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High Fidelity Numerical Modeling Is 
Impractical For General Problems

 Numerical solutions compared to analytical (Hertzian) solution for elastic 
contact

 An impractical number of elements is required to accurately model contact 
in just the elastic regime
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 Small changes in the input parameters can lead to large changes in the response
 High fidelity modeling can only take us so far…to probabilistically explore the 

design spaces of complex mechanisms, we need efficient models
 Imperative that we have accurate and efficient contact and dissipation laws

Nonlinearities Can Lead to 
Significantly Different System Responses

Shown: coefficient of restitution (green), Piecewise-Linear (purple), the present elastic-plastic 
(blue), a similar elastic plastic (orange), and a dissimilar elastic plastic (cyan)



 Physical process
 Plasticity
 Localized yielding
 Asperities
 etc.

 Methods of simplified impact dynamics modeling
 Iwan‐type models (bolts, joints, frictional interfaces)
 Penalty stiffness
 Hertzian contact
 Coefficient of restitution
 Elastic‐Plastic models

Considerations for Constitutive 
Modeling
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 Deflection divided into three phases:
 Elastic loading (1)
 Hertzian force‐deflection relationship
 Spans from the initial contact until the onset of 

yielding

 Mixed Elastic‐Plastic loading (2)
 Elastic forces hypothesized to decrease smoothly
 Plastic forces hypothesized to increase smoothly 

 Elastic unloading (3)
 Hertzian, but with a different contact radius than 

for loading
 A portion of the plastic deflection is 

unrecoverable

Simplified Elastic Plastic Impact 
Modeling
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 Hertzian Loading

 With effective properties

 Inception of yield based on stress field and 
the von Mises criterion

Elastic Regime



Plastic Forces
 Assumes uniform pressure distribution and conservation of volume

 Strain hardening incorporated with Meyer’s hardness exponent n.
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Stainless Steel measurements from Bartier, Hernot, and Mauvoisin, 
“Theoretical and Experimental Analysis of Contact Radius for Spherical 
Indentation,” Mechanics of Materials, 42 (2010), 640-656

Hertz Measured

p0



Elastic Plastic Transitionary Behavior

8

0 50 100
0

200

400

600

800

1000

Displacement, um
C

on
ta

ct
 F

or
ce

, N
Stainless Steel measurements from Bartier, Hernot, and Mauvoisin, 
“Theoretical and Experimental Analysis of Contact Radius for Spherical 
Indentation,” Mechanics of Materials, 42 (2010), 640-656

Hertz Measured

These assumptions are to enforce 
smoothness in the compliance curve…



Elastic Plastic Transitionary Behavior

 From the previous assumptions, the transitionary behavior is 
derived
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Restitution Model
 Unloading is elastic

 Assumption: the residual plastic deformation is proportional 
to the elastic plastic force/equivalent elastic force

 Modified contact radius based off of compatibility

 Fully prescribes contact model in terms of material properties
 No tuning or calibration parameters
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Direct Validation
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Stainless Steel measurements from Bartier, Hernot, and Mauvoisin, 
“Theoretical and Experimental Analysis of Contact Radius for Spherical 
Indentation,” Mechanics of Materials, 42 (2010), 640-656

Nickel measurements from Alcala, Giannakopoulos, and Suresh, 
“Continuous Measurements of Load-Penetration Curves With Spherical 
Microindenters and the Estimation of Mechanical Properties,” Journal of 
Materials Research, 13 (1998), 1390-1400



Direct Validation
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Stainless Steel measurements from Ovcharenko, Halperin, Verberne, 
and Etsion, “In Situ Investigation of the Contact Area in Elastic-Plastic 
Spherical Contact During Loading-Unloading,” Tribology Letters, 25 
(2007), 153-160
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Copper measurements from Jamari and Schipper, “Experimental 
Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat,” 
ASME Journal of Tribology, 128 (2006), 230-235
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Comparison to Other Models
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Stainless Steel measurements from Bartier, Hernot, and Mauvoisin, 
“Theoretical and Experimental Analysis of Contact Radius for Spherical 
Indentation,” Mechanics of Materials, 42 (2010), 640-656



Indirect Validation
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Stainless Steel measurements from Minamoto and Kawamura, “Effects 
of Material Strain Rate Sensitivity in Low Speed Impact Between Two 
Identical Spheres,” International Journal of Impact Engineering, 36 
(2009), 680-686

Aluminum measurements from Kharaz and Gorham, “A Study of the 
Restitution Coefficient in Elastic-Plastic Impact,” Philosophical Magazine 
A – Physics of Condensed Matter Structure Defects and Mechanical 
Properties, 80 (2000), 549-559
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Comparison to Other Models
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Aluminum measurements from Kharaz and Gorham, “A Study of the 
Restitution Coefficient in Elastic-Plastic Impact,” Philosophical Magazine 
A – Physics of Condensed Matter Structure Defects and Mechanical 
Properties, 80 (2000), 549-559



Summary and Conclusions
 A new analytical elastic plastic model that includes strain hardening has 

been developed

 No tuning or calibration parameters – entirely based on material 
properties, and several well supported assumptions

 Compliance after yield modeled as the contribution from elastic forces 
decreasing and the contribution from plastic forces increasing as the 
interference increases

 Very high agreement with available data; much more so than existing 
models in the literature
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