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High Fidelity Numerical Modeling Is e
Impractical For General Problems
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= Numerical solutions compared to analytical (Hertzian) solution for elastic
contact

= An impractical number of elements is required to accurately model contact
in just the elastic regime




Nonlinearities Can Lead to oy
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Significantly Different System Responses

= Small changes in the input parameters can lead to large changes in the response

= High fidelity modeling can only take us so far...to probabilistically explore the
design spaces of complex mechanisms, we need efficient models

" |mperative that we have accurate and efficient contact and dissipation laws
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Shown: coefficient of restitution (green), Piecewise-Linear (purple), the present elastic-plastic
(blue), a similar elastic plastic ( ), and a dissimilar elastic plastic ( )




Considerations for Constitutive )
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Modeling

= Physical process

= Asperities

Plasticity
Localized yielding

etc.

= Methods of simplified impact dynamics modeling

lwan-type models (bolts, joints, frictional interfaces)
Penalty stiffness

Hertzian contact

Coefficient of restitution

Elastic-Plastic models \ X




Simplified Elastic Plastic Impact )

Modeling

= Deflection divided into three phases:

= Elastic loading (1)
= Hertzian force-deflection relationship

= Spans from the initial contact until the onset of
yielding

= Mixed Elastic-Plastic loading (2)
= Elastic forces hypothesized to decrease smoothly
= Plastic forces hypothesized to increase smoothly

= Elastic unloading (3)

= Hertzian, but with a different contact radius than
for loading

= A portion of the plastic deflection is
unrecoverable
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Elastic Regime ) S
= Hertzian Loading
F = %Eﬁam a=Vrd
=  With effective properties
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Plastic Forces

Assumes uniform pressure distribution and conservation of volume

T
F = pomr——y a? = 2r6 po = Hg10
(p
= Strain hardening incorporated with Meyer’s hardness exponent n.
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Stainless Steel measurements from Bartier, Hernot, and Mauvoisin,
“Theoretical and Experimental Analysis of Contact Radius for Spherical
Indentation,” Mechanics of Materials, 42 (2010), 640-656
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Elastic Plastic Transitionary Behavior

Fpp = ¢1(0)FE(9) + ¢2(0)Fp(9)

1. The transitionary functions must recover the clastic force at the onset of yield
¢1(d,) =1 and da(dy) =0. .
' ' These assumptions are to enforce
2. The contact force must always increase with displacement H H
smoothness in the compliance curve...
dFep p
N =0 for 4 >4,
3. The rate at which the contact force increases with displacement cannot decrease 1000 H t
2 erz
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4. The Hertzian contact force (Fg) is greater than the elastic plastic contact force after yield > o °
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7. The contact force must be smooth across the inception of yield

7(1@1(53;) =0 and 7dé2(dy) =0.
dd
Stainless Steel measurements from Bartier, Hernot, and Mauvoisin,
“Theoretical and Experimental Analysis of Contact Radius for Spherical

dé
8. The transitionary functions are bounded

0<gi(d) <1 d 0<¢(d) <1 fi 4§ = 4y . . .

s =t e SOt 0zh Indentation,” Mechanics of Materials, 42 (2010), 640-656

9. The derivative of the contact force must be smooth across the inception of yield

dFg(s,) dFee(d,)
a5 a5
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Elastic Plastic Transitionary Behavior @i

" From the previous assumptions, the transitionary behavior is
derived
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Restitution Model )

= Unloading is elastic

F = ZEVF(5-5)""

= Assumption: the residual plastic deformation is proportional
to the elastic plastic force/equivalent elastic force

b=4,|1- Fo —
4/3E\/Tou]

= Modified contact radius based off of compatibility

F,
(4/3E)2 (5, — 8)"

= Fully prescribes contact model in terms of material properties

= No tuning or calibration parameters
10



Direct Validation )
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Direct Validation )
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Copper measurements from Jamari and Schipper, “Experimental
Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat,”
ASME Journal of Tribology, 128 (2006), 230-235
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Comparison to Other Models ) S,
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Stainless Steel measurements from Bartier, Hernot, and Mauvoisin,
“Theoretical and Experimental Analysis of Contact Radius for Spherical
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Indirect Validation )
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Summary and Conclusions ) .

A new analytical elastic plastic model that includes strain hardening has
been developed

= No tuning or calibration parameters — entirely based on material
properties, and several well supported assumptions

= Compliance after yield modeled as the contribution from elastic forces
decreasing and the contribution from plastic forces increasing as the
interference increases

= Very high agreement with available data; much more so than existing
models in the literature
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