

SAND2011-2947C

Survey of Transport Airplane Structural Repairs and Alterations: Survey & Teardown Final Results

2011 Aircraft Airworthiness & Sustainment Conference

April 20, 2011

**Michel D. Bode¹, Walter M. Sippel², Douglas Ostgaard², and
John G. Bakuckas³**

¹ Sandia National Laboratories

Airworthiness Assurance NDI Validation Center (AANC)

² Transport Standards Staff

Airframe and Cabin Safety Branch, ANM-115

Federal Aviation Administration

³ William J. Hughes Technical Center

Airworthiness Assurance Branch, AJP-6360

Federal Aviation Administration

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Acknowledgements

***Ciji Nelson, Justin Newcomer, Todd Sokol,
Mark Marrujo, Josh DeReu – Sandia
National Labs***

**Airplane operators that gave us access to
their airplanes for field surveys.**

**Airplane salvage operators that provided
teardown specimens.**

**FAA William J. Hughes
Technical Center**

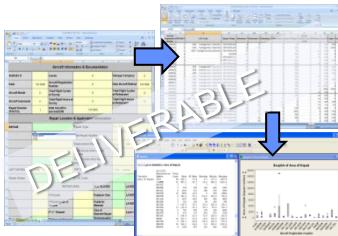
**Sandia
National
Laboratories**

Presentation Outline

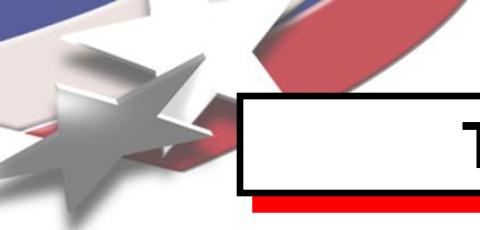
- **Widespread Fatigue Damage (WFD) Overview**
- **WFD Rule, Public Comment & Need for Research to Support Rulemaking**
- **Repair, Alteration and Modification (RAMs) Survey Work Plan Tasking**
- **Review of Prior AAWG Survey & Existing Data**
- **Field Survey of Active & Retired Airplanes**
- **Teardown Inspection of Retired RAMs**
 - **Review of Individual Teardown Specimens**
- **FAA Estimates - Number of RAMs in US Domestic Fleet**
- **Risk Assessment - Based on RAMs Estimates & Teardown Inspection Findings to Support Potential WFD Rulemaking**

Technical Overview

- Widespread Fatigue Damage (WFD) = Is the simultaneous presence of cracks at multiple structural locations that are of sufficient size and density that the structure will no longer meet the residual strength requirements of 14 CFR 25.571(b).
- Sources of Widespread Fatigue Damage are:
 - Multiple Site Damage (MSD) - the simultaneous presence of fatigue cracks that grow together in the same structural element (e.g. fatigue cracking in fuselage skin at lap joint multiple adjacent fastener holes).
 - Multiple Element Damage (MED) - the simultaneous presence of fatigue cracks in similar adjacent structural elements (e.g. fatigue cracking in multiple adjacent stringer to frame attach clips).

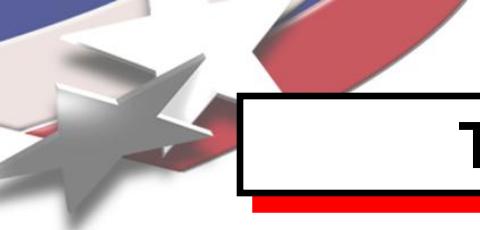

Overview of WFD Rule & RAMs Survey

- Widespread Fatigue Damage (WFD) notice of proposed rulemaking (NPRM), April 2006.
 - Preclude catastrophic failure of primary airframe structures in transport category airplanes.
 - Requirements included establishing Limits of Validity (essentially life limits) for primary airplane structures and repairs, alterations or modifications (RAMs) to primary airframe structures.
- Dec 2008 public meeting elicited changes to NPRM, including eliminating most RAMs from the WFD final rule. However, FAA wanted data to ensure RAMs would not lead to WFD.
- AANC was tasked with:
 - Gathering and providing field survey data on the occurrence of RAMs in the US domestic transport fleet to support FAA rulemaking determinations.
 - Harvesting RAMs from retired airplanes and performing teardown inspections looking for multi-site, multi-element, and especially widespread fatigue damage.
- FAA preliminary report internally issued in September 2010 and a full data review and final report estimated complete in Dec 2011.
- Aging Airplane Program: WFD; Final Rule was published 15 November 2010, eliminated requirement to establish Limits of Validity for RAMS except when mandated by AD and it still requires OEMs to establish life limits on the baseline airplane structure. Operators must incorporate new limits into maintenance programs.



Sandia/AANC Project Tasking

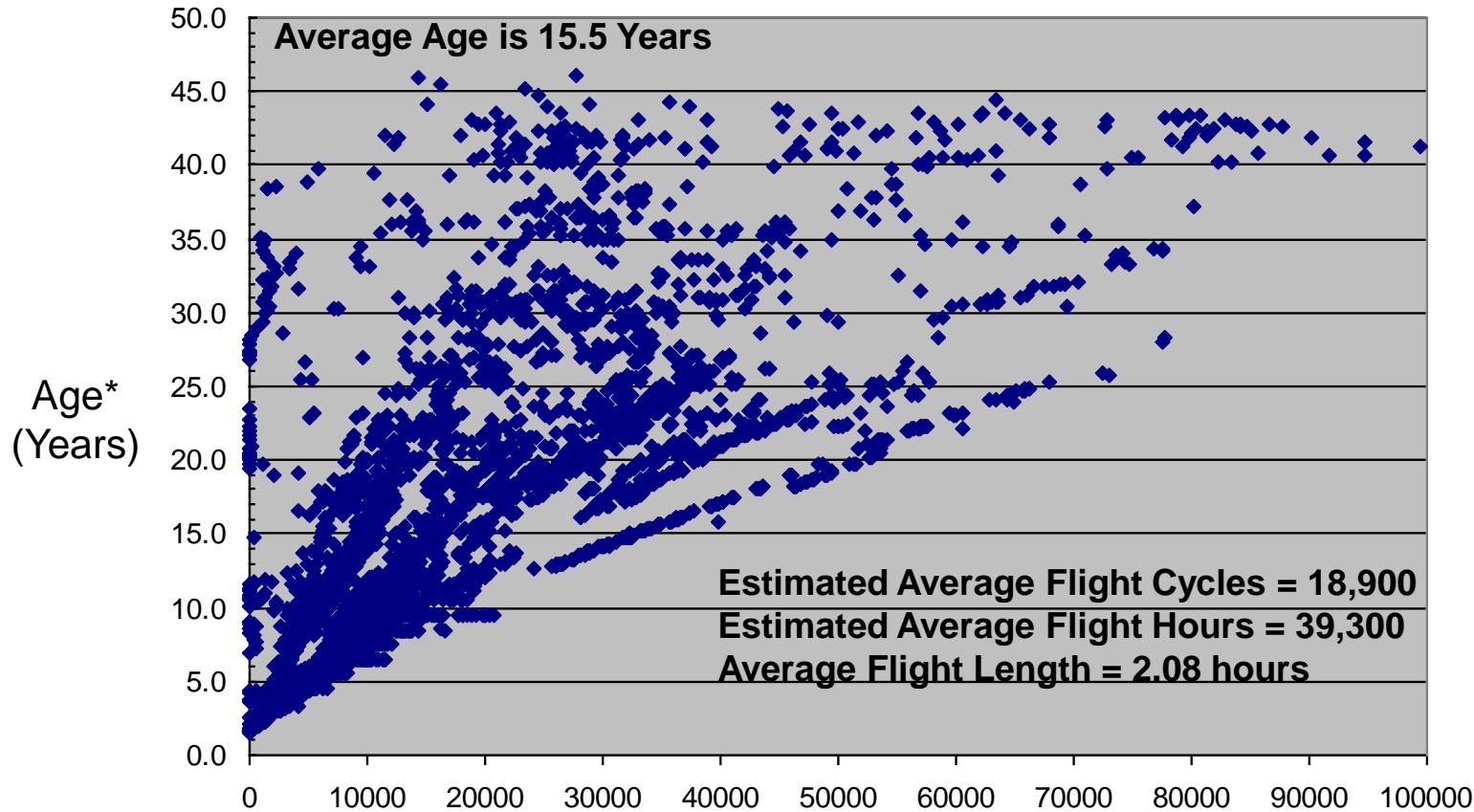
FAA William J. Hughes
Technical Center


TASK	STATUS
1. Work Plan and Review Prior AAWG Survey	Complete
2. Survey Aviation Safety Data (1985 to present)	Complete
3. Field Survey of Repairs, Alterations & Modifications (mostly In-Service Airplanes)	Complete
4. Teardown Inspections of Retired Repairs, Alterations & Modifications	Almost Complete (Estimate 2 months more)
5. Documentation and Database Development a. Field Survey b. Teardown	a. Field Survey Database Complete b. Teardown Database Almost Complete

Task 1. Develop Detailed Work Plan

- With removal of RAMs from WFD Rule NPRM in 2008, the FAA wanted data to support any final determinations and/or supplemental rulemaking regarding the establishment of Limits of Validity pertaining to RAMs.
- Purpose of the RAMs survey was to estimate the extent of RAMs currently flying in US domestic transport airplane fleet and estimate the risk of WFD occurring due to the presence of RAMs.
- Input from FAA Fatigue & Damage Tolerance Specialists, FSDO Experts on RAMs, Technical Center Structural Integrity Researchers, and Aircraft Certification Office Transport Standards Staff and other FAA experts was sought and incorporated into the work plan.

Task 2. Review Existing Safety Data


- Survey Aviation Safety Database Records
- Collected and examined over 440,000 individual SDR records
- Little useful information gained due to incomplete SDR record fields
- SDR's get filed as required, but most mechanics only complete the comments fields.
- Review of Airworthiness Directives and Service Bulletins to guide Field Survey and Teardown Specimen collection activities

Task 3. Field Survey of RAMs

US Fleet** of 5014 Aircraft

Transport Category, Part 121 & 129, above 75 kip MTOW

Field Survey Preliminary Findings

- Data used to estimate the numbers, sizes, locations, ages of RAMs in the US Domestic Transport Fleet and estimate risk of WFD.
- No evidence of WFD on properly designed and installed RAMs
- Some evidence of poor workmanship (less than 1% of RAMs)

Summary Statistics	
Total Number of Airplanes	154
Total Number of RAMS	2584

Average Age at Survey (Months)	301.22
Average Number of Flight Hours	73,198.40
Average Number of Flight Cycles	33,375.00
Average Flight Hours per Cycle	2.99

Average Number RAMS per Airplane	16.78
Average Size RAM (Sqin)	303.46
Number of RAMS with Dates	555
Average Age of RAMS at Survey (Months)	61.78

Nearest Structure Distribution	
Repair	479
Door	819
Window	158
Major Joint or Splice	634
Gear Mounts or Hard Points	70
Cutout in Structure	54
Control Surface Attachment	21
Vertical or Horizontal Tail Attachments	31
Blank	356

Repair Category Distribution	
UNK	671
A	513
B	1367
C	71

Workmanship/Condition Distribution	
No Internal Access	1873
1	419
2	212
3	62
4	10
5	12

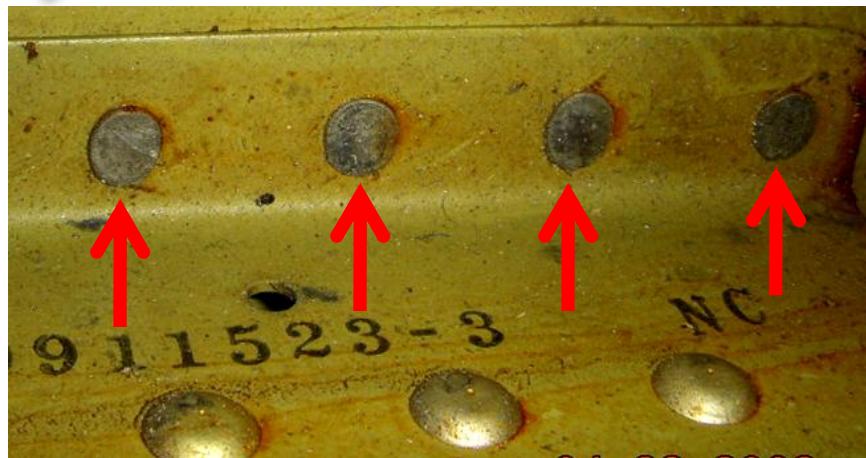
Root Cause Distribution	
Unknown	1287
Damage	808
Structural Modification	171
Antenna Modification	112
Corrosion	67
Airworthiness Directive	23
Lightning Strike	18

Repair Location Distribution	
FUSELAGE	1569
WING	161
PRESSURIZED DOOR	85
FRAME SUPPORT	398
Press Bulkhead AFT	45
Press Bulkhead FWD	25
H STAB	7
Blank	319

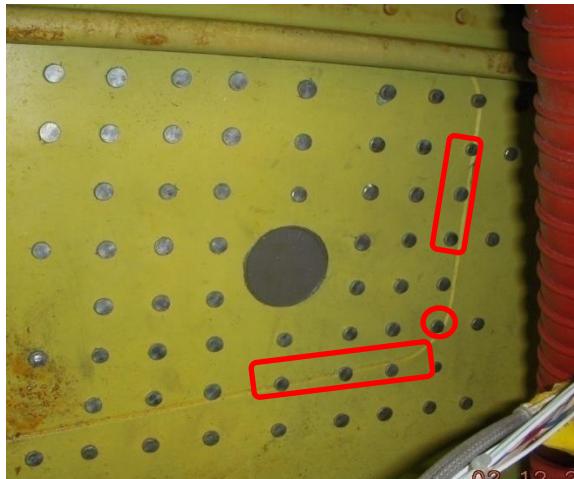
Replacement Repair Distribution	
Yes	106
No	603
UNK	1913

Reason For Replacement	
ADDITIONAL DAMAGE	8
Antenna Modification	9
Category "B" to "A"	5
EA R&R EXISTING REPAIR	7
FURTHER CRACKING	13
INCORRECT INSTALLATION	5
NO DOCUMENTATION	3
Not per FAA approved repair data	7
RAP	2
Replacement of Temp Repair	9
Other	8
UNK	1934
NA	603

Repair Area (Sqin) Distribution	
A (0-100)	1101
B (100-500)	1095
C (500-1,000)	183
D (1,000-2,000)	86
E (2,000-10,000)	55
F (>10,000)	2
Blank	100



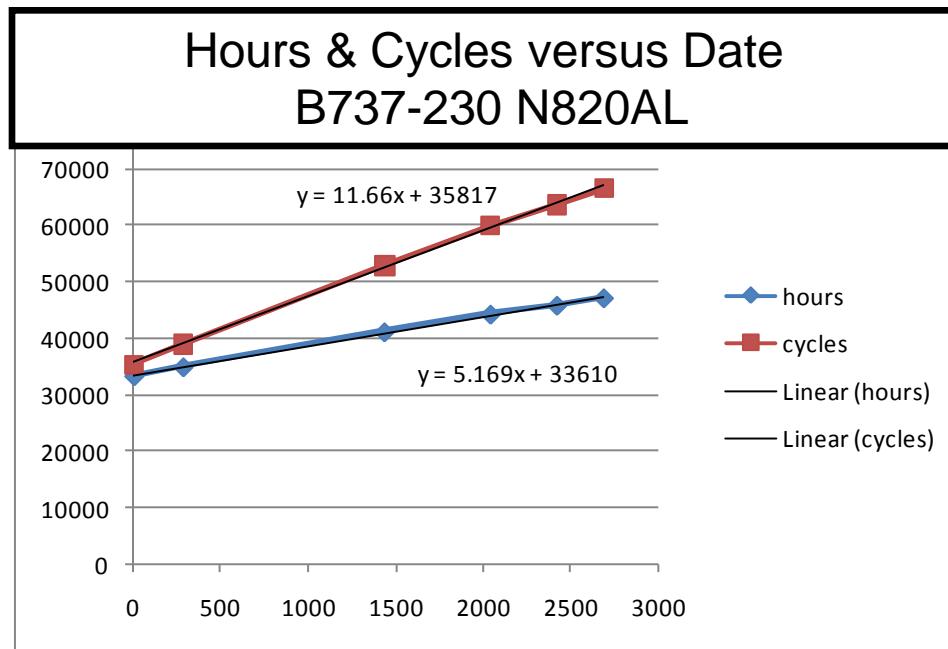
FAA William J. Hughes
Technical Center



Examples of Poor Workmanship

Fasteners installed in Chem-mil skin step

Missing filler and field fasteners required per repair drawing



FAA William J. Hughes
Technical Center

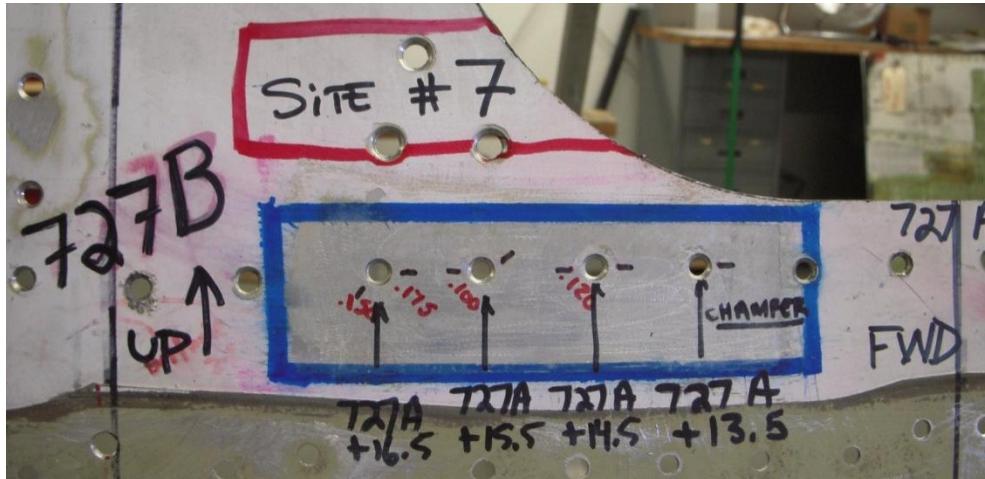
Task 4. Collect, Teardown & Inspect Retired RAMs

- 25 different specimens identified and acquired along with maintenance records
- 12 different airplanes across all models and many different operators.
- Teardown protocols followed including layer separation, eddy current inspection of all open fastener holes and some wide area scanning.
- Extensive photo documentation and collection of all fatigue cracks found.

Full maintenance records with hours and cycles not always available.

date	hours	cycles
4/30/1997	33459	35509
2/5/1998	35051	39058
4/1/2001	41258	53009
11/29/2002	44400	60171
12/14/2003	45980	63764
9/7/2004	47304	66701
retired		86436

Teardown Specimens


Item #	Airplane	Airplane Model	Component Description	Approx. Location	Flight Hours/Cycles	Teardown Status	NDI Results Baseline Structure	NDI Results Repair Structure
1	N820AL	B737-200	Lap Joint Window Belt Replacement Doubler RIGHT	BS 727-907, Str 9L-15R	35,255 FC	Complete	11 sites w / 16 cracks	2 clips w / 3 cracks
2	N820AL	B737-200	Lap Joint Window Belt Replacement Doubler LEFT	BS 727-907, Str 9L-15L	35,255 FC	Complete	No Indications	No indications
3	N820AL	B737-200	Lap Joint Replacement Doubler	BS 540-907, Str 4L	35,255 FC	Complete	No Indications	No indications
4	N820AL	B737-200	Lap Joint Replacement Doubler	BS 540-907, Str 4R	35,255 FC	Complete	No Indications	No indications
5	N600GC	DC-10-30F	STC Conversion Cargo Door Pax to Freighter	BS 575-840, Str 5L-31L	29,557 FH/7180 FC	Complete	No Indications	No indications
6	N810EA	B727-200	STC Conversion Cargo Door Pax to Freighter	BS 450-700, Str 1-20L	Date 6 Dec 1993	In Process	TBD	TBD
LR1	N642NW	B747-200	Fuselage LH Aft Lower Lap Repair	BS 1700-1840, Str 38L-42L	25181/3777	Complete	No Indications	No Indications
LR2	N634US	B747-200	Fuselage Skin, APB Web + T-chord	BS 2360, Str 1-22R	Approx Date Mar 2000	Complete	No Indications	No Indications
LR3	N920UW	B757-200	Fuselage Fwd Skin	BS 560-680, Str 12L-17L	3 RAMs FH/FC Known	Complete	No Indications	No Indications
LR4	N226KW	A300-B4-203	Wing to Fuselage SB53-265 Repair, hole "I" FR47	FR 47 LH, Lower Aft Wing S	15821/10031	In Process	3 Known Cracks	TBD
LR5	N226KW	A300-B4-203	Lap Joint Repair Doubler below window belt RH	FR 34-41, Str 18R	Searching Records	In Process	TBD	TBD
LR6	N226KW	A300-B4-203	Lap Joint Repair Doubler at floor line RH	FR 36-44, Str 28R	Searching Records	Complete	No Indications	No Indications
LR7	N226KW	A300-B4-203	Skin Doubler Gross Wt Increase Mods LH & RH	Aft of MLG bay, Below aft v	Searching Records	TBD	TBD	TBD
LR8	N820AL	B737-200	Fuselage Skin combines 4 RAMs	BS 727-727B, Str 15L-19L	16327FC	Complete	1 site w / 7cracks in 4 holes	No Indications
LR9	N820AL	B737-201	Fuselage Skin combines 2 RAMs at Potable Water P	BS 927-987, Str 20L-27L	33427FC	Complete	No Indications	No Indications
LR10	N820AL	B737-202	Lower Aft Fuselage Skin Repair Doubler	BS 834-899 , Str 25L-25R	32989FC	Complete	No Indications	1 cracked stringer clip
LR11	N920UW	B757-200	Cab Skin Repair, 4 way splice	around BS 310. LH side	Searching Records	Complete	No Indications	No Indications
LR12	N918UW	B757-200	Fwd Fuselage Skin Repair below window belt lap j	BS 570-630, Str 14L-19L	Approx 11,500 FC	Complete	No Indications	No Indications
LR13	N942F	DC-9-30	Fuselage Skin Repair Fwd LH Wing under fairing	BS 760-813, Str 14L-22L	approx 2000 FH/FC?	Complete	No Indications	No Indications
LR14	VT-EY1	A320	Fuselage LH Aft of L3 Cabin Door 4 RAMs in one		have records	In Process	TBD	TBD
LR15	N327NW	A320-200	Fuselage skin at FWD RH Avionics Access Door &	FR18 & FR24, STR33RH & S	12350/5997	Complete	No Indications	No Indications
LR16	N601DL	B757-200	Fuselage Fwd Lwr VHF Antenna Skin	BS 715-740, Str 28L-28R	16984/6929	Complete	No Indications	No Indications

FAA William J. Hughes
Technical Center

Teardown Inspection Process

FAA William J. Hughes
Technical Center

B737-200 Fuselage Sections (2) Window Belt Replacement Lap Joint Modification Specimen 1&2

- Teardown and Inspection complete
- BS-727-907, S-10L-14L & S-10R-14R
- Modified structure has 35255 cycles since installation and 86436 total cycles at retirement

B737-200 Fuselage Sections (4) Crown Skin Lap Joint Modification Specimens 3 & 4

- Teardown and Inspection complete
- Modified structure has 35255 cycles since installation and 86436 total cycles at retirement
- BS-540-907 S-4L & S-4R

FAA William J. Hughes
Technical Center

 Sandia
National
Laboratories

B737-230 fuselage sections – Skin Repair Patch LR8

- Fuselage skin repairs at BS-747, S-14L-19L
- Repaired at 70109 cycles (est.)
- Airplane retired at 86436 total cycles
- 16327 Cycles (est.) on repaired structure
- Repair of skin crack at BS-727A+14 above S-17L.
- Repair incorporates 2 existing repairs which were removed.

FAA William J. Hughes
Technical Center

B737-230 fuselage sections – Skin Repair Patch LR9

- Large fuselage skin repair at BS-967, S-25L forward side of water panel cutout
- Repaired at 53009 cycles (4/18/01)
- Airplane retired at 86436 total cycles
- 33427 Cycles on repaired structure
- Two adjacent repairs
- Older, small repair nearby at B- 942 S-24L (5/30/00) (estimated 48946 cycles at repair)

FAA William J. Hughes
Technical Center

B737-230 fuselage sections – Skin Repair Patch LR10

- Fuselage skin repairs at BS-807-867, S-26L-26R
- Repaired at 53447 cycles (est.)
- Airplane retired at 86436 total cycles
- 32989 Cycles on repaired structure (est.)
- Multiple co-located repairs
- Larger Repair possibly encompasses older small repair

FAA William J. Hughes
Technical Center

B727 Passenger to Freight STC Conversion Cargo Door

- Passenger to Freight STC conversion Cargo Door
- Pemco STC and install – Full data package on hand
- Airplane registered as both N810EA and N936PG
- Specimen 5

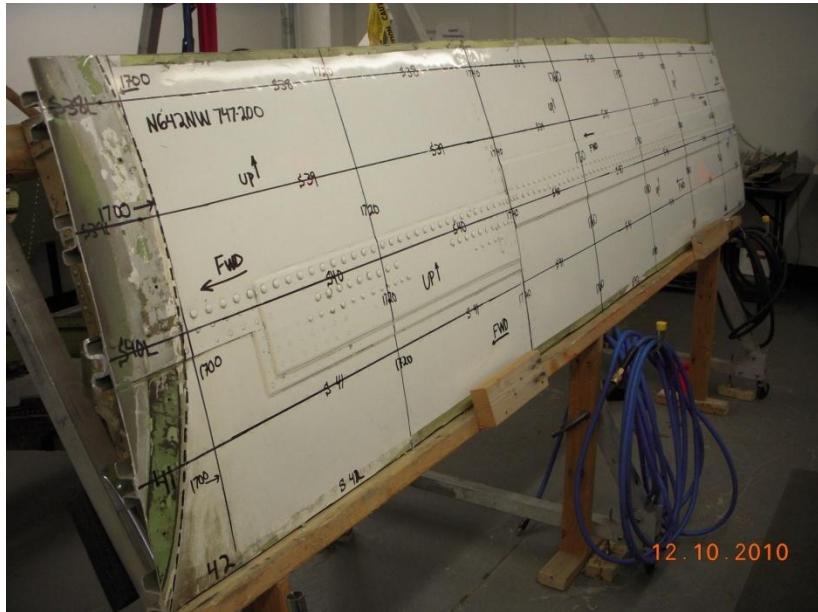
FAA William J. Hughes
Technical Center

DC-10-30F

Passenger to Freight STC Conversion Cargo Door

- Passenger to Freight STC conversion
- Cargo Door
- 35522 FC
- N600GC
- Specimen 6

FAA William J. Hughes
Technical Center


Sandia
National
Laboratories

B747-200 Fuselage LH Aft Lower Lap Repair

N642NW BS 1700-1840, Str 38L-42L

25181 FH 3777 FC, LR1

FAA William J. Hughes
Technical Center

B747-200, N634US, Fuselage Skin & APB Web & T-Chord, BS 2360, Str 1-22R Installed Approx. Mar 2000, LR2

FAA William J. Hughes
Technical Center

B757-200, N920UW, Fuselage Fwd Skin BS 560-680, Str 12L-17L, 3 RAMs with Known FH/FC, LR3

FAA William J. Hughes
Technical Center

A300-B4-200 MSN095 N226KW, LR4 Wing To Fuselage & Lower Rear Spar Repair

- 15821 FH & 10031 FC on Repair
- Airbus Engineered Repair installed in France

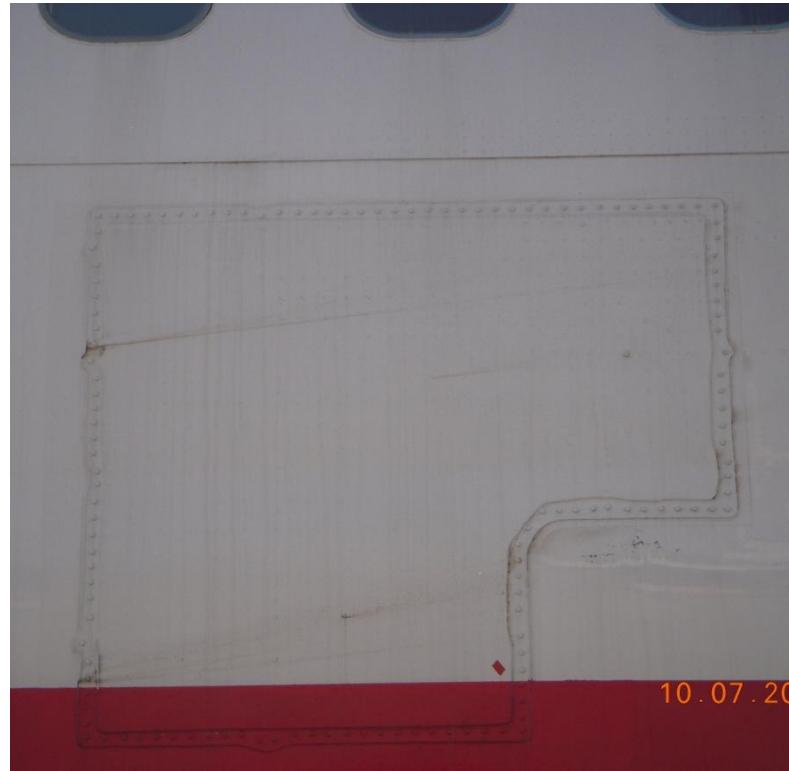
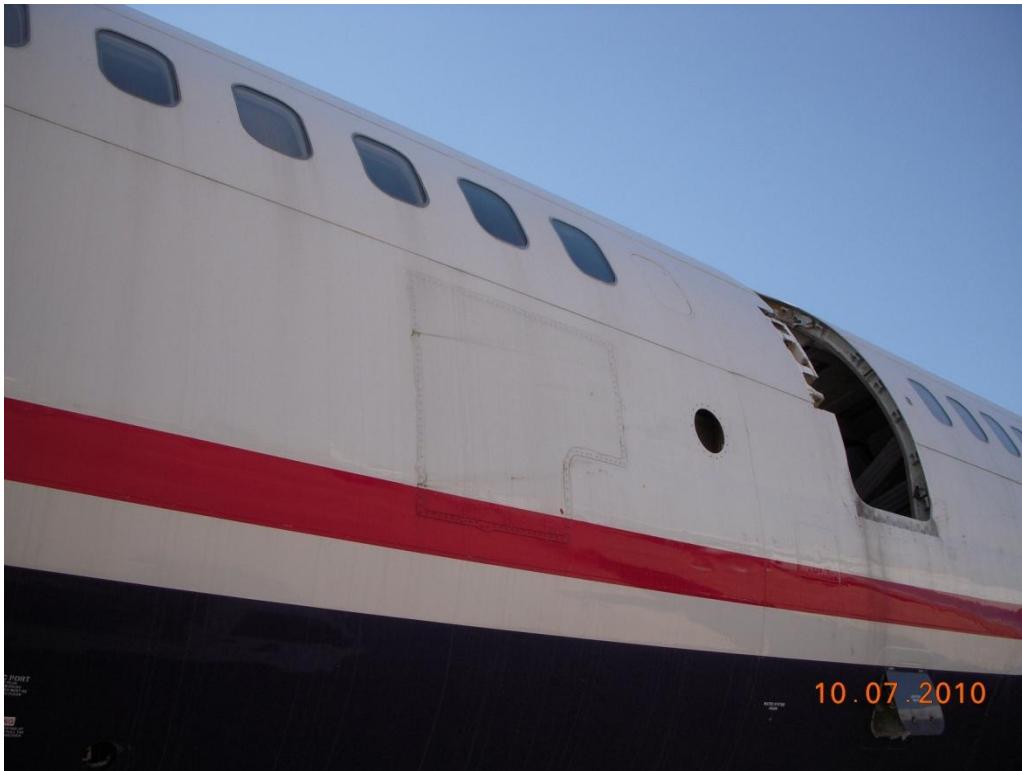
A300-B4-203, N226KW, Lap Joint Repair Doubler below window belt RH, FR 34-41, Str 18R, LR5

FAA William J. Hughes
Technical Center

A300-B4-203, N226KW, Lap Joint Repair Doubler at floor line RH, FR 36-44, Str 28R, LR6

FAA William J. Hughes
Technical Center

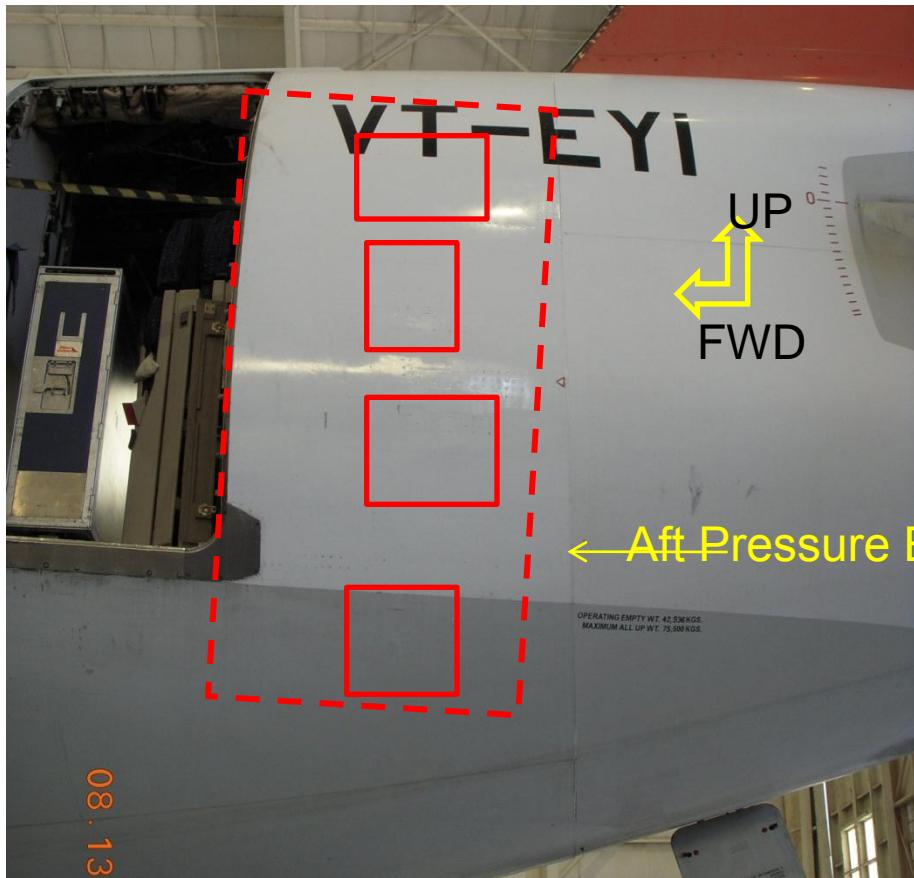
A300-B4-203, N226KW, Skin Doubler Gross Wt Increase Mods LH & RH, Aft of MLG bay, Below aft wing fairings, LR7



B757-200, N920UW, Cab Skin Repair, 4 way splice, around BS 310. LH side, LR11

FAA William J. Hughes
Technical Center

B757-200, N918UW, Fwd Fuselage Skin Repair below window belt lap joint, BS 570-630, Str 14L-19L, Approx 11,500 FC, LR12

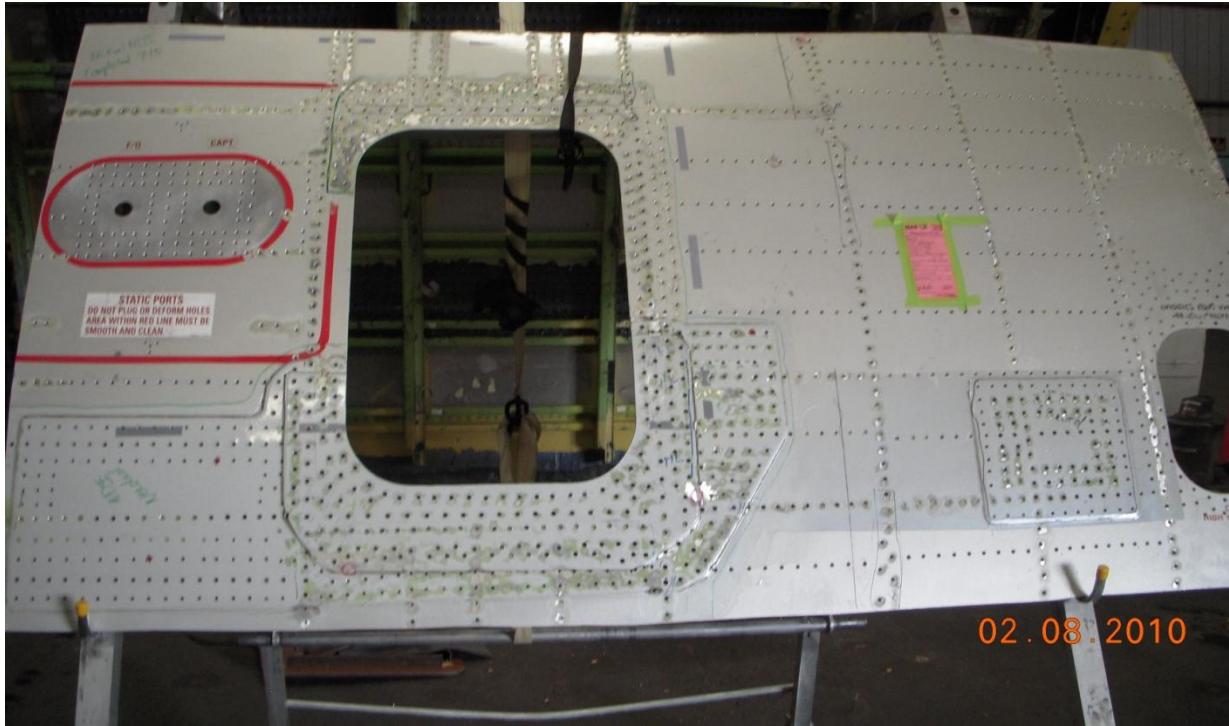
FAA William J. Hughes
Technical Center



Sandia
National
Laboratories

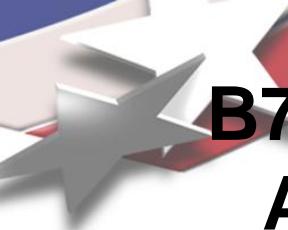
**DC-9-30, N942F, Fuselage Skin Repair Fwd LH
Wing under fairing, BS 760-813, Str 14L-22L,
approx 2000 FH/FC? LR13**

A320, VT-EYI, Fuselage LH Aft of L3 Cabin Door 4 RAMs in one, LR14



FAA William J. Hughes
Technical Center

A320-200, N327NW, Fuselage skin at Lower RH Avionics Access Door & Static Ports, 5997 FC, LR15



- Specimen of opportunity from N327NW
- Total Airplane Cycles 23909
- Teardown & Inspection Complete

FAA William J. Hughes
Technical Center

B757-200, N601DL, Fuselage Fwd Lwr VHF Antenna Skin, BS 715-740, Str 28L-28R, 16984 FH 6929 FC, LR16

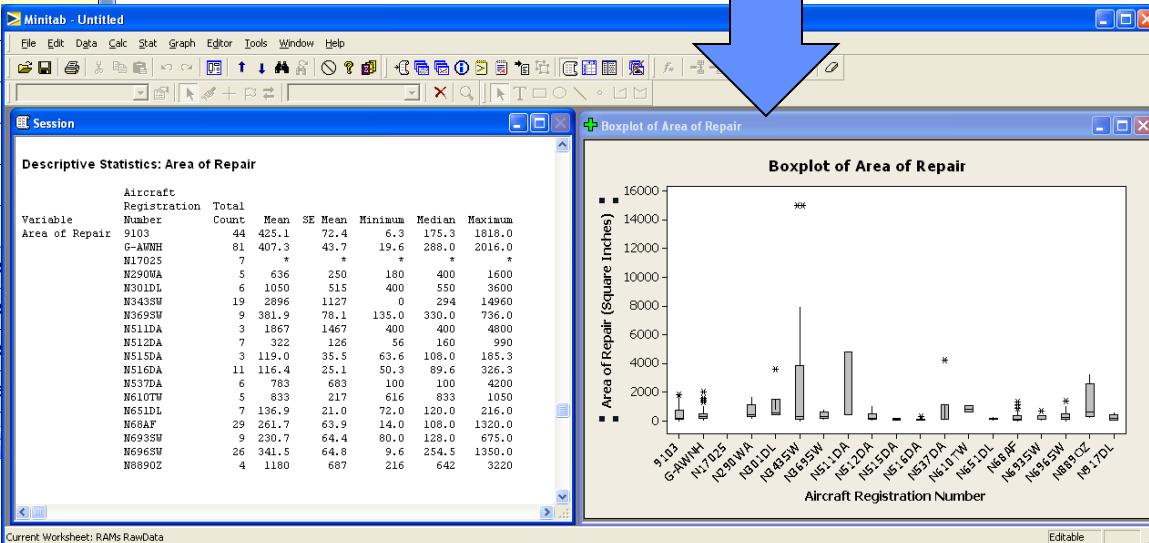
Task 5. Field Survey Database Delivered May 2010

MASTER3 TEST.xlsx - Microsoft Excel

Aircraft Information & Documentation

SURVEY #	Carrier	0	Salvage Company	0	
Date:	1/0/1900	Aircraft Registration Number	0	Date Aircraft Retired	1/0/1900
Aircraft Model	0	Total Flight Cycles at Survey	0	Total Flight Cycles at Retirement	0
Aircraft Submodel	0	Total Flight Hours at Survey	0	Total Flight Hours at Retirement	0
Repair Number (PHOTO)	1	Date Aircraft In service/DOM	1/0/1900		

Repair Location & Application Information


REPAIR	Repair Type	Repair Shape
WING REPLACE FRAME SUPPORT HSTAB VSTAB	date Repair Applied	
	Replacement Repair?	<input type="checkbox"/> Yes No
	Flight Hours when Repair Applied	
	Flight Cycles when Repair Applied	
LEFT OR RIGHT	TOP OR BOTTOM	Repair Shape
		<input type="checkbox"/> TOP <input type="checkbox"/> BOTTOM
Repair Shape	A.T.A. Code	
	REPAIR AREA	MULTILAYER
	If Circular	Fastener Size
	If Rectangular or Square	Fastener Material
	If "L" Shaped	Size of Nearest Repair
		Layer 3
		Workmanship/

SUMMARY

RAMsDatabase_New_011509.xlsx - Microsoft Excel

RAMs RawData

Aircraft Registration Number	REPAIR #	ATA Code	Repair Shape	Dimension 1	Dimension 2	Dimension 3	Dimension 4	Area of Repair	Surface Area (SqIn)	Repair Multilayer	Layer 1	Layer 2	Layer 3
ZS-N651DL	1	5330 Fuselage Main, Plate/Skin	RECTANGULAR	8	9	0	0	72	2	0.06	0.04		
ZS-N651DL	2	5330 Fuselage Main, Plate/Skin	RECTANGULAR	12	16	0	0	192	2	0.06	0.032		
ZS-N651DL	3	5300 Fuselage Structure (General)	RECTANGULAR	10	9	0	0	90	no	0.08	0		
ZS-N651DL	4		SQUARE	13	13	0	0	169	no	0.08	0		
ZS-N651DL	5		RECTANGULAR	9	11	0	0	99	no	0.08	0		
ZS-N651DL	6		RECTANGULAR	18	12	0	0	216	2	0.08	0.08		
ZS-N651DL	7		RECTANGULAR	12	10	0	0	120	no	0.08	0		
ZS-N3695W	1	5330 Fuselage Main, Plate/Skin	RECTANGULAR	28	21	0	0	588	2	0.08	0.06		
ZS-N3695W	2	5330 Fuselage Main, Plate/Skin	RECTANGULAR	29	12	0	0	348	2	0.06	0.06		
ZS-N3695W	3	5330 Fuselage Main, Plate/Skin	RECTANGULAR	17	12	0	0	204	2	0.06	0.06		
ZS-N3695W	4	5330 Fuselage Main, Plate/Skin	RECTANGULAR	22	15	0	0	330	no	0.06	0		
ZS-N3695W	5	5330 Fuselage Main, Plate/Skin	RECTANGULAR	46	16	0	0	736	2	0.08	0.08		
ZS-N3695W	6	5330 Fuselage Main, Plate/Skin	RECTANGULAR	16	9	0	0	144	no	0.08	0		
ZS-N3695W	7	5330 Fuselage Main, Plate/Skin	RECTANGULAR	28	25	0	0	700	no	0.063	0		
ZS-N3695W	8	5330 Fuselage Main, Plate/Skin	RECTANGULAR	28	9	0	0	252	2	0.063	0.063		
ZS-N3695W	9	5330 Fuselage Main, Plate/Skin	RECTANGULAR	15	9	0	0	135	no	0.08	0		
ZS-N3435W	1	5300 Fuselage Structure (General)	RECTANGULAR	12	10	0	0	120	no	0.08	0		
ZS-N3435W	2	5320 Fuselage Miscellaneous Structure	RECTANGULAR	0	0	0	0	0	no	0.08	0		
ZS-N3435W	3	5310 Fuselage Main, Structure	LSHAPED	41	32	12	21	0	3+	0.04	0.04	0	
ZS-N3435W	4	5310 Fuselage Main, Structure	LSHAPED	42	35	25	24	0	3+	0.4	0.6		
ZS-N3435W	5	5300 Fuselage Structure (General)	RECTANGULAR	42	9	0	0	378	no	0.06	0		
ZS-N3435W	6	5330 Fuselage Main, Plate/Skin	RECTANGULAR	89	15	0	0	1624	0	0.06	0.08		
ZS-N3435W	7	5330 Fuselage Main, Plate/Skin	RECTANGULAR	12	9	0	0	108	2	0.08	0.06		
ZS-N3435W	8	5330 Fuselage Main, Plate/Skin	RECTANGULAR	16	13	0	0	208	2	0.08	0.06		
ZS-N3435W	9		LSHAPED	37	28			10	0	2	0.08	0.08	

Task 5. Teardown Database Scheduled May 2011

A1 Airplane Information & Documentation

A	B	C	D	E	F
Repair Size (Sqm)		Distance to Nearest Struct.		Workmanship/ Condition	
Type of nearest Structure		Nearest Repair ID Number		Cluster ID Number	
Nearest Door Type		Part of Cluster	<input checked="" type="checkbox"/> yes No	Number of RAMS in Cluster	
Teardown Information & NDI Results					
Visual Inspection		Bolt Hole Eddy Current		Ultrasonic Inspection	
Number of Sites Inspected		Number of Sites Inspected		Number of Sites Inspected	
Number of Defective Sites		Number of Defective Sites		Number of Defective Sites	
Total Number of Defects		Total Number of Defects		Total Number of Defects	
Comments		Comments		Comments	
Penetrant Inspection		Infrared Inspection		General Comments / Notes	
Number of Sites Inspected		Number of Sites Inspected			
Number of Defective Sites		Number of Defective Sites			
Total Number of Defects		Total Number of Defects			
Comments		Comments			
Additional Documentation & Information					
Discrepancy Report #		SRM / Eng. Disposition	<input type="checkbox"/> SRM <input type="checkbox"/> Eng.		
SUMMARY		Airplane MASTER	Specimen MASTER	1	
Ready					

Teardown Inspection Form Individual Defect Page

RAMS Research Project Plan

Sandia

Survey In-Service & Salvage AC

Data Gathering & Analysis (Effort Minimized)

Collect TD Specimens, Teardown & NDI, & Document

Note: TD = Teardown
Rev = Review
App = Approve

FAA

Support Survey, Dev. Sample Plan

Phase 1
Report survey findings,
Fleet Estimates, &
Teardown List
Sept 29, 2010

Phase 2
Report NDI results
and assessment of
WFD risk

Draft
Early 2012 Final
Mid 2012

Data Analysis & Fleet Est.

WFD Risk Analysis

Rev/App

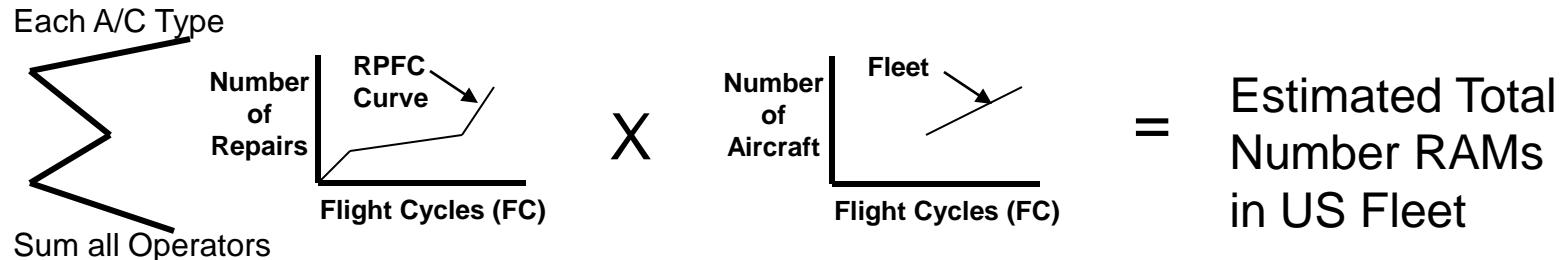
2009

2010

2011

2012

FAA William J. Hughes
Technical Center



Overall RAMs Analysis Highlight

- a) Define an aircraft sampling list for each aircraft type and operator
 - 1) Show number of airplanes per operator, and targeted age group
- b) Perform analysis using sampled survey data. Develop a fleet level:
 - 1) Magnitude of repairs to baseline and alteration structure
 - 2) Magnitude of alteration structures
 - 3) Fatigue Performance data of the repairs and alteration structure

Determine quantity of RAMs in the fleet using the following approach:
Develop a RAMs per Flight Cycle (RPFC) curve and multiply by the number of airplanes in the fleet;
Summing all operators for each airplane type, then sum all airplane types:

Summary of RAMs Survey

- Currently, LOV requirements for RAMs have been eliminated from the WFD Final Rule (published Nov 15, 2010, finalized Jan 2011).
- Acquisition of survey data to support potential future FAA rulemaking determinations on RAMs has been completed.
 - Field Survey of about 2584 RAMs on 154 airplanes
 - Teardown Inspection of 25 RAMs from 12 airplanes
 - WFD associated with RAMs have NOT been observed
 - Most RAMs observed appear to be properly installed
 - Repair Assessment Program required under AASR
 - Existing deficiencies (<1% of RAMs) appear to be workmanship issues
- FAA data review and Final Report estimated completion mid 2012

