model for waste form degradation
— Commercial UNF: log-triangular: min = 10-8/yr, mode = 10-"/yr, max =
10-5/yr
— Glass waste form: log-uniform: min = 3.4x10-¢/yr, max = 3.4x10-3/yr
* Model the near-field as a large mixing cell

— Not consider RN sorption on corrosion products and geologic
materials

* Radio-element solubility for two redox conditions
— Near-field brines (reducing condition)
— Far-field brines (less reducing or slightly oxidizing condition)
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'
\‘ ﬂadionuclide Mobilization and Transport
—= (continued)

* RN sorption in the near-field and far-field transport

— Linear equilibrium sorption (Kd) models for interbed and overlying
carbonate aquifer

* Pore flow velocity in interbed
— Log-uniform (10-2 m/yr, 2x10-2 m/yr)

* Pore flow velocity in overlying aquifer
— Log-uniform (3.1x10-3 m/yr, 31 m/yr)

* Performance measure matrix

— RN mass flux from major system components (e.g., near-field and far-
field boundaries)

— Mean dose at “hypothetical” accessible environment (AE)

« 5 km down-gradient from the edge of repository
- |IAEA BIOMASS Example Reference Biosphere 1B (ERB1B) dose model
* Dilution rate of 1x104 m3/yr in aquifer

- Individual water consumption rate of 1.2 m3/yr
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}. ajor Conservative Bounding Assumptions

* Not consider RN release delays during initial dry-out period
around the waste disposal area due to waste decay heat
— Dry-out period depending on repository thermal loading, WP

heat output characteristics, repository thermal-hydrologic
response

* No containment barrier performance of waste package

* No RN sorption on corrosion products in the near-field
mixing cell

» Continuous brine flow from waste disposal area to

underlying interbed for the entire simulation period for
Undisturbed Scenario

- Continuous steady-state upward brine flows through the
borehole for the entire simulation period for Disturbed
Scenario
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Undisturbed Scenario: Waste Inventory Case 1

Mean Mass Flux from Near-Field Interbed
(Generic Salt Repository, Waste Inventory Scenario 1)
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* RN transport greatly retarded in the far-field
interbed by sorption

* Non-sorbing or weakly sorbing RNs (1-129, Se-79,
CI-36) with a significant inventory are released from
the far-field interbed at noticeable rates

* 1-129 is the dominant long-term dose contributor
— unconstrained solubility
— Extremely long half-life (~16 M yrs)

— Significant inventory in the waste San
andia

National

Laboratories

10

M)



Y

Mean Annual Dose (mrem/yr)

Waste Inventory Case 1 vs. Case 2

Undisturbed Scenario:

Dose at Hypothetical Accessible Environment
(Generic Salt Repository, Waste Inventory Scenario 1)
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Dose at Hypothetical Accessible Environment
(Generic SaltRepository, WasteInventory Scenario 2)

* Higher mean peak dose for Waste Inventory Case 2

— Higher fission products inventory on a per-WP basis for Waste

Inventory Case 2
« Assumptions on the reprocessing HLW inventory

— Degradation rate of the glass waste form (DOE HLW and reprocessing
HLW) 2 to 3 orders of magnitude higher than the UNF degradation rate

— Higher concentrations of soluble RNs (1-129, Se-79) in the near-field

water for Waste Inventory Case 2
« A smaller near-field water volume
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Mean Mass Flux (g/yr)

‘ Disturbed Scenario: Waste Inventory Case 1

Mean Mass Flux from Far-Field Overlying Aquifer
(GenericSalt Repository; Human Intrusion;Waste InventoryCase 1)

Mean Annual Dose at Hypothetical AccessibleEnvironment
(Generic Salt Repository; Human Intrusion; Wastelnventory Case 1)
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» Different mass release rate and dose histories from Undisturbed Scenario

 Ra-226 is the dominant dose contributor

— RNs transported advectively at much higher rates in the overlying aquifer than
the interbed

— Assume unconstrained solubility and non-sorbing behavior for Ra
— Ra known to readily sorb on geologic materials and not mobile in groundwater

« Higher doses for the actinides due to direct release into the overlying

aquifer with higher water flow rates
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-~
? Summary and Conclusions

* Soluble, non-sorbing fission products (I1-129, Se-79) are the
major dose contributors

— Uncertain solubility and sorption behavior of Se in chemically
reducing geologic environments

* RN release pathways and scenarios are important to the
response of a generic salt repository

— Improved conceptual models that are more representative of a
salt repository

* Need to evaluate impact of the conceptual model
simplification and bounding conservative assumptions
— Brine movement under thermal perturbation
— WP performance
— Geologic behaviors of key RNs (I, Se and Ra)
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} Future Work

* Develop thermal analysis tools for thermal loading and
thermo-hydrologic response in generic salt repository,
incorporating associated processes

— Salt creep deformation and consolidation
— Brine movement

* Improve near-field chemistry for generic salt repository
environment
— High ionic strength, elevated temperature, reducing condition
— Solubility and sorption of RNs in near-field environments
* Flow and RN transport in generic interbed

* Degradation of WP, candidate waste forms and other EBS
components in generic salt repository environment

— Characterization and quantification of gases generated from
corrosion in concentrated brine under reducing condition
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Near-Field and Far-Field
Radionuclide Elemental Solubility

Far-field
Radionuclide Elemental Solubility
Element Distribution Type Solubility (molal)
9.16E-05 (min);

U Triangular 2.64E-04 (mode);
7.62E-04 (max)
7.80E-07 (min);

Pu Triangular 2.58E-06 (mode);
8.55E-06 (max)
3.34E-07 (min);

Am Triangular 1.06E-06 (mode);
3.34E-06 (max0
1.11E-06 (min);

Np Log-triangular 1.11E-05 (mode);
1.11E-04 (max)
8.84E-06 (min);

Th Triangular 1.76E-05 (mode);
3.52E-05 (max)
1.78E-08 (min);

Sn Triangular 4.80E-08 (mode);
1.29E-07 (max)
C,Cl, Cs, |, - .
Se. Sr. Tc n/a Unlimited solubility

Near-field
Radionuclide Elemental Solubility
Element Distribution Type Solubility (molal)
4.89E-08 (min);

U Triangular 1.12E-07 (mode);
2.57E-07 (max)
1.40E-06 (min);

Pu Triangular 4.62E-06 (mode);
1.53E-05 (max)
1.85E-07 (min);

Am Triangular 5.85E-07 (mode);
1.85E-06 (max)
4.79E-10 (min);

Np Triangular 1.51E-09 (mode);
4.79E-09 (max)
2.00E-03 (min);

Th Triangular 4.00E-03 (mode);
7.97E-03 (max)
4.56E-10 (min);

Tc Log-Triangular 1.33E-08 (mode);
3.91E-07 (max)
9.87E-09 (min);

Sn Triangular 2.66E-08 (mode);
7.15E-08 (max)

C, Cl, Cs, . .
| Se, Sr n/a Unlimited solubility

Note: Source: Ref. 3.

- Chemically reducing conditions.

- Elements Ac, Cm, Nb, Pa, Pd, Ra, Sb, Zr are known to be solubility-
limited, but are implemented as unlimited solubility in the near- and
far-field model because their solubility calculations have not been
completed.

Note: Source: Ref. 3.

- Chemically less reducing conditions than the near-field concentrated
brines.

- Elements Ac, Cm, Nb, Pa, Pd, Ra, Sb, Zr are known fo be solubility-
limited, but are implemented as unlimited solubility in the near and far-
field model because their solubility calculations have not been
completed.
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V
4 ' Radionuclide Trans

port Parameters

Interbed
Transport

Parameters

Parameter Distribution Parameter Value
Type
Aquifer thickness Constant 4m
. . . 0.07 (min);
Matrix porosity Uniform 0.3 (max)
Bulk density Constant 2800 kg/m®
. . . 0.03 (min);
Matrix Tortuosity Uniform 0.5 (max)
Brine flow rate upward .
through borehole Uniform 0.1 (min);
3 5.0 (max)
(m7lyr)
Aquifer water flow rate Log-uniform 3.15E-03 (min);
(miyr) 9 3.15E+01 (max)
Longitudinal 10% of flow conduit
: s Constant
Dispersivity length

Kd for Radioelements (ml/g):

Carbonate Aquifer
Transport Parameters
Parameter Distribution Parameter Value
Type
Thickness Constant Tm
Porosity Constant 0.01
Density Constant 2500 kg/m®
Brine flow rate below Log-uniform 1.0E-08 (min);
repository (m/yr) g 3.0E-02 (max)
Brine flow rate away Log-uniform 1.0E-08 (min);
from repository (m/yr) 9 2.0E-02 (max)
Longitudinal 10% of flow
Dispersivity Constant conduit length

Kd for Radioelements (ml/g):

. . 0.03 (min);
Uranium Uniform 20 (max)

. . 20 (min);
Plutonium Log-uniform 1.0E+04 (max)
Neptunium Log-uniform 1 (min);

200 (max)
- . 20 (min);
Americium Uniform 400 (max)
) . 7.0E+02 (min);
Thorium Log-uniform 1.0E+04 (max)
0 (min);
Technetium Triangular 50 (mode);
100 (max)
40 (min);
Cesium Triangular 500 (mode);
3000 (max)
5 (min);
Strontium Triangular 13 (mode);
4.0E+04 (max)
. . 0.01 (min);
lodine Uniform 100 (max)
Carbon, chlorine, Constant 0 (no sorption)

Selenium & Tin

Uranium Uniform ?(zrrsran):;])
Plutonium Uniform :80“(":;2)()
Neptunium Uniform 10(r(nrlr?e3x)
Americium Uniform fgo(mx)
oo | 8557
Technetium Uniform g Em:‘)z)
Cesium Uniform ;o(mx)
Strontium Uniform 6130(r(nrlr:2x)
Carbon, chlorine, Constant 0 (no sorption)

Selenium & Tin

17

Sandia
National
Laboratories



Undisturbed Scenario: Waste Inventory Case 2

Mean Mass Flux from Marker Bed below Repository
(GenericSalt Repository, Waste Inventory Scenario 2)
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