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investigated halogenated MOFs as
detectors of noble gases, and the
effects of increasing polarizability on
noble gas adsorption.

The current study uses grand canonical Monte Carlo simulations to
determine Henry's constants, adsorption energies, and adsorption
isotherms for noble gases and halogenated MOFs at low pressures
and room temperature.

*Adsorption sites in IRMOF2-I (near
carboxylate groups) are representative
of the halogenated series

*Amine functionalization shifts the
Model adsorption into the pore

*Enhanced gas adsorption is seen by
MOFs with open metal sites and small

MOFs are modeled as rigid frameworks whose atoms are held cavities, such as Cu-BTC

fixed at their crystallographic positions. MOF atoms are modeled
using the universal force field and charges from Zu et al’. A
single-site Lennard-Jones model is used for the noble gases and
a three-site model including charge is used for N,.

IRMOF2 - | IRMOF3
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MOF Chemical Formula [m/g] % Free Volume Adsorption Properties
IRMOF1 | Zn,0(CO,-CsHs-CO,)s 3280 78.8
IRMOF2 - F | ZnsO(CO,-CeHsF-CO,)s 3236 786 Henry’s Constant [mmol/cm® - atm] Adsorption Energy [kJ/mol] Selectivity
IRMOF2 - CI | Zn40(CO2-C¢H3CI-CO2)s 3208 772 MOF Ar Kr N, Xe Rn Ar Kr N, Xe Rn | Ar/N; | KriN; | Xe/N; | RnIN,
RN OR2ie [EO(COzCsBrEC0,): (112828 e IRMOF2-F| 0414 | 020 | 043 | 073 | 220 | -840 | -10.27 | -8.12 | -13.43 | 1667 | 113 | 220 | 572 | 17.22
IRMOF2 - | | ZnsO(CO,-CeH3l-COy)s 2538 75.5

IRMOF2-CI| 016 | 0.36 | 014 | 0.88 | 276 | -848 | -10.98 | -852 | -143 | -1763 | 112 | 247 | 612 | 19.11

Surface areas and free volumes calculated using the Connelly surface method?

IRMOF2 - Br| 0.16 0.37 0.15 0.93 3.32 -8.42 -11.0 -8.42 | -14.24 | -17.57 1.12 2.50 6.30 22.63

Method IRMOF2 -1 | 0.18 0.39 0.16 0.99 3.57 -8.63 | -11.79 | -8.47 | -14.62 | -18.57 1.1 247 6.31 22.72

Grand canonical Monte Carlo simulations were performed in the uVT
ensemble using the MCCCS Towhee Code®. Translational, rotational,

particle insertion and deletion, and partice swap moves were Conclusions References
performed. Simulations were performed at 292K for pressures between f X A
~0.001 atm and ~ 2.5 atm. The following properties were calculated: In summary, Monte Carlo simulations are an efficient Q. Zu, C. Zhong, J. Phys. Chem. C 2010, 114, 5035-5042

method for predicting trends of gas adsorption in MOFs. In
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Adsorption Energy — the energy released upon adsorption of an greater affinity for noble gases than IRMOF-1. Gas uptake y MG P12 CIEm, ©I0), M, Judl [Pralpallil Einlbis,
infinitely dilute gasyomoa MOF & at higher pressure correlates with halogen polarizability, J.I. Siepmann, MCCCS Towhee,http://towhee.sourceforge.net.
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